
Scaling Character-Based Morphological Tagging to Fourteen Languages

Georg Heigold and Josef van Genabith
DFKI & Saarland University

Saarbrücken, Germany
heigold@dfki.de, josef.van genabith@dfki.de

Günter Neumann
DFKI

Saarbrücken, Germany
neumann@dfki.de

Abstract—This paper investigates neural character-based
morphological tagging for languages with complex morphology
and large tag sets. Character-based approaches are attractive
as they can handle rarely- and unseen words gracefully. More
specifically, beside a rich morphology, non-canonical language,
change of language or other linguistic variability can heavily
degrade the accuracy of natural language processing of web
and CMC data. We evaluate on 14 languages and observe
consistent gains over a state-of-the-art morphological tagger
across all languages except for English and French, where
we match the state-of-the-art. The gains are clearly correlated
with the amount of training data. We present supplementary
experiments to explore whether and to what extent unsuper-
vised data through pre-trained word vectors can compensate
for limited amounts of supervised data. Moreover, we show
preliminary results to study the effect of noisy input data by
flipping characters at random.

Keywords-neural network architectures; recurrent neural
networks; natural languages; morphological tagging

I. INTRODUCTION

Character-based approaches have been studied for many
applications in natural language processing, including part-
of-speech (POS) tagging [1], [2], [3], [4], [5], morphological
tagging [6], parsing [7], named entity recognition [3], lan-
guage modeling [2], [8], and neural machine translation [9].
Character-based representations have the advantage of grace-
fully handling rare or unseen words and tend to produce
more compact models as the number of atomic units, i.e.,
characters, is smaller compared to the number of words in
word-level approaches. The issue of rare or unseen words is
particularly pronounced when working on morphologically-
rich languages, small amounts of training data or noisy user
input.

Morphological tagging is the task of assigning a morpho-
logical analysis to a token in context. The morphological
analysis for a word consists of a sequence of feature:value
pairs describing, for example, case, gender, person and tense.
A particular concatenation of such feature:value pairs is
referred to as a single tag [10], [11], [12].

Following [13], we also add the part-of-speech to this
morphological tag and refer to it as POS-MORPH:

I see four words
|

POS=noun:CASE=acc:· · ·
· · · :NUMBER=plural

Given a word in context, we predict a POS-MORPH tag
as a complete unit, rather than as the individual component
parts. This approach allows us to share large parts of the
model but can only produce POS-MORPH analyses attested
in the training data (cf. Table II). This is still the standard
approach to morphological tagging and disambiguation as,
given sufficient amounts of training data, the number of
POS-MORPH descriptions that cannot be produced usually
is small.

Character-based POS tagging (rather than full POS-
MORPH tagging) has been extensively evaluated in the
literature [1], [2], [3], [4]. The results are competitive but
do not systematically outperform the state of the art. Only
[4] report consistent gains by using shallow neural network
architectures in combination with multitask learning, multi-
lingual learning, and pre-trained word embeddings.

State-of-the-art results for morphological tagging (full
POS-MORPH tagging) can be found in [12], [13]. To the
best of our knowledge, there has not been much research
on character-based morphological tagging so far. [6] is an
exception but report results for German only. Their best re-
sults are on a par with state-of-the-art results. [14] show clear
gains of character-based over state-of-the-art morphological
taggers. However, the evaluation is limited to German and
Czech.

Research on character-based approaches in general NLP
clearly divides into papers that use CNN-based architectures
[1], [8], [9] and papers that use LSTM-based architectures
[6], [2], [3], [7], [4], [5]. There are a number of examples
where an LSTM paper reports results of a CNN paper for
comparison, such as [2] (POS tagging for English) and
[3] (named entity recognition for English). However, there
is no direct comparison between CNN and LSTM based
architectures in morphological tagging.

Finally, several authors have shown the utility of word
embeddings pre-trained on large amounts of unsupervised
data [13], [2], [4], [5]. However, they do not discuss how the
results obtained are impacted by the amounts of supervised



LUT LUT...

