

TThhee QQAALLLL--MMEE AArrcchhiitteeccttuurree

DDeessiiggnn IIssssuueess aanndd QQAA FFrraammeewwoorrkk

AAuutthhoorrss:: GGüünntteerr NNeeuummaannnn,, CChhrriissttiiaann SSppuurrkk,, BBooggddaann SSaaccaalleeaannuu

AAffffiilliiaattiioonn:: DDFFKKII

KKeeyywwoorrddss:: QQAALLLL--MMEE aarrcchhiitteeccttuurree,, QQAA ffrraammeewwoorrkk,, QQAA ccoommppoonneennttss

AAbbssttrraacctt:: TThhiiss ddeelliivveerraabbllee ddeessccrriibbeess tthhee pprriinncciipplleess ooff tthhee mmuullttiilliinngguuaall ooppeenn--ddoommaaiinn QQuueessttiioonn

AAnnsswweerriinngg ffrraammeewwoorrkk uusseedd aass tthhee ccoommmmoonn SSeerrvviiccee OOrriieenntteedd AArrcchhiitteeccttuurree ((SSOOAA)).. TThhee QQAALLLL--MMEE

ffrraammeewwoorrkk ccoonnssiissttss ooff iinntteerraaccttiinngg WWeebb sseerrvviicceess,, lleevveerraaggiinngg iinnccrreeaasseedd fflleexxiibbiilliittyy bbyy mmeeaannss ooff

MMeettaaddaattaa.. TThhee ffoorreesseeeenn ddiissttrriibbuutteedd QQAA aarrcchhiitteeccttuurree ooff tthhee QQAALLLL--MMEE pprroojjeeccttss rreeqquuiirreess aa hhiigghh

ddeeggrreeee ooff mmoodduullaarriittyy aanndd aa ddaattaa aanndd ccoonntteexxtt ddrriivveenn mmaajjoorr ccoonnttrrooll ffllooww.. TThhee mmaajjoorr ccoonnttrrooll ffllooww

iiss ccoonnttrroolllleedd bbyy aa fflleexxiibbllee QQAA tthhaatt iiss mmaaiinnllyy ddaattaa aanndd ccoonntteexxtt ddrriivveenn iinn tthhee sseennssee tthhaatt tthhee ccoonnttrrooll

ffllooww iiss bbaassiiccaallllyy ddeeffiinneedd aanndd ttrriiggggeerreedd bbyy tthhee aaccttuuaall iinnppuutt,, ee..gg..,, ssppeecciiffiicc llaanngguuaaggee aanndd ssppeecciiffiicc

ccoonntteexxtt rreessttrriiccttiioonnss..

 DDaattee:: 0055//0055//22000077

DDooccuummeenntt NNuummbbeerr:: QQAALLLL--MMEE__DD22..11__2200007700550055

SSttaattuuss//VVeerrssiioonn:: FFiinnaall

DDiissttrriibbuuttiioonn LLeevveell:: PPuubblliicc

FP6 IST-033860

http://qallme.itc.it

FP6 IST-033860 The QALL-ME Architecture

Number of Document ii

Project Reference FP6 IST-033860

Project Acronym QALL-ME

Project Full Title Question Answering Learning technologies in a

multiLingual and Multimodal Environment

Distribution Level Public

Contractual Date of Delivery March, 2007

Actual Date of Delivery May, 2007

Document Number QQAALLLL--MMEE__DD22..11__2200007700550055

Type Report

Status & Version Final

Number of Pages 26

WP Contributing to the

Deliverable

WP2: Architecture

WP Task responsible DFKI

Authors Günter Neumann, Christian Spurk, Bogdan Sacaleanu

Other Contributors

Reviewer Bonaventura Coppola (FBK-irst)

EC Project Officer Erwin Valentini

Keywords: QA Architecture, QA framework, QA components

Abstract: This deliverable describes the principles of the multilingual open-domain

Question Answering framework used as the common Service Oriented Architecture

(SOA). The QALL-ME framework consists of interacting Web services, leveraging

increased flexibility by means of Metadata. The foreseen distributed QA architecture of

the QALL-ME projects requires a high degree of modularity and a data and context

driven major control flow. The major control flow is controlled by a flexible QA that is

mainly data and context driven in the sense that the control flow is basically defined

and triggered by the actual input, e.g., specific language and specific context

restrictions.

