
A Hybrid Machine Learning Approach for
Information Extraction from Free Text

Günter Neumann?

LT–Lab, DFKI Saarbrücken, D-66123 Saarbrücken, Germany

Abstract. We present a hybrid machine learning approach for information ex-
traction from unstructured documents by integrating a learned classifier based on
the Maximum Entropy Modeling (MEM), and a classifier based on our work on
Data–Oriented Parsing (DOP). The hybrid behavior is achieved through a vot-
ing mechanism applied by an iterative tag–insertion algorithm. We have tested the
method on a corpus of German newspaper articles about company turnover, and
achieved 85.2% F-measure using the hybrid approach, compared to 79.3% for MEM
and 51.9% for DOP when running them in isolation.

1 Introduction

In this paper, we investigate how relatively standardized ML techniques can
be used for IE from free texts. In particular, we will present a hybrid ML
approach in which a standard Maximum–Entropy Modeling (MEM) based
classifier is combined with a tree-based classifier based on Data–Oriented
Parsing (DOP), a widely used paradigm for probabilistic parsing. The major
motivations for the work presented in this paper are 1) to explore, for the
first time, the benefits of combining these two leading ML paradigms in NLP
for information extraction, and 2) to exploit ML–IE approaches for German
documents. This issue is of interest, because so far, nearly all proposed ML–
IE approaches are considering English documents (in fact, we are not aware
of any results reported for German using a ML–IE approach using a compar-
ative IE–task). However, since German is a language with important different
linguistic phenomena compared to English (e.g., rich morphology, free–word
order, word compounds), one cannot simply transpose the performance re-
sults of ML–IE approaches obtained for English to German.

The core idea of a supervised ML–IE approach from free text is simple (see
also fig. 1): Given a corpus of raw documents annotated only with the rele-
vant slot–tags from the template specification, enrich the corpus with linguis-
tic features automatically extracted by the Linguistic Text Engine. Pass
this annotated corpus to the Machine Learning Engine which computes
(through the application of its core learning methods) a set of template

? Thanks to Volker Morbach for his great help during the implementation and
evaluation phase of the project. This work was supported by a research grant
from BMBF to the DFKI project Quetal (FKZ: 01 IW C02).

2 Neumann

Fig. 1. Blueprint of the Machine Learning perspective of Information Extraction.

specific annotation functions, i.e., mappings from linguistic features to
appropriate template slots. These learned mappings are then used to auto-
matically annotate new documents – pre-processed by the same Linguistic
Text Engine, of course – with template specific information.

We are following the standard view of IE “as classification”, in that we
classify each token to belonging to one of the slot–tags or not. In particular
we want to explore the effect of the linguistic feature extraction to the per-
formance of our ML–IE approach. The linguistic features are computed by
our system Smes a robust wide-coverage German text parser, cf. Neumann
and Piskorski (2002). The features can roughly be classified into lexical (e.g.,
token class, stem, PoS, compounds) and syntactic (e.g., verb groups (VG),
nominal phrases (NP), named entities (NE)). In order to explore the effects
of features from different levels, classification is performed as an incremental
tagging algorithm, on basis of the following two–level learning approach: 1)
Token level (cf. sec. 2): each token is individually tagged with one of the slot–
tags using only lexical features. 2) Token group level (cf. sec. 3): a sequence
of tokens is recognized and tagged with one of the slot–tags by applying a
set of tree patterns. Both levels are learned independently from each other,
but they are combined in the application phase, and this is why we call our
ML–IE approach hybrid.

2 MEM for Exploiting the Token Level

The language model for the token level is obtained using Maximum Entropy
Modeling (MEM). The major advantages of MEM for IE from unstructured
texts are 1) that one can easily combine features from different linguistic