LSTM layers

(c)

Max Pooling

LUT LUT...

(b) 

Concatenation

Convolution

Highway layers

Bidirectional LSTM

...Softmax Softmax

...

Linear Linear

(a) 

Figure 1. Character-based neural tagging architecture: (a) sub-network mapping word vectors vN1 to tags tN1 , dashed arrows indicate optional skip
connections, (b) CNNs with different filter widths followed by fully-connected layers with highway connections (CNNHighway), and (c) deep LSTM using
the last output to map the character string to a word vector. The networks in (b) and (c) are cloned to produce the input word vectors vN1 in (a). LUT
stands for lookup table.

data available: more precisely, do word vectors obtained
from unlabeled supplementary data help in data settings
where large amounts of labeled data are available?

In this paper, we investigate character-based morpholog-
ical tagging in more depth. More specifically, the contribu-
tions of this paper include:

• the evaluation of character-based morphological tag-
ging on 14 different languages of different morpholog-
ical complexity;

• the demonstration of systematic gains of our character-
based, language-agnostic morphological tagger over a
state-of-the-art morphological tagger across morpho-
logically rich languages. Moreover, and perhaps as
expected, we show that the relative gains are clearly
correlated with the amount of the training data;

• a preliminary study on the effect of artificial noisy input
data;

• the evaluation of large amounts of unsupervised sup-
plementary data through pre-trained word vectors to
further explore the data-efficiency of the character-
based approach.

The remainder of the paper is organized as follows.
Section II summarizes the character-based neural network
approaches used in this paper. The data sets and model
configurations are described in Section III and in Section
IV, respectively. The empirical evaluation is presented in
Section V. Section VI concludes the paper. The appendix
contains a listing of all experimental results obtained in this
paper.

II. CHARACTER-BASED TAGGING

We assume an input sentence wN1 with (complex POS-
MORPH morphological) output tags tN1 and a zeroth-order
Markov model

p(tN1 |wN1 ) =

N∏
n=1

p(tn|wN1 ) (1)

whose factors are modeled by a suitable neural network. For
character-based tagging, we use the character representation
of the word, w = cM1 . This assumes that the segmentation of
the sentence into words is known, which is straightforward
for the languages under consideration.

At the top level, each input word maps to one complex
POS-MORPH morphological output tag. Hence, we can
model the position-wise probabilities p(t|wN1 ) with recurrent
neural networks, such as long short-term memory recurrent
neural networks (LSTMs) [15]. Fig. 1 (a) shows such a
network architecture where the inputs are the word vectors
vN1 . At the lower level, we use a CNN-based (Fig. 1 (b))
or an LSTM-based (Fig. 1 (c)) architecture to compute the
character-based word vectors. As we are using bidirectional
LSTMs (BLSTMs) at the top level, we shall refer to the com-
plete architectures as CNNHighway-BLSTM and LSTM-
BLSTM. The two architectures are fairly similar. In our
opinion, however, there is an important difference between
the two. CNNHighway is more constructive in the sense that
it explicitly specifies the possible character context widths
with a hard upper bound and defines an embedding size for
each context width. LSTMs are more generic as they are
claimed to implicitly learn these details [16].



The weights of the network, θ, are jointly estimated using
conditional log-likelihood

F (θ) = −
N∑
n=1

log pθ(tn|wN1 ). (2)

Learning in recurrent or very deep neural networks is non-
trivial and skip/shortcut connections have been proposed
to improve the learning of such networks [17], [18]. We
use such connections (dashed arrows in Fig. 1) for LSTM-
BLSTM to alleviate potential learning issues.

At test time, the predicted tag sequence is the tag sequence
that maximizes the conditional probability p(tN1 |wN1 ). For
the factorization in Eq. (1), the search can be done position-
wise. This significantly reduces the computational and im-
plementation complexity compared to first-order Markov
models as used in [19], [1], [6].