FP6 IST-033860 The QALL-ME Architecture

Number of Document iii

SSuummmmaarryy

1 INTRODUCTION ..1

1.1 TOWARDS COMPONENT-ORIENTED QA ARCHITECTURE.. 2

1.2 DATA-DRIVEN MAJOR CONTROL FLOW ... 3

2 QALL-ME SYSTEM ARCHITECTURE DESCRIPTION4

2.1 SYSTEM COMPONENT BREAKDOWN AND BASIC WORKFLOW .. 4

2.1.1 System Components .. 5

2.1.2 Component Workflow ... 8

2.2 DATA-DRIVEN VIEW .. 11

2.2.1 The QA Bus (QA Assembly Line).. 13

2.2.2 QA Planner and QA Episodic Memory... 14

3 SOA – AN ARCHITECTURE MODEL FOR QALL-ME...............................16

3.1 SCOPE... 18

3.2 OPERATIONAL SYSTEMS LAYER... 18

3.3 SERVICE COMPONENTS LAYER... 19

3.4 SERVICES LAYER.. 19

3.5 BUSINESS PROCESS LAYER... 20

4 WEB SERVICES AND SOA ...20

4.1 SOA – BASIC COMPONENTS... 20

4.2 SOAP... 21

4.3 WSDL.. 21

4.4 UDDI ... 22

4.5 BPEL ... 22

FP6 IST-033860 The QALL-ME Architecture

Page 1

11 IInnttrroodduuccttiioonn

QALL-ME aims at developing a shared infrastructure for multilingual and multimodal

question answering (QA), which will include all the basic components that are

required for providing the following capabilities:

• Automatically gathering, storing, and updating relevant information

extracted from different (structured and non-structured) source data types;

• Dealing with complex multilingual questions, anchored to a spatial and

temporal context;

• Dealing with both textual and spontaneous speech access modalities;

• Presenting users with correct, complete, and concise answers extracted from

different multilingual source data types;

• Combining different output presentation formats (e.g., texts, maps, images).

This paper seeks to provide the basic architecture for such a QA infrastructure. Before

we start, let’s have a look at the central term architecture itself. The Open Group

Architecture Forum (TOGAF) defines architecture as being the following:

“The structure of components, their interrelationships, and the principles and

guidelines governing their design and evolution over time.”

Breaking it down even further, architecture is necessary to do the following:

• design and model at different levels of abstractions

• separate specification from implementation

• build flexible systems

• make sure requirements are addressed

• analyze the impact of a change in requirements

Figure 1 roughly shows the main modules of the distributed architecture which makes

up the backbone of the QALL-ME service.

FP6 IST-033860 The QALL-ME Architecture

Page 2

Figure 1: The QALL-ME distributed architecture.

Instead of developing different language specific end-to-end QA systems, QALL-ME

aims at the development of a common QA architecture framework that supports a fine-

grained integration of different language-specific components in a dynamic and data-

driven manner. For example, if a German speaker is using the QALL-ME service in

Trento to get information about some specific restaurant, then she can enter a natural

language question in German. The QALL-ME system recognizes the language and

passes the German question to the German question analysis tool (which is located on

the German QA server in Saarbrücken) in order to get an internal meaning

representation, which can be used to perform an information search using the local

data provider in Trento. However, since it is quite likely that the data here is

represented in the Italian language, the QALL-ME system first has to call a (probably

externally available) machine translation (MT) service which translates the relevant

part of the German question into Italian. Now, the QALL-ME system can call the local

data provider in Trento to answer the question (using the Italian answering component

located on the Italian QA server in Trento). In case the found answer is in Italian, the

QALL-ME system first calls the MT service to translate the answer from Italian to

German before it sends the answer back to the German speaker’s mobile device.

