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Abstract
We describe a method for the automatic extraction of a Stochastic Lexicalized Tree Insertion Grammar from a linguistically rich HPSG
Treebank. The extraction method is strongly guided by HPSG–based head and argument decomposition rules. The tree anchors cor-
respond to lexical labels encoding fine–grained information. The approach has been tested with a German corpus achieving a labeled
recall of 77.33% and labeled precision of 78.27%, which is competitive to recent results reported for German parsing using the Negra
Treebank.

1. Introduction

In (Neumann, 2003) we applied the idea of data–oriented
parsing (DOP) for achieving domain-adaptation to HPSG.
The basic idea of HPSG–DOP is to parse all sentences of a
representative training corpus using an HPSG grammar and
parser in order to automatically acquire from the parsing re-
sults a stochastic lexicalized tree grammar. The decompo-
sition operation is guided by the head feature principle of
HPSG. A major drawback of this approach was that non–
headed constructions were not factored out consequently
due to the lack of structural refinements.
However in (Chiang, 2000) (and others) a number of ap-
proaches for the automatic extraction of Tree Adjoining
Grammars (TAGs) from treebanks are presented, which
treat the factorization of modifier constructions more sys-
tematically. In this paper, we extend HPSG–DOP by com-
bining it with Chiang’s method and apply it on a linguis-
tically rich HPSG treebank for German which is based on
the recently developed Redwoods Treebank (cf. (Oepen et
al., 2002) and sec. 3.). To our knowledge, our approach
is the first time that a rich linguistic theory together with
a stochastic TAG is applied to the German language. This
is not a trivial task, as recently (Dubey and Keller, 2003)
and (Levy and Manning, 2004) have shown that treebank
parsing for German yields substantial lower performance
compared to English Penn treebank parsing, probably due
to the fact that differences in both languages and treebank
annotation may be involved.

2. Stochastic Lexicalized Tree Grammars

The set of lexically anchored trees extracted via the original
HPSG–DOP method already characterizes a lexical tree–
substitution grammar, i.e., a tree–adjoining grammar with
no auxiliary trees, cf. (Schabes, 1990). In (Neumann,
1998), and subsequently in (Xia, 1999), (Chen and Vijay-
Shanker, 2000), and (Chiang, 2000) it is shown how tree
adjoining grammars can be extracted from the Penn Tree-
bank by performing a re–construction of the derivations us-
ing head–percolation rules. Here, we follow the approach
developed in (Chiang, 2000), because his approach only re-
quires a minimal amount of treebank preprocessing, which

makes it easier to adapt it to other kind of treebanks.1

For efficiency reasons, a restricted form of lexicalized tree
adjoining grammars is considered viz. lexicalized tree in-
sertion grammars (LTIGs). LTIG has been introduced in
(Schabes and Waters, 1995) as a TAG–formalism in which
all auxiliary trees are either left or right auxiliary trees. No
elementary wrapping auxiliary trees or elementary empty
auxiliary trees are allowed. Furthermore, left (right) auxil-
iary trees cannot be adjoined to a node that is on the spine
of an elementary right (left) auxiliary tree; and there is no
adjunction allowed to the right (left) of the spine of an ele-
mentary left (right) auxiliary tree (cf. figure 1).
The parameters of a probabilistic TAG which control the
combination of trees by the substitution and adjunction are:∑

α

Pi(α) = 1

∑
α

Ps(α | η) = 1

∑
β

Pa(β | η) + Pa(NONE | η) = 1

∑
α

Psa(β | η, i, X) + Psa(STOP | η, i, X) = 1

where α ranges over initial trees, and β over auxiliary trees,
and η over nodes. Pi(α) is the probability of beginning a
derivation with α; Ps(α | η) is the probability of substitut-
ing α at η; Pa(β | η) is the probability of adjoining β at η;
Pa(NONE | η) is the probability of nothing adjoining at η;
Psa(β | η, i, X) is the probability of sister–adjoining, and
Psa(STOP | η, i, X) is the probability of no further sister–
adjunction. X is the root label of the previous tree to sister–
adjoin at the site (η, i), or START if none. The probability
of a derivation can then be expressed as the product of the
probabilities of the individual operations of the derivation,
cf. (Chiang, 2004) for more details.
LTIGs have context–free power and can be parsed in O(n3).
Two parseres are available to us: a two–phase Early–style

1And because his approach can be seen as a substantial im-
provement of the initial work we have layed out and described in
(Neumann, 1998).



Figure 1: Left and right adjunction.