III. DATA

Most of the data sets are taken from the UD treebanks1.
We also use a number of older data sets in order to compare
our results with existing results in the literature, including
Czech/PDT2, German/TIGER3, and Korean/SPMRL4. The
corpus statistics for the different languages can be found
in Table I. The training data are annotated with tags and
used for supervised training. The Wiki dump data are
not annotated and are only used to pre-computed word
embeddings via word2vec [20]. The chosen languages are
from different language families: Balto-Slavic (Bulgarian,
Czech, Russian), Finnic (Estonian, Finnish), Finno-Ugric
(Hungarian), Germanic (German), Indo-Iranian (Hindi), Ko-
reanic (Korean), Romance (Romanian), Semitic (Arabic),
and Turkic (Turkish). They include several examples for
both agglutinative and fusional languages. The amount of
supervised training data ranges from 33k training tokens
(Hungarian/UD) to 1,174k training tokens (Czech/UD). The
amount of unsupervised data used for pre-training word
embeddings ranges from 3M training tokens (Arabic Wiki
dump) to 2,252M training tokens (English Wiki dump), see
last column of Table I.

Table II summarizes the tag statistics for the different
languages. The number of tags is the number of POS-
MORPH tags occurring in the training data. We give the
test entropy based on a unigram tag model estimated on the
training data as a simple measure for the difficulty of the
associated sequence classification problem. The type/token
ratio (TTR), also known as vocabulary size divided by text
length, is computed on 1M words from randomly selected
sentences from a different data set5 and is a simple measure

1http://dependencies.org/
2https://ufal.mff.cuni.cz/pdt3.0
3http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
4http://dokufarm.phil.hhu.de/spmrl2013/?animal=spmrl2013
5The sentences are all taken from the Wiki dumps on http:

//linguatools.org/tools/corpora/wikipedia-monolingual-corpora/ or https://
archive.org/details/wikipediadumps?&sort=-downloads&page=2.

to quantify the morphological complexity of a language
[21]. A higher TTR value indicates higher morphological
complexity.

IV. SETUPS

We use the same model setups for LSTM-BLSTM and
CNNHighway-BLSTM as in [14]. The hyper-parameters are
set to

• CNNHighway: the large setup from [8], i.e., character
vector size = 15, filter widths ranging from one to
seven, number of filters as a function of the filter width
min{200, 50 · filter width}, two highway layers

• LSTM: character vector size = 128, two layers with
1024 and 256 nodes

The BLSTM modeling the context of words in a sentence
(Fig. 1 (a)) consists of two hidden layers, each with 256
hidden nodes. The pre-trained word vectors from word2vec
[20] have the same as the character-based word vectors
(256).

These hyper-parameters were tuned on the German
TIGER development data and are optimal on a ”best effort
basis” [14]. German is good for the hyper-parameter tuning
as it is a relatively hard task (see Table II) and shows
morphological effects both within and across words. Further-
more, the TIGER corpus is relatively large, which reduces
statistical fluctuations in training and testing. Apart from
these considerations, the choice was random. Furthermore,
we tested language-specific tuning for a few languages, but it
does not seem to give further gains. Moreover, the network
hyper-parameters were tuned to give best accuracy rather
than most compact models or even comparable numbers of
parameters as our application is not constrained by memory
or runtime. The hyper-parameters were then used for all
languages. To establish state-of-the-art baselines, we ran the
external tools MarMoT6 and JNN7 (see Appendix) with the
suggested default values. MarMoT is based on conditional
random fields using manually designed features [12]. JNN is
a neural network toolkit and contains an LSTM-based tagger
[2].

The networks are optimized as described in [14]. In
particular, the optimization is done with RMSProp [22], with
a fixed initial learning rate and a learning rate decay of two
every tenth epoch for German/TIGER, and is adjusted for
the other languages according to the amount of training
data. The batch size is always 16. Furthermore, we use
dropout. The dropout probability is empirically set to 0.4
for Hungarian and Turkish, which only have a very limited
amount of training data (Table I), and to 0.2 for all other
languages.