11..11 TToowwaarrddss ccoommppoonneenntt--oorriieenntteedd QQAA aarrcchhiitteeccttuurree

In order to realize such a demanding QA scenario, a flexible dynamic information

flow is needed. A closer look at the recent development of successful QA systems

reveals a strong component-oriented perspective for the realization of the QA subtasks

(commonly assumed major components are a question analysis component, a retrieval

component, an extraction component, a selection component and a validation

component). Based on our experience on large scale system development, the

architectural framework will be specified from an abstract point of view using generic

QA classes that define major input/output (IO) representations. This will also cover

FP6 IST-033860 The QALL-ME Architecture

Page 3

the specification of the major flow of interaction between components, ideally only on

the level of the IO behavior between adjacent components. This might also involve the

specification of alternative, competing components. For example, integration of Web-

based search engines might be defined by a generic search engine class, which only

defines basic means for mapping the internal representation of a Wh-question to a

“syntax-free” IR-query. Through the definition of specific subclasses for different IR

search engines, the specific syntactic representations are implemented.

We are assuming that orthogonal to the definition of the major QA classes, the major

QA data objects are defined. By this we mean that the major data structure of a

complete QA description is defined separately from the IO behavior of the QA

components, but consistently defined with respect to them. It will now be possible to

describe the QA system from two different sides (of the same coin) – the data and the

process view. This means, for example, that a basic language independent

representation of the internal question form is defined (capturing e.g., question type,

focus, answer type etc.) that is considered as the necessary data exchange format, but

not necessarily sufficient for a particular language. In that case, the corresponding

language specific components have to provide the additional information, however,

without affecting the generic standard. Note that this means, that we also consider

additional (orthogonal) QA components, e.g., ontologies for question and answer types

as abstract data types which have a language independent generic definition that might

be specialized for the specific languages in use. However, major parts of the API are

inherent and are thus treated identically.

11..22 DDaattaa--ddrriivveenn mmaajjoorr ccoonnttrrooll ffllooww

Instead of hard-coding the QA information flow using programming language specific

syntax, it will be specified in a declarative way in form of processing execution plans.

An example of such execution plan might realize a standard QA-pipeline existing of a

strict sequential ordering of standard QA components. However, there are other more

complex execution plans possible, e.g., integration of feedback loops. Furthermore it

might also be possible to define, for example, language-specific and even site-specific

execution plans, each of them being aware of local (language- and resource-specific)

control-flows without impacting the general architecture.

The major (and initial) control flow of the complete QALL-ME system is controlled

by a central QA controller. Its main task is the evaluation of the major execution plan.

We assume then that local execution plans are operated by local QA controllers, which

might only run on specific sites. The QA controller is mainly data and context driven

in the sense that the control flow is basically defined and triggered by the actual input,

e.g., specific language and specific context restrictions.

As part of this framework, a QA specific episodic memory will be defined. It is very

important that a QA system can acquire control information from past QA events in

order to improve its future performance over new QA events (e.g., computed query-

answer pairs). Two basic information sources are possible: either by obtaining

situation-oriented information through interaction with the user (or from user-specific

profiles), or obtaining that information by storing successfully computed query-answer

pairs in an episodic memory. The former case requires query/answer clarification

(query refinement, generation of paraphrases or query decomposition), and the latter

involves acquisition of information concerning control strategies (selection between

alternative processing components) and efficient data representation (Machine

Learning of specific query sub-grammars and query-answer patterns). The episodic

FP6 IST-033860 The QALL-ME Architecture

Page 4

memory is also crucial for the development of QA-oriented discourse strategies on the

basis of query/answer histories, and for statistical-based lexical and grammar

induction.

The episodic memory will only store major input/output structures. For that reason it

might not be detailed enough to perform a QA error analysis. Here, the definition of a

specific monitoring component is vital. This component will maintain details reported

by all QA components which have been affected when performing a QA cycle. This

information covers the major input and output, but also details of intermediate results,

error messages, parameter setting, space and time allocation, etc.

In the next sections we are describing the current state of the QALL-ME system

architecture. We first begin by describing the basic QALL-ME system architecture,

i.e., its components and the relations between them. We will then have a closer look at

the proposed architecture model, the Service Oriented Architecture (SOA).