A Hybrid Machine Learning Approach for IE 3

levels, and 2) that the estimation of the probabilities are based on the prin-
ciple of making as few assumptions as possible, other than the constraints
on feature combination and values are imposing, cf. Pietra et al. (1997). The
probability distribution that satisfies these properties is the one with the
highest entropy, and has the form

p(a|b) =
1

Z(b)
·

n∏
j=1

α
fj(a,b)
j with Z(b) =

∑
a∈A

n∏
j=1

α
fj(a,b)
j (1)

where a refers to the outcome (or tag) and A the tag set, b refers to the
history (or context), and Z(b) is a normalization function. Features are the
means through which an experimenter feeds problem-specific information to
MEM (n lexical features in our case), all of them bearing the form

fj(a, b) =
{

1 if a = a′ and cp(b) = true
0 otherwise (2)

where cp stands for a contextual predicate, which considers all information
available for all tokens surrounding the given token t0 (our context window
is [t−2, t−1, t0, t+1, t+2]) and all information available for t0. We use the
following lexical feature set: token, token class, word stem, and PoS. The task
of the MEM training algorithm is to compute the values of the feature weights
αj . We are using Generalized Iterative Scaling, a widely used estimation
procedure, cf. Darroch and Ratcliff (1972).

3 DOP for Exploiting the Token Chain Level

Data-Oriented Parsing (DOP) is a probabilistic approach to parsing that
maintains a large corpus of analyses of previously occurring sentences, cf.
Bod et al. (2003). New input is parsed by combining tree-fragments from the
corpus; the frequencies of these fragments are used to estimate which analysis
is the most probable one.

So far, DOP has basically been applied on syntactic parse trees. In this
paper, we show how DOP can be applied to IE. The starting point is the
XML–tree of an annotated template instance. Such a template tree t is ex-
tracted from an annotated document by labeling the root node with the
domain–type (see fig. 2) and the immediate child nodes with the slot–tags
(called slot-nodes). Each slot-node s is the root of a sub–tree (called slot-tree
and denoted as ts) whose yield consists of the text fragment α spanned by
s. All other nodes of ts result from the linguistic analysis of α performed by
Smes. Note that in contrast to the token level all information computed by
Smes is used at this level, i.e., in addition to the lexical features, we also
make use of the named entities (NE) and phrasal level.

Each template tree t obtained from the training corpus is generalized by
cutting off certain sub–trees from t’s slot–trees, which is basically performed

4 Neumann

Fig. 2. Example of the tree generalization using DOP.

by deleting the link ni → nj between a non-terminal node ni and its child
node nj and by removing the complete subtree rooted at nj (cf. lower left
tree in fig. 2). The resulting tree t

′
is more general than t, since it has fewer

terminal as well as non-terminal nodes than t but otherwise respects the
structure of t. All generalized trees are further processed by extracting all
slot–trees. Finally, each slot–tree is assigned a probability p(t

′

s) such that∑
ti:root(ti)=s p(ti) = 1).
The tree decomposition operation is linguistically guided by the head fea-

ture principle, which requires that the head features of a phrasal sign be
shared with its head daughter, cf. Neumann (2003). For example, the head
daughter of a NP is its noun N. Using this notation, tree decomposition tra-
verses each slot–tree from the top–downwards by cutting of the non–head
daughters with the restriction that if the root label of a non–head daughter
d denotes a token class or a named entity, then we retain the root node of d,
but cut off d’s sub–trees.

4 Hybrid Iterative Tag Insertion

The application phase is realized as a tag–insertion method that is iteratively
applied by a central search control on a new document as long as no new slot–

A Hybrid Machine Learning Approach for IE 5

Fig. 3. The Hybrid Iterative Tag Insertion approach.

tag can be inserted (using the slot unknown for initializing the tag sequence).
The slot–tags are predicted by a set of operators. Each operator corresponds
to one of the learning algorithms, viz. MEM–op and DOP–op, see fig. 3.

The hybrid property of the approach is obtained such that in each itera-
tion all operators are applied independently of each other on the actual tagged
sequence. This results in a set of operator–specific new tagged sequences each
having an individual weight. The N–best new tagged sequences are passed
to the next iteration step, i.e., we perform a beam–search with beam size N .
The following common weighting scheme is used by each operator opk

w(j+1) =

8>><
>>:

w(j) · #p(j) + fk · ∆w ·
�
#p(j+1) − #p(j)

�

#p(j+1)
, if #p(j+1) > #p(j)

w(j) , if #p(j+1) = #p(j)

(3)

where w(i) denotes the weight of the tagged sequence determined in iteration
step i (setting w(0) = 0 enforces 0 ≤ w(i) ≤ 1), #p(i) is the number of fixed
tag positions after iteration i (by fixed we mean that after the tag unknown has
been mapped to slot–tag s, s cannot be changed in next iterations). ∆w is a
feature weight, and fk a operator–specific performance number (both having
values between 0 and 1), which is determined by applying opk with different
parameter settings on a seen subset of the training corpus by recording the
different values of F–measures obtained.