6http://cistern.cis.lmu.de/marmot/
7https://github.com/wlin12/JNN



Table I
CORPUS STATISTICS, OOV≥5 DENOTES THE PERCENTAGE OF TEST WORD TOKENS WITH FIVE OR MORE OCCURRENCES IN THE TRAINING DATA

Language Train sentences (k) Train tokens (k) Test tokens (k) OOV≥5 (%) Wiki dump tokens (M)
Arabic/UD 6 256 32 20.7 3
Bulgarian/UD 9 124 16 27.3 46
Czech/PDT 39 691 93 17.5 83

UD 68 1174 174 15.7 83
English/UD 13 205 25 16.7 2252
Estonian/UD 15 188 24 32.2 21
Finnish/UD 12 163 9 38.9 64
French/UD 15 367 7 12.7 215
German/TIGER 40 760 92 17.2 610
Hindi/UD 13 281 35 10.1 32
Hungarian/UD 1 33 4 48.0 88
Korean/SPMRL 23 296 28 42.7 56
Romanian/UD 5 109 18 27.6 51
Russian/UD 47 815 108 19.5 68
Turkish/UD 4 42 9 46.5 49

Table II
TAG STATISTICS, TTR STANDS FOR TYPE/TOKEN RATIO

Language #Tags Entropy TTR (%)
Arabic/UD 320 32.5 12
Bulgarian/UD 448 49.5 12
Czech/PDT 878 77.7 11

UD 1418 97.7 11
English/UD 119 27.9 7
Estonian/UD 787 57.3 13
Finnish/UD 1593 76.1 17
French/UD 197 34.1 8
German/TIGER 681 97.7 13
Hindi/UD 922 56.9 7
Hungarian/UD 652 64.5 14
Korean/SPMRL 1976 119.4 20
Romanian/UD 444 65.8 7
Russian/UD 434 54.6 16
Turkish/UD 987 73.0 10

V. EMPIRICAL EVALUATION

We empirically evaluate an LSTM-based and a CNN-
based architecture for character-based morphological tag-
ging (Section II) and compare them against MarMoT, a
state-of-the-art morphological tagger [12], and JNN, a state-
of-the-art part-of-speech tagger. For the evaluation we use
twelve different morphologically-rich languages with differ-
ent characteristics, plus two morphologically-poor languages
for contrastive results (Section III). The configurations are
described in Section IV.

Fig. 2 plots the relative gain over MarMoT (see Appendix-
for more details) against the amount of training data. The
horizontal dotted line at 0% indicates the MarMoT baseline.
The blue squares are for LSTM-BLSTM results. Connecting
them for the morphologically-rich languages shows a clear,
nearly-linear dependency of the relative gain on the amount
of training data. Only the data point for Turkish at 40% is
an outlier (should be around 20%). This result suggests that
compared to MarMoT, LSTM-BLSTM is very data efficient.
Even for very small amounts of training data (e.g., 33k
tokens for Hungarian), the relative gain is still 15%. On the
other hand, more data helps. In case of Czech, increasing the

amount of training data from 691k (Czech/PDT) to 1174k
(Czech/UD) tokens leads to some additional gain and yields
almost a 50% relative gain. It should be noted, however, that
the two data sets use different tag sets, with the Czech/UD
one being the more complex than the Czech/PDT (Table II).

We use an LSTM-BLSTM of the same size for all
languages, although the amount of training data varies
by roughly two orders of magnitude. Therefore, it is a
valid question if a larger model specifically designed for
Czech/UD or a smaller model for Turkish/UD would im-
prove the results. We have developed carefully locally tuned
and tested larger and smaller models in terms of number
of nodes or layers but with similar or worse performance:
-0.1% with more nodes (Czech) or approx. -1% with fewer
nodes or fewer layers (Turkish). This observation suggests
that the configuration optimized for German is fairly robust
across many different languages, which is an attractive
property from a practical perspective.