22 QQAALLLL--MMEE SSyysstteemm AArrcchhiitteeccttuurree DDeessccrriippttiioonn

The major objectives concerning the development of the QALL-ME system

architecture are the conceptualization, design, and implementation of a multilingual

hybrid question answering system framework. It is multilingual in that the same core

architecture is used for different languages (as those covered by the project

participants) and it is hybrid in the sense that the same core architecture can be used in

open-domain as well as domain-restricted QA applications. We use the term “core

architecture” here in order to stress that we expect that for full-fledged end-to-end QA

applications, language and/or task-specific adaptations and extensions of the existing

QA framework might be necessary, but basically in a monotonic sense.

Since we aim at an open-source QA framework open-source standard NLP

architectures (like IBM’s UIMA, cf. http://www.research.ibm.com/UIMA/) will be

taken into account during the development phase of the QA framework. Furthermore,

the descriptions of existing QA systems in the TREC, CLEF and the AQUANT

conference proceedings reveal a continual improvement and refinement of existing

QA components and the emerging of new QA components of different granularities.

Thus, in order to be as flexible as possible for future developments we follow an

evolutionary system design rather than a static one. Thus starting from a set of

common basic QA components (largely based on the existing QA components already

developed by the participating research groups), the QALL-ME QA system will be

gradually adapted and refined during the project period.

22..11 SSyysstteemm CCoommppoonneenntt BBrreeaakkddoowwnn aanndd BBaassiicc WWoorrkkffllooww

As a first step of outlining the QALL-ME system architecture we’ll have a look at the

various components of the architecture. In section 2.1.1 we’ll have a top-down view of

the system by naming and describing the components of the QA system and their

respective tasks. After that we’ll have a look at the workflow between the system

components. In section 2.1.2 we’ll see how these components interact and what the

general information flow for a concrete example of an inquiry to the system looks like.

FP6 IST-033860 The QALL-ME Architecture

Page 5

22..11..11 SSyysstteemm CCoommppoonneennttss

The QALL-ME system can be divided into several components. This breakdown can

be more or less fine-grained. A first, very coarse-grained breakdown of the system is

depicted in Figure 2.

Figure 2: Coarse-grained component breakdown for the QALL-ME system.

Each of the three main components along with their subcomponents is described in

more detail in the following sections. Note that the actual component breakdown of

the QALL-ME system may be changing over time and that different subsystems may

use other subcomponents than described in this basic component overview.

22..11..11..11 IInnqquuiirryy IInnppuutt CCoommppoonneennttss

The inquiry input component and its subcomponents are responsible for receiving

input for the whole QALL-ME system. Such input is not only the immediate user

question but also the context of the inquiry. However, the task of the input component

is not only to receive input, but also to translate the input into a suitable form which

can be handled by the QA core system. Thus the inquiry input component along with

its subcomponents constitutes a basic part of the system’s interface to the end user and

his environment.

Possible subcomponents of the inquiry input component are depicted in Figure 3 and

described in more detail in the following.

Figure 3: Possible subcomponents of the inquiry input component.

• Input device component: For QALL-ME this component might be some kind

of mobile device or a web interface. The component handles the immediate

receiving of the natural language user inquiry, e.g., in form of text messages

(SMS), speech or keyboard input.

• Speech to text component: This component belongs to the group of quite

specific components that are only used in conjunction with other specific

components. A speech to text component translates speech signals to written

text. So if an input medium component is used that receives written text input,

a speech to text component is not required at all. For an input device with

speech input, however, such a translation component is mandatory to supply

the QA-core components with adequate text input.

• Context retrieval component: An inquiry is inherently dependent upon its

context. Thus part of the inquiry input component needs to be some context

retrieval component that introduces spatial and temporal data as well as

information about the inquirer into the QA system.

Inquiry input

Input device Speech to text Context retrieval

QALL-ME system

Inquiry input QA-core Answer output

FP6 IST-033860 The QALL-ME Architecture

Page 6

22..11..11..22 QQAA--CCoorree CCoommppoonneennttss

The QA-core components, as the name suggests, constitute the core of the QALL-ME

QA system. They assume to get adequate input from the inquiry input component and

don’t bother with answer presentation which is passed on to the answer output

components. Nonetheless, the QA-core component and its subcomponents perform the

principal work in the QALL-ME system. Their task is twofold: first of all the QA-core

is responsible for multilingual question interpretation. Next they have to handle

crosslingual answer identification.