An operator opk applies the trained model of a learner on a new lin-
guistically preprocessed token sequence and computes predictions for new
slot–tags. Since application can be done in different modes, each operator
opk fixes different parameters. For MEM–op, we define specific instances
of it depending on the search direction (e.g., leftmost not yet fixed tag

6 Neumann

unknown, rightmost unknown or best unknown), use of a lexicon, use of pre-
vious made predictions, or the maximum number of iterations, cf. also Rat-
napharkhi (1998). For DOP–op different instances could implement different
tree matching methods. Currently, we use the following generate–and–test
tree matching method: from the current token sequence consider all possible
sub–sequences (constrained by an automatically computed breadth–lexicon,
used to restrict the “plausible” length of a potential slot–filler); construct an
XML–tree with a root label whose label is the current slot–type in question;
apply the same tree generalization method as used in the training phase;
finally check for equality of this generalized DOP–tree with corresponding
trees from the DOP–model.

5 Experiments

Since there exists no standard IE–corpus for German, we used a corpus of
news articles reporting company turnover for the years 1994 and 1995. The
corpus has been annotated with the following tags: Org (organization name),
Quant (quantity of the message, which is either turnover or revenue),
Amount (amount of the reported event), Date (reported time period), Tend
(increase (+) or decrease (-) of turnover), Diff (amount of money announced
for that time period). The corpus consists of 75 template instances with 5.878
tokens, from which we used 60 instances for training and 15 for testing.

Evaluation of our hybrid ML–IE approach was done using the standard
measures recall (R) and precision (P) and its combined version F–measure.1

We were mainly been interested in checking whether the combination of MEM
and DOP improves the overall performance of our method compared to the
performance of our method, when running MEM and DOP in isolation.

Table 4 shows the result of running different instances of the MEM–op on
the test set. Inspecting table 4, we can see that the best result was obtained
when MEM was running in best–search mode taking into account previous
made decisions using no lexicon. Table 5 displays the performance of the
DOP–op applied on different sizes of the training set (using the same test
set in all runs). As one can see, precision decreases when the training size
grows (see next paragraph for a possible explanation). Table 6 shows that
the overall performance of the system increases, when MEM and DOP are
combined. We can also see that not all instances of the MEM–op benefit by
the combined approach. However, the first table row shows that the F1 value
for the MEM–op increases from 79.3% to 85.2% when combined with DOP.

The results suggest that MEM performs better than our current DOP
tree matcher when running in isolation. The reason is that the tree pat-
terns extracted by means of DOP are more restricted in predicting new tags
than MEM. Furthermore, since we currently build tree patterns only for the

1 F1= (β2+1)PR

β2P+R
, where we are using β=1 in our experiments.

A Hybrid Machine Learning Approach for IE 7

L? P? leftmost best rightmost

PRE REC FME PRE REC FME PRE REC FME

• • 74.9 76.9 75.9 77.4 81.2 79.3 73.2 74.7 73.9
• ◦ 65.6 80.1 72.2 65.6 80.1 72.2 65.6 80.1 72.2
◦ • 79.8 74.2 76.9 82.7 79.6 81.1 80.6 73.7 77.0

Fig. 4. Performance of difference instances of the MEM–op on the single slot–task.
All of them use the model obtained after i∗ = 76 iterations (which was determined
during training as optimal). L? indicates whether a lexicon automatically deter-
mined from the slot–fillers of the training corpus was used by the MEM–op. P?
specifies whether previous made predictions have been taken into account.

opDOP PRE REC FME

C15 071.3 046.8 056.5

C30 064.4 045.7 053.5

C45 059.5 047.3 052.7

C60 055.2 048.9 051.9

Fig. 5. Dependency of the DOP–op on the size of the training set C|doc|.