In contrast, we do not observe a gain of LSTM-BLSTM
over MarMoT for English and French. Both languages are
considered to be morphologically poor, as supported by the
tag statistics in Table II. This may be because of the low
morphological complexity, i.e., a character representation
does not add much information to a word representation.
Another explanation might be that the linguistic experts
have focused on English and French in the last decades
and found a good set of features, which however does
not well generalize to other, morphologically more complex
languages.

The red pluses are for the LSTM-BLSTM+word2vec re-
sults. LSTM-BLSTM+word2vec denotes an LSTM-BLSTM
whose character-based word vector is concatenated with pre-
trained word embeddings [20]. This allows us to exploit
large amounts of unsupervised data in addition to the often
limited amount of supervised data. The results (Fig. 2)
are mixed but there is a clear trend that languages with
smaller amounts of supervised training data benefit more
from pre-trained word embeddings than languages with



Figure 2. Relative gains (%) over MarMoT

larger amounts of supervised training data. For example,
we observe an additional gain from 15% to over 30% for
Hungarian/UD (supervised data with 33k training tokens
only) but no additional gain at almost 50% for Czech/UD
(supervised data with 1174k training tokens). These results
suggest that pre-trained word embeddings may be a simple
and effective way to close the performance gap between
languages with small and large amounts of data.

It is tempting to analyze these results in more detail
by splitting languages into sub-categories. Here, we refrain
from doing so as it is delicate to draw conclusions from very
small sample sizes (3-4 languages, say).

The green circles (in Fig. 2) are for CNNHighway-
BLSTM results, a neural network architecture that has
been developed for character-based language modeling [8].
Overall, LSTM-BLSTM and CNNHighway-BLSTM per-
form similarly, see Fig. 2. Looking at the details, however,
CNNHighway-BLSTM tends to perform slightly worse and

less consistently than LSTM-BLSTM.
For additional comparison, we add a few additional points

in the plot. The single red cross indicates the result from [6],
which is a combination of a CNN, a bidirectional RNN, and
a Markov model. The purple crosses are generated with the
external tool JNN8, which implements a shallow BLSTM-
BLSTM (i.e., only one bidirectional LSTM layer in each
BLSTM). One might expect that this model performs better
on smaller data sets. But actually, it is clearly worse both
for large (Czech/PDT and German/TIGER) and small data
sets (Romanian/UD).

We have not found CMC-based corpora for morphological
tagging. To simulate noisy input data, we flip characters at
random during training and testing as a simple preliminary
experiment along these lines. Fig. 3 shows the results for
German/TIGER. Adding noise to the clean model at test
time, degrades the performance heavily, for example, from

8https://github.com/wlin12/JNN



less than 10% to almost 80% tag error rate for 20% character
flips. Given an average word length of 6 characters, 20%
character flips roughly correspond to one incorrect character
per word. Using character flips for training lets the perfor-
mance degrade much more gently. Moreover, the error rates
only weakly depend on the noise level in training.

Figure 3. Effect of character flips on test error for German/TIGER corpus

To speed up the computation, the character-based word
vectors of a sentence are processed in parallel. No further
optimization has been done. This leads to a substantial
speed up, in particular for LSTM-based word vectors. For
a batch size of 16 and Titan X GPU, a training batch
takes 0.7 seconds and 2.2 seconds for LSTM-BLSTM and
HighwayCNN-BLSTM in our Torch79-based implementa-
tion, respectively. HighwayCNN may be harder to parallelize
because of the many small tensor operations. Doing only
the forward propagation at test time, roughly halves the
computation time.