MMuullttiilliinngguuaall qquueessttiioonn iinntteerrpprreettaattiioonn ccoommppoonneenntt

The multilingual question interpretation component is responsible for extracting all

relevant information from an inquiry which is useful and necessary to describe the

answer of the inquiry as unambiguously and as precise as possible. This description

has to have a certain format which can be understood by the answer identification

components. The prevalent subcomponents of the multilingual question interpretation

component are shown in Figure 4.

Figure 4: Subcomponents of the multilingual question interpretation component.

• Syntactic question analysis component: Most QA systems will probably

contain one or more components that perform a syntactic analysis of the input

question. The depth of the analysis depends on the component itself as well as

the other parts of the complete system that the component cooperates with.

• Semantic question analysis component: The principal goal of semantic

question analysis components is the finding of the properties of the expected

answer, such as type, quantity etc. Usually this does not involve a complete

analysis of the question meaning.

• Question decomposition component: Questions may become almost arbitrarily

complex, i.e., many questions are actually a bunch of multiple simpler

questions. To handle such cases more easily, complex questions are often

broken up or decomposed into simpler questions. This is done by the question

decomposition components.

Other subcomponents of the multilingual question interpretation component might

include some discourse tracking component that interprets an inquiry relative to its

(discourse) context.

All the subcomponents mentioned so far are probably language specific and might

exist in several versions, i.e., for several languages. Thus in a multilingual system and

as part of a multilingual question interpretation component there might also be the

need for a language identification component which analyses the raw input and

assigns it the correct language flag. This flag might then be used by the language

dependent components to determine whether they’re responsible for some input or not.

CCrroosssslliinngguuaall aannsswweerr iiddeennttiiffiiccaattiioonn ccoommppoonneenntt

The task of the crosslingual answer identification component is to retrieve answers

that match the description of the question interpretation component and from these

answers select the ones that fit best. The prevalent subcomponents of the crosslingual

answer identification component are depicted in Figure 5.

Multilingual question interpretation

Syntactic question analysis Semantic question analysis Question decomposition

FP6 IST-033860 The QALL-ME Architecture

Page 7

Figure 5: Subcomponents of the crosslingual answer identification component.

• Crosslingual answer retrieval component: For each inquiry language there has

to be an answer retrieval component which at first only retrieves documents

that potentially contain an appropriate answer to the inquiry. Such a component

might be a search engine on the web for example.

• Answer extraction component: A whole document as an answer is mostly not

what is expected, so the output of the answer retrieval components has to be

processed by another component. This answer extraction component takes an

answer document and extracts only the relevant answer string, for example.

• Answer selection component: Mostly question interpretation, answer retrieval

and answer extraction won’t be hundred per cent correct and so it may be

advantageous to have multiple answer candidates. The task of the answer

selection component is now to rank these answer candidates and select the best

of them.

• Answer combination component: Analogous to the question decomposition

component, there may be an answer combination component which takes the

answers for the parts of a decomposed question and combines them into an

answer for the original, complex question.

As with the multilingual question interpretation component, there may be different

versions of the answer identification subcomponents for different languages in the

QALL-ME system.

22..11..11..33 AAnnsswweerr OOuuttppuutt CCoommppoonneennttss

Showing the results of the QA core component to the user is the responsibility of the

answer output components. This involves preparing the raw answer for being

understandable as well as translating the answer into a suitable format for the targeted

output device. Finally, the output device itself is part of the answer output component.

Possible subcomponents of the answer output component are depicted in Figure 6.

Figure 6: Possible subcomponents of the answer output component.

• Answer text generation component: In some cases the answer as returned by

the QA core system might not be suited for directly being handed on to the

user. In such cases it might be necessary to reformulate the answer, e.g., create

a full sentence from only a bunch of words. Such work is performed by the

answer text generation component.

• Speech synthesis component: Just like the speech to text component the speech

synthesis component is only needed for certain output scenarios. If the answer

output device is a phone line, then any answer text has to be converted to

speech first in the speech synthesis component.