LTIG parser based on (Schabes and Waters, 1995) writ-
ten in Lisp at our Lab, and a CKY–style bottom–up parser
based on (Schabes and Waters, 1993) written in C by David
Chiang. For the experiments reported in this paper in sec.
5., we are using David’s parser, because currently, it is
much faster than the Early–based Lisp parser, and can be
handled much more flexible. The CKY–parser implements
sister–adjunction, and uses a beam search, computing the
score of an item [η, i, j] by multiplying it by the prior prob-
ability P (η). All items with score less than a given thresh-
old compared to the best item in a cell are pruned.

3. HPSG TreeBank
The HPSG treebank (codename Eiche) we use in our study
is based on a subset of the Verbmobil corpus which has
been automatically annotated with a German HPSG gram-
mar. The analyses provided by the grammar have then been
manually disambiguated using the Redwoods treebanking
technology, cf. (Oepen et al., 2002).
The underlying HPSG grammar itself has originally been
developed as a large-scale competence grammar of German
by Stefan Müller and Walter Kasper in the context of the
Speech-to-Speech machine translation project Verbmobil
(see (Müller and Kasper, 2000)), and has subsequently been
ported to the LKB (Copestake, 2001) and PET (Callmeier,
2000) processing platforms. In 2002, grammar develop-
ment has been taken over by Berthold Crysmann. Since
then, the grammar has undergone several major changes,
most importantly the treatment of verb placement in clausal
syntax (Crysmann, 2003).

3.1. Some basic properties of German syntax
The syntax of German features a variety of phenomena that
makes syntactic analysis much harder than that of more
configurational languages. Chief among these is the rela-
tive free word order in which syntactic arguments of a verb
can appear within the clausal domain.

(1) a. weil
because

der
the

Lehrer
teacher.NOM

dem
the

Schüler
pupil.DAT

das
the

Buch
book.ACC

schenkte
donated

‘because the teacher gave the book to the pupil
as a present’

b. weil der Lehrer das Buch dem Schüler schenkte

c. weil dem Schüler der Lehrer das Buch schenkte

d. weil dem Schüler das Buch der Lehrer schenkte

e. weil das Buch der Lehrer dem Schüler schenkte

f. weil das Buch dem Schüler der Lehrer schenkte

Almost anywhere between the arguments modifiers can be
interspersed quite freely.

(2) weil
because

(gestern)
(yesterday)

der
the

Lehrer
teacher.NOM

(gestern)
(yesterday)

dem
the

Schüler
pupil.DAT

(gestern)
(yesterday)

das
the

Buch
book.ACC

(gestern)
(yesterday)

schenkte
donated

‘because yesterday the teacher gave the book to the
pupil as a present’

This situation is further complicated by the combined ef-
fects of verb cluster formation and argument composition,
which permit permutation even amongst the arguments of
different verbs within the cluster.

(3) a. weil
because

der
the

Lehrer
teacher.NOM

das
the

Buch
book.ACC

zu
to

kaufen
buy

versprach
promised

‘because the teacher promised him to buy the
book.’

b. weil
because

das
the

Buch
book.ACC

der
the

Lehrer
teacher.NOM

zu
to

kaufen
buy

versprach
promised

‘because the teacher promised him to buy the
book.’

Furthermore, realisation of the verb cluster is often discon-
tinuous, typically in matrix clauses.

(4) a. da
there

versprach
promised

der
the

Lehrer.NOM
teacher.NOM

das
the

Buch
book.ACC

zu
to

kaufen
buy

‘There, the teacher promised him to buy the
book.’

b. da
there

versprach
promised

das
the

Buch
book.ACC

der
the

Lehrer
teacher.NOM

zu
to

kaufen
buy

‘There, the teacher promised him to buy the
book.’



Assuming continuous constituents only, the argument
structure is therefore only partially known in bottom-up
parsing, until the other member of the discontinuous verb
cluster is found.
In German matrix clauses, the finite verb typically sur-
faces in second position, the first position being occupied
by some fronted, i.e. extracted, constituent. Thus, in con-
trast to English, presence of non-local dependencies is the
norm, rather than the exception.
Taken together, permutation of arguments, modifier inter-
spersal, discontinuous complex predicates and the almost
categorial presence of non-local dependencies give rise to
a considerable degree of variation in tree structure. As a
consequence, we expect data-driven approaches to parsing
to be more prone to the problem of data-sparseness. In
the context of grammar induction from treebanks, it has al-
ready been observed, e.g., by (Dubey and Keller, 2003) that
methods which are highly successful in a more configura-
tional language, such as Collins PCFG parser for English,
cf. (Collins, 1997), give less optimal results when applied
to German.
This problem is further enhanced by the fact that German
is a highly inflectional language, with 4 distinct cases, 3
gender and 2 number distinctions, all of which enter into
agreement relations. The same holds for the verbal domain,
where up to 5 person/number combinations are clearly dis-
tinguished.