VI. SUMMARY & FUTURE WORK

In this paper, we demonstrated that a character-based
neural approach can achieve consistent improvements over a
state-of-the-art morphological tagger (MarMoT). The evalu-
ation included a dozen of languages of different morphologi-
cal complexity and with different characteristics. The relative
gains for the morphologically-rich languages range from
15% to almost 50%, with a clear dependency on the amount
of training data. Several aspects are remarkable about this
result.

First, these results use the same model architecture with
the same number of layers and nodes, without any language-
specific modifications, Despite our best efforts, further local

9http://torch.ch/

language and training data setting specific hyper-parameter
tuning does not seem to result in performance gains.

Second, the neural approach seems to be more data
efficient than the baseline tagger with manually designed
features, also when only 30k training tokens are available.

Third, a fairly generic deep and hierarchical recurrent
neural network architecture seems to perform as well or
better than a more specialized convolutional neural network
based architecture.

Fourth, to keep the setup as simple as possible initially,
we have not used advanced techniques which are reported
to lead to improvements, including additional unsupervised
data (e.g., via pre-trained word vectors) [13], [2], [4], [5]
and supplementary experiments in this work (see below),
a non-trivial structured prediction model (e.g., a first-order
Markov model) [19], [1], [6], [5], combination of different
word representations [6], [5], [4], multilingual learning [3],
[4], and auxiliary tasks [4]. Future work will include the
investigation of these more advanced techniques. From this
perspective, our paper provides a baseline for future research
in multilingual character-based neural morphological tag-
ging.

Last but not least, we do not observe any gains for English
and French. This may be due to the low morphological
complexity of these languages or because manual feature
engineering has focused on these languages over the last
decades with good results.

Moreover, we investigated the impact of using additional
word embeddings trained on unlabeled supplementary data
and how this is related to the amount of labeled data avail-
able. The results are somewhat mixed but we observe a trend
that languages with smaller amounts of supervised training
data benefit more from pre-trained word embeddings than
languages with larger amounts of supervised training data.
In particular, for English we did in fact observe performance
increases using additional word embeddings trained on very
large amounts of supplementary unlabeled data. For French
we were not able to produce similar gains, perhaps also due
to the smaller size of the supplementary unlabeled data, an
order of magnitude less than what was available for English.

Finally, first experiments on noisy data (here, character
flips to simulate typos) are very promising and we will
extend our work along this line in the future.

APPENDIX

This appendix contains Table III with the raw results used
in this paper. When available, the best comparable error rates
from the literature are used. Otherwise, we produced the
error rates with the publicly available tools and the suggested
default values. More specifically, we used the state-of-the-
art tagger MarMoT10 for the baselines and the LSTM-based
POS tagger JNN11 for some contrastive results.

10http://cistern.cis.lmu.de/marmot/
11https://github.com/wlin12/JNN



Table III
TAG ERROR RATES (%) ON TEST SETS, SOME OF WHICH ARE TAKEN FROM THE LITERATURE: (A) [12], (B) [6]

Language MarMoT10 CNN-biRNN-CRF BLSTM-BLSTM11 CNNHighway-BLSTM LSTM-BLSTM LSTM-BLSTM+word2vec
Arabic/UD 9.13 6.22 6.46 6.11
Bulgarian/UD 5.73 5.12 4.86 4.30
Czech/PDT 7.46a 6.30 4.87 4.36 4.07

UD 6.97 3.68 3.64
English/UD 7.00 6.68 6.83 5.66
Estonian/UD 8.11 6.32 5.75 5.01
Finnish/UD 7.79 7.61 6.48 5.50
French/UD 5.08 5.19 5.09 5.09
German/TIGER 11.42a 10.97b 10.04 7.37 6.77 6.15
Hindi/UD 11.44 9.21 9.16 8.85
Hungarian/UD 26.49 23.40 22.41 18.20
Korean/SPMRL 18.60 14.43 13.49
Romanian/UD 7.64 9.02 5.97 5.88 4.90
Russian/UD 6.08 4.21 3.55 3.34
Turkish/UD 17.28 12.41 10.88 9.80

ACKNOWLEDGMENT

This work has been partly funded by the European Unions
Horizon 2020 research and innovation programme under
grant agreement No. 645452 (QT21).