Answer output

Answer text generation Speech synthesis Answer output device

Crosslingual answer identification

Crosslingual answer retrieval Answer extraction Answer selection Answer combination

FP6 IST-033860 The QALL-ME Architecture

Page 8

• Answer output device component: The answer output device component is

comparable to the input device component and it is in many cases even the

same device, actually. This component may be a phone line or a web interface

for example and thus is another part of the interface to the end user of the

QALL-ME system.

22..11..11..44 OOtthheerr ccoommppoonneennttss

At some points in the previous sections we have already noted that the presented

component overview will probably not be the final set of components for the QALL-

ME system. These were somewhat rather the most prevalent components in a generic

QA system. Implementation as well as the final focus will yield other components and

make it necessary to remove or specialize some of the components we have seen so

far.

One component that has not been considered so far but which definitely deserves a

closer look in the QALL-ME project is a component for mapping and geocoding. In

QALL-ME we want to take the situational context of the inquirer into account in

several ways: on the one hand we want to be able to analyze questions in relation to

their spatial context and on the other hand we’d like to provide personalized maps and

location plans as answers. For such applications we need some specialized component

that is not found in a classic QA system, the mapping and geocoding component.

Another component which is often needed in a crosslingual QA system is a translation

component (that may be externally available already). A component that might prove

useful in a QA some system might also be some kind of episodic memory (cf. section

2.2.2).

22..11..22 CCoommppoonneenntt WWoorrkkffllooww

In the previous section we have seen the principal components of the QALL-ME

system. In the following we’ll have a look at how these components interact. The

intelligence that actually organizes this interaction is out of scope for this section; it’s

kind of an implementation problem rather than part of an architectural description.

The diagram in Figure 7 depicts the general workflow between the (meta) components

of the QALL-ME system.
1
 The detailed flow of information between the

subcomponents follows in the upcoming subsections.

1
 This diagram – as well as all diagrams in the following sections – adhere to the following conventions:

The (meta) component which is in the focus of the current figure is pictured at the top as a dark-gray

box; the subcomponents of the focused component are represented as light-gray boxes below. Data

flowing between the components is depicted as arrows which are sometimes labelled with exemplary

data. In some diagrams on the left and/or on the right we have the previous/next (meta) component that

passes on/receives data to/from (sub)components of the currently focused component; such components

are depicted as dashed boxes. All data flows in the diagrams may potentially parallel; refer to the

respective text for more precise information.

FP6 IST-033860 The QALL-ME Architecture

Page 9

Figure 7: General workflow in the QALL-ME system for the principal (meta) components.

For the workflow description we’ll utilize an example scenario where some inquirer

uses his mobile phone to call the QALL-ME system and ask the question: “Where can

I eat pizza tonight?”

22..11..22..11 FFrroomm tthhee FFiirrsstt SSyysstteemm IInntteerraaccttiioonn ttoo aa CCoommpplleettee IInnppuutt OObbjjeecctt

So what we have at the beginning of a user interacting with the QALL-ME system is a

realization of the input device component, namely a mobile phone. This device

receives the spoken question “Where can I eat pizza tonight?” and passes the audio

recording on to the speech to text component for English. The latter translates the

audio recording into written text and passes the result to the QA core component. At

the same time, the context retrieval component starts retrieving the current time, saves

the user ID for later reference and asks the input device for spatial information of the

inquirer. All this information is passed to the QA core as well.

Figure 8: Exemplified workflow in the inquiry input component.

22..11..22..22 FFrroomm aann IInnppuutt OObbjjeecctt ttoo aa CCoommpplleettee AAnnaallyyssiiss ooff tthhee IInnqquuiirryy

So far, the QA system has converted the actual inquiry into a raw text written question

along with information about the context. All of this data is used to analyze the inquiry

syntactically now. The syntactic question analysis component might involve part of

speech tagging, named entity recognition, parsing etc. Anyway, in the end there is an

English syntactic analysis of the question which is passed on to the English semantic

question analysis. The latter resolves spatial and temporal restrictions (“tonight” in our

example) and retrieves the type of the expected answer (e.g., “restaurant” in our

example), the number of required answers (in the example: one or more answers) etc.