3.2. The grammar
In the spirit of HPSG as a highly lexicalised grammatical
theory, most of the information about an items combinator-
ial potential is encoded in the lexical entries itself, in terms
of typed feature structures. Syntactic composition is then
performed by means of highly general rule schemata, again,
implemented as typed feature structures, which specify the
flow of information within syntactic structure. As a result,
the DFKI German HPSG specifies only 87 phrase structure
schemata, as compared to some 280+ leaf types for the de-
finition of parameterised2 lexical entries, augmented by 56
lexical rules and 286 inflectional rules.
The rule schemata, which make up the phrase structure
backbone of the HPSG grammar, correspond quite closely
to principles of syntactic composition: by themselves they
encode basic functional relations between daughter con-
stituents, such as head-subject, head-complement, or head-
adjunct, rather than intrinsic properties of the node itself.
Thus, a rule like h-comp can be used to saturate a subcat-
egorised complement of a preposition, a verb, or, a noun.
Similarly, which constituents can function as the comple-
ment daughter of the h-comp rule is mainly determined
by the information represented on the SUBCAT list of the
lexical head. The rule schemata merely ensure that the sub-
categorisation constraints formulated by the head will actu-
ally be imposed on the complement daughter, and that the
saturated valence requirement will be canceled off.

2Lexical entries may get further specialised beyond the infor-
mation encoded in the lexical leaf type: typically, this includes
subcategorisation for lexical case, selection of prepositional com-
plements and verb particles, specification of auxiliary type (have
vs. be), as well as sortal restrictions on complements.

Since the underlying processing platforms (LKB/PET) do
not currently support the segregation of immediate domi-
nance and linear precedence, some rule schemata are fur-
ther specialised according to the position of the head:
alongside h-adjunct, h-subj and h-comp rules for
verb-initial clauses and prepositional phrases, the grammar
also defines their head-final counterparts (adjunct-h,
subj-h, comp-h), required for verb-final clauses, adjec-
tival phrases and postpositional phrases. Within NPs some
modifiers, e.g. adjectives are licensed by adjunct-h struc-
tures, whereas PPs are licensed in post-head position only.
To summarise, the rules of the CF backbone provide crucial
information about the position of the syntactic head, as well
as the functional status of the non-head daughter.
Scrambling of complements is licensed in the German
grammar by special lexical rules that permute the elements
on a head’s SUBCAT list. Modifier interspersal and scram-
bling across the subject are accounted for by permitting the
application of h-subj, h-comp, and h-adjunct rules in any
order.
Argument composition and scrambling of arguments from
different verbs is captured by shuffling the SUBCAT lists
of the upstairs and downstairs verb (e.g., vcomp-h-0
. . . vcomp-h-4). Discontinuous verb clusters are mod-
elled by means of simulated verb movement ((Müller and
Kasper, 2000) expanding an earlier idea proposed by (Kiss
and Wesche, 1991)). Essentially, the subcategorisation re-
quirements of the initial verb are percolated down the tree
to be shuffled with those of the final verb.
Finally, extraction is implemented in a fairly standard way
using slash feature percolation. Slash introduction is per-
formed, at the gap site, by a unary rule. For subjects and
complements, slash introduction saturates an argument re-
quirement of the head by inserting its LOCAL value into
the SLASH list. For adjuncts, the slash introduction also
inserts a local object into SLASH, but since there is no va-
lency to be saturated, it only semantically attaches the ex-
tracted modifier to the head. At the filler-site, SLASH spec-
ifications are retrieved, under unification: for semantic rea-
sons, the grammar crucially distinguishes here between wh-
fillers (wh-h rule) and non-wh-fillers (filler-h rule).
Besides these more basic constructions, the grammar also
provides rule schemata for different types of coordinate
structures, extraposition phenomena (Crysmann, in press),
dislocation, as well as some constructions more specific to
German, such as auxiliary flip and partial VP fronting.