REFERENCES

[1] C. dos Santos and B. Zadrozny, “Learning character-level
representations for part-of-speech tagging,” in ICML, Beijing,
China, Jun. 2014.

[2] W. Ling, T. Luı́s, L. Marujo, R. F. Astudillo, S. Amir,
C. Dyer, A. Black, and I. Trancoso, “Finding function in form:
Compositional character models for open vocabulary word
representation,” in EMNLP, Lisbon, Portugal, Sep. 2015.

[3] D. Gillick, C. Brunk, O. Vinyals, and A. Subramanya, “Mul-
tilingual language processing from bytes,” Dec. 2015.

[4] B. Plank, A. Søgaard, and Y. Goldberg, “Multilingual part-
of-speech tagging with bidirectional long short-term memory
models and auxiliary loss,” in ACL, Berlin, Germany, Aug.
2016.

[5] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-
directional LSTM-CNNs-CRF,” in ACL, Berlin, Germany,
Aug. 2016.

[6] M. Labeau, K. Löser, and A. Allauzen, “Non-lexical neural
architecture for fine-grained POS tagging,” in EMNLP, Lis-
bon, Portugal, Sep. 2015.

[7] M. Ballesteros, C. Dyer, and N. Smith, “Improved transition-
based parsing by modeling characters instead of words with
LSTMs,” in EMNLP, Lisbon, Portugal, Sep. 2015.

[8] Y. Kim, Y. Jernite, D. Sontag, and A. Rush, “Character-aware
neural language models,” in AAAI, Phoenix, AZ, USA, Feb.
2016.

[9] M. Costa-jussà and J. Fonollosa, “Character-based neural
machine translation,” in ACL, Berlin, Germany, Aug. 2016.

[10] K. Oflazer and I. Kuroz, “Tagging and morphological dis-
ambiguation of Turkish text,” in Proceedings of the Applied
natural language processing, 1994.

[11] J. Hajič and B. Hladk, “Tagging inflective languages: Predic-
tion of morphological categories for a rich, structured tagset,”
in Proceedings of Coling, 1998.

[12] T. Müller, H. Schmid, and H. Schütze, “Efficient higher-order
CRFs for morphological tagging,” in ACL, Seattle, WA, USA,
Oct. 2013.

[13] T. Müller and H. Schütze, “Robust morphological tagging
with word representations,” in ACL, Denver, CO, USA, Jun.
2015.

[14] G. Heigold, G. Neumann, and J. van Genabith, “Neural
morphological tagging from characters for morphologically
rich languages,” CoRR, vol. abs/1606.06640, 2016. [Online].
Available: http://arxiv.org/abs/1606.06640

[15] A. Graves, Supervised sequence labelling with recurrent
neural networks, ser. Studies in Computational Intelligence.
Heidelberg, New York: Springer, 2012. [Online]. Available:
http://opac.inria.fr/record=b1133792

[16] J. Schmidhuber, “Learning complex, extended sequences us-
ing the principle of history compression,” Neural Computa-
tion, vol. 4, no. 2, pp. 234–242, 1992.

[17] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to
construct deep recurrent neural networks,” in ICLR, 2014.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, 2016.

[19] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa, “Natural language processing
(almost) from scratch,” Journal of Machine Learning
Research, vol. 12, pp. 2493–2537, 2011.

[20] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in NIPS, Lake Tahoe, CA, USA, Dec.
2013.

[21] M. Bane, “Quantifying and measuring morphological com-
plexity,” in Proceedings of the 26th West Coast Confer-
ence on Formal Linguistics, C. Chang and H. Haynie, Eds.
Somerville, MA, USA: Cascadilla Proceedings Project, 2008,
pp. 69–76.



[22] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude,”
COURSERA: Neural Networks for Machine Learning, vol. 4,
2012.