L? P? leftmost best rightmost

PRE REC FME PRE REC FME PRE REC FME

• • 75.3 76.9 76.1 85.4 85.0 85.2 77.0 77.4 77.2
• ◦ 66.4 80.7 72.8 67.4 81.2 73.7 66.7 81.7 73.4
◦ • 79.2 73.7 76.3 82.7 79.6 81.1 80.6 73.7 77.0

Fig. 6. The single slot performance values for combined MEM and DOP.

slot–fillers without taking into account context, they are probably too am-
biguous. We assume that the degree of ambiguity increases with the number
of documents, which might explain, why the performance of DOP decreases.
However, when MEM and DOP are combined, it seems that DOP actually
can contribute to the overall performance result of F1=85.2%. The reason
is, that on the one hand side, MEM contributes implicitly contextual infor-
mation for DOP in that it helps to restrict the search space for tree matching,
and on the other hand side, it might be that the more “static” tree patterns
might help to filter out some unreliable tag–sequences otherwise predicted by
MEM when running in isolation. Our results also suggest, that not all possi-
ble combinations of operator instances improve the system performance, and
even more, that one cannot expect, that the best operator (when running in
isolation) will automatically also be the best choice for a hybrid approach.

6 Related Work

Chieu and Ng (2002) present a MEM approach to IE and compare their
system with eight other ML–IE methods for the single slot task. For Eng-
lish seminar announcements data, they report F1=86.9%, which ranks best

8 Neumann

(F1=80.9% on average for all systems). Bender et al. (2003) have recently ap-
plied MEM for the CoNLL 2003 Named Entity task on English and German
data, reporting F1=68.88% for German (83.92% for English). They used a
different set of slots (viz. Org, Pers, Loc, Misc), as well as a cleaned–up cor-
pus (i.e., linguistically completely disambiguated, which is not the case for
our method). The best system (88.76% for English, 72,41% for German) also
used a hybrid approach by combining MEM, HMM, transformation based
learning, and a winnow–based method called RRM, cf. Florian et al. (2003).
They also report that MEM belongs to their best standalone performers, and
that a combined approach achieved the best overall performance. The major
differences wrt. our approach are the use of a cleaned–up corpus, and the
use of a non–incremental hybrid approach. A hybrid approach more closely
related to our incremental method is described in Freitag (1998), where he
combines a dictionary learner, term–space text classification and relational
rule reduction.

The experimental results presented here show that a hybrid ML–IE ap-
proach combining MEM and DOP can be useful for the problem of IE. So
far, we have used our approach for the slot filling task. However, since our
approach is in principle open for the integration of more deeper linguistic
knowledge, the method should also be applicable for more complex tasks,
like learning of n-ary slot relations, or even paragraph–level template filling.

References

BENDER, O., OCH, F., and NEY, H. (2003): Maximum Entropy Models for Named
Entity Recognition In: Proceedings of CoNLL-2003, pp. 148-151.

BOD, R., SCHA, R. and SIMA’AN, K. (2003): Data-Oriented Parsing. CSLI Pub-
lications, University of Chicago Press.

CHIEU, H. L. and NG, H. T. (2002): A Maximum Entropy Approach to Information
Extraction from Semi–Structured and Free Text. In Proceedings of AAAI 2002.

DARROCH, J. N. and RATCLIFF, D. (1972). Generalized Iterative Scaling for
Log-Linear Models. Annals of Mathematical Statistics, 43, pages 1470–1480.

FLORIAN, R., ITTYCHERIAH, A., JING, H., and ZHANG, T. (2003): Named
Entity Recognition through Classifier Combination. In: Proceedings of CoNLL-
2003, pp. 168-171.

FREITAG, D. (1998): Multistrategy Learning for Information Extraction. In Pro-
ceedings of the 15th ICML, pages 161–169.

NEUMANN, G. (2003): A Data-Driven Approach to Head-Driven Phrase Structure
Grammar. In R. Scha R. Bod and K. Simaan (eds.) Data-Oriented Parsing,
pages 233-251.

NEUMANN, G. and PISKORSKI, J. (2002): A Shallow Text Processing Core En-
gine. Journal of Computational Intelligence, 18, 451–476.

PIETRA, S. D., PIETRA, V. J. and LAFFERTY, J. D. (1997): Inducing Features
of Random Fields. Journal of IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19, 380–393.

RATNAPARKHI, A. (1998): Maximum Entropy Models for Natural Language Am-
biguity Resolution. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA.