3.3. The treebank
The version of the HPSG formalism underlying the LKB
and PET processing systems assumes continuous con-
stituents only. Thus, the derivation tree of a sentence
analysed by the grammar corresponds to a context free
phrase structure tree. Given a grammar, the full HPSG
analysis of a sentence can therefore always be reconstructed
deterministically, once the derivation tree is stored together
with the unique identifiers of the lexical entries on the ter-
minal nodes. This fact is actually exploited by the Red-
woods treebanking infrastructure to provide a compact rep-
resentation format. From the fully reconstructed feature
structure representation of a parse, it is possible to extract



da

adv-flex-lr-0-0

versucht

v1-fin-lrule-rb

er

er-pis

es

es-acc-pis

im

im-appr

park

nx-nda-s

h-comp

zu

zu_sprep

verkaufen

tensed-non-fin-lrule

inf-zu

eps-vcomp-0

adjunct-h

comp-h

subj-h

adj-slash-intro-vfin

v1-s

filler-h

da

ADV

versucht

V

er

NP-NOM-SG

es

NP-ACC-SG

im

P-MOD-V

park

N’

PP

zu

P-COMP

verkaufen

V

V

EPS

EPS

EPS

EPS

EPS/ADV

S/ADV

S

Figure 2: Examples of a derivation tree and its corresponding phrase tree representation. See text below for an explanation
of the different symbols.

additional derived structures: one such auxiliary structure
that deserves particular mentioning is an isomorphic con-
stituent tree decorated with more conventional node labels,
such as S, NP, VP, PP, etc. These labels are obtained by test-
ing the unifiability of a feature structure description against
the AVM associated with the node, and assigning the label
of the first matching description. Since these derived trees
are isomorphic to the derivation history, the “functional”
decorations provided by the rule backbone can be enriched
straightforwardly with “categorial” information, providing
for a very rich annotation.
As already mentioned before, the primary data used for the
construction of the Eiche treebank are taken from the Verb-
mobil test corpora. To give the reader an idea about the
complexity of the disambiguation task, the grammar as-
signs on average around 16 distinct analyses to each sen-
tence. In order to minimise duplication of annotation ef-
fort, only unique sentence strings have been incorporated
into the treebank. Thus, redundancy in the data is limited
to partial structures.

4. HPSG–Supertag Extraction
The main purpose of the grammar extraction process is
twofold: 1) extract automatically all possible supertags, i.e.,

an LTIG, and 2) to obtain a maximum–likelihood estima-
tion of the parameters of the extracted LTIG. The grammar
extraction process actually re–constructs TAG derivations
underlying the parse trees and is quite similar to the head–
driven decomposition operation used in HPSG–DOP, but
now adapted for the case of LTIG extraction.

4.1. The extraction method
Similar to (Magerman, 1995) and (Chiang, 2000), we use
head–percolation and argument rules that classify for each
node η exactly one child of η as the head and the others
as either argument or modifier. However, as we will dis-
cuss below, our rules are based on HPSG and as such, are
much more smaller in number and less heuristic in nature
as those defined in (Chiang, 2000). Using these rules, the
derivations are re–constructed using the method described
in (Chiang, 2000), and summarized here for your conve-
nience:

• If η is an adjunct, excise the subtree rooted at η to form
a modifier tree.

• If η is an argument, excise the subtree rooted at η to
form an initial tree, leaving behind a substitution node.



• If η has a right corner θ which is an argument with the
same label as η (and all intervening nodes are heads),
excise the segment from η down to θ to form an auxil-
iary tree.

From the determined structures, supertags are generated in
two steps: first the tree template (i.e., the elementary tree
minus its anchor), then the anchor. From there, the proba-
bilities are decomposed accordingly and three back-off lev-
els are computed, as described in (Chiang, 2000). Further-
more, all words seen n or fewer times in training are treated
as a single symbol UNKNOWN, in order to handle unknown
words.

4.2. The rule definition

The following two tables contain the HPSG–based head
and argument rules currently in use:

Parent: Child:
SUBJ-H last *

ADJUNCT-H last *
COMP-H last *

FILLER-H last *
WH-H last *

POS-ES last *
DET-NBAR last *

NP-NBAR last *
VCOMP-H-0 last *
VCOMP-H-1 last *
VCOMP-H-2 last *
VCOMP-H-3 last *
VCOMP-H-4 last *

BINARY-COORD last *
RECURSIVE-EV-COORD last *

RECURSIVE-NOM-COORD last *
* first *

Table 1: Head rules for the HPSG Treebank. The symbol *
stands for any label.

Parent: Child:
SUBJ-H first *
H-SUBJ last *

COMP-H first *
H-COMP last *

H-COMP-EXTRAPOSED last *
H-SUBJ-EXTRAPOSED last *

Table 2: Arg rules for the HPSG Treebank. The symbol *
stands for any label.

The list of rules is processed in the order specified and the
first rule that fires is applied. A rule fires if the label of
the current node matches with one of the parent node la-
bels specified in the rule list. A head rule like “SUBJ-H
last *” determines that the last child of a parent node with
label SUBJ-H is the head, regardless of the child’s label.
The head rule “* first *” means that for a parent with an
arbitrary node label its leftmost child is chosen as the head
daughter. This rule plays the role of a default head rule. The
argument rules work in the same way. For an explanation
of the linguistic content of these rules, cf. sec. 3..

5. Experiments
We performed a ten–fold cross–validation over a corpus of
3528 sentences from the Verbmobil domain with an average
sentence length of 7.2 words. The anchors of the extracted
supertags consist of the preterminals of the derivation trees
and are lexical labels (LEX). These are much more fine–
grained than Penn Treebank preterminal tags, covering in-
formation about POS, morpho-syntactic, valence and other
information. The UNKNOWN symbol relates to correspond-
ing words in the training set (it maps words seen fewer than
N times to this symobl), i.e., stems that only occur in the
test set, but not in the training set, are not covered by the
grammar. Hence, the parser will deliver no result for sen-
tences which contain “out–of–vocabulary” stems.
We trained and tested our method on the full encoding of
the symbols, which among others encode values for gender,
number, person, case, tense and mood. Furthermore, the
symbols also encode the valency of verbs.
It seems clear that using lexical labels as anchors will effect
at least the coverage and recall. In order to test this, we also
run an experiment, where we used only the Part–of–Speech
(POS) of the lexical labels, which are retrieved from the
yield of the corresponding phrase tree. This will lead to
a much more coarse–grained classification of word forms,
but probably also to a less restrictive tree selection. The
table below presents our current results:

Anchor Cov. LR(t.) LP(t.) LR(c.) LP(c.)
LEX 77.47 57.68 77.07 77.33 78.27
POS 98.12 76.42 78.36 77.92 78.44

where LR(t.)/LP(t.) – t. stands for total – is measured over
all sentences, and LR(c.)/LP(.) – c. stands for coverage –
over the parsed sentences, i.e., for sentences without out–
of–vocabulary stems.

6. Discussion
To date, there is only little work on full probabilistic parsing
of German from treebanks. The first probabilistic treebank
parser for German (using the Negra Treebank) is presented
in (Dubey and Keller, 2003). They obtain (for sentence
length of ≤ 40): LR=71.32% and LP=70.93% (coverage
= 95.9%). (Müller et al., 2003) also present a probabilis-
tic parser for Negra. They study the consequences that the
Negra implies for probabilistic parsing, and concentrate on
the role of two factors (1) lexicalization and (2) grammat-
ical functions. The results they report: LR=71.00% and
LP=72.85% (coverage = 100%). Furthermore, (Levy and
Manning, 2004) present experiments on probabilistic pars-
ing using Negra concentrating on non–local dependency re-
construction. Their results also suggest that current state–
of–art statistical parsing is far better on Penn Treebank than
on the Negra Treebank.

7. Related Work
Current stochastic approaches for HPSG basically fo-
cus on parse tree disambiguation using the English Red-
woods Treebank, cf. (Oepen et al., 2002). For example,
(Toutanova et al., 2002), present a parse selection method



using conditional log-linear models built over the levels of
derivation tree, phrase structure tree, and semantic depen-
dency graph in order to analyse the effect of different infor-
mation levels represented in the Redwoods Treebank. The
best reported result (in terms of accuracy) is obtained for
the derivation tree representation and by implementing an
extended PCFG that conditions each node’s expansion on
several of its ancestors in the derivation tree (with a man-
ually specified upper bound of 4 ancestors). They report
an exact parse accuracy of 81.80% for such an extended
PCFG, which was only slightly improved when combin-
ing it with a PCFG based on the semantic dependency
graph representation (82.65%). In (Toutanova and Man-
ning, 2002) this work is extended by the integration of au-
tomatic feature selection methods based on decision trees
and ensembles of decision trees. Using this mechanism,
they are able to improve the parse selection accuracy for
the derivation tree based PCFG from 81.82% to 82.24%.

8. Conclusion and Future Work
We have presented an approach of extracting supertags
from a HPSG–based treebank, and have evaluated the per-
formance of the grammar using a stochastic LTIG parser. In
future work, we will consider the following aspects. First,
we will explore how the current results can be improved
by either adding more information to the tree labels or by
generalizing those tree labels which are currently too spe-
cific. Second, we will investigate how this technology can
be used to provide the N–best derivation trees and to use
them as input for the deterministic feature structure expan-
sion step using the HPSG–source grammar. In this way, a
preference–based parsing schema for HPSG using a tree-
bank model will function as a filter.
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