This information is saved as some kind of description of the expected answer for the

next processing steps. In our example we have a simple question that does not need to

be decomposed (cf. question decomposition component) and so the next step is the

first part of the answer identification component for English. All collected and

calculated information so far is passed on to this component.

QALL-ME system

Inquiry input
component

Question interpretation
component

 Answer identification
component

Answer output
component

Inquiry input component

Input device component

Speech to text component

Context retrieval component

“Where can I eat pizza tonight?”

2009-01-19T16:20:45+01:00
49° 25' 18" N 7° 45' 27" E Q

A
 c

o
re

 c
o
m

p
o
n
en

t

FP6 IST-033860 The QALL-ME Architecture

Page 10

Figure 9: Exemplified workflow in the question interpretation component.

22..11..22..33 FFrroomm aann IInnqquuiirryy AAnnaallyyssiiss ttoo aa RRaaww AAnnsswweerr

In the answer identification component we have a detailed description of the answer

from the previous steps and – if needed – a syntactic analysis of the inquiry as well as

information about the inquiry context. On the way to the final answer the next step to

go is using an answer retrieval component to get documents that potentially contain

the answer. Using parts of the syntax analysis and the answer description a search

query is built that leads to a bunch of documents. These documents are fed into the

answer extraction component which extracts answer candidate strings from the

document collection. The answer selection component again matches the answer

description with the answer candidate strings and selects the best answers. This raw

answer collection is now passed on to the answer output component.

Figure 10: Exemplified workflow in the answer identification component.

22..11..22..44 FFrroomm tthhee RRaaww AAnnsswweerr ttoo tthhee FFiinnaall AAnnsswweerr PPrreesseennttaattiioonn

From the steps so far we have received a collection of raw answer strings; for our

example, this might be ["Pizza Per Tutti", "Don Camillo"]. Simply

throwing this answer collection at the user is not what we want, so the answer text

generation component builds a nice answer sentence from it, e.g., “Tonight you can

eat pizza at Pizza Per Tutti and at Don Camillo.” We now almost have the final

answer. Depending on the user’s profile that we got from the context retrieval

component at the beginning, the output device is selected. If the user has set his

preferred answer device to text message (SMS), then the answer text is directly

passed on to a suitable answer output device component. Otherwise there might be yet

another component involved, e.g., the speech synthesis component for converting the

written answer text to speech for a mobile output device.

Answer identification component

Answer
retrieval

component

Answer
extraction
component

A
n
sw

er
 o

u
tp

u
t
co

m
p
o
n
en

t

Q
u
es

ti
o
n
 in

te
rp

re
ta

ti
o
n
 c

o
m

p
o
n
en

t

Answer
selection

component

["Pizza Per Tutti",

"Don Camillo"]

["Pizza Per Tutti",

"Don Camillo",

"Paris", "the

restaurant"]

Question interpretation component

Syntactic
question
analysis

component

Semantic
question analysis

component

AType: restaurant,

AQuant: 1-, …

A
n
sw

er
 id

en
ti
fi
ca

ti
o
n
 c

o
m

p
o
n
en

t

In
q
u
ir
y

in
p
u
t
co

m
p
o
n
en

t

FP6 IST-033860 The QALL-ME Architecture

Page 11

Figure 11: Exemplified workflow in the answer output component.

22..11..22..55 SSuummmmaarryy

To conclude the description of the general workflow in the QALL-ME system, we

summarize all subcomponents that were used in our example in Figure 12.

Figure 12: Summarized workflow in the QALL-ME system for all described subcomponents.

22..22 DDaattaa--DDrriivveenn VViieeww

The basic components that might be needed for the QALL-ME system architecture

were described in the previous section in a relatively concrete manner. In the

following section, we’ll look at the architecture in a more data-driven, abstract

manner. Figure 13 gives such a top-down perspective on the QALL-ME QA

architecture.

QALL-ME system

Input device
component

Speech to text
component

Context retrieval
component

Syntactic question analysis
component

Semantic question
analysis component

Answer
retrieval

component

Answer
extraction
component

Answer
selection

component

Answer text generation
component

Speech synthesis
component

Answer output
device component

Answer output component

Answer text generation
component

Speech synthesis
component

“Tonight you can

eat pizza at Pizza

Per Tutti and at

Don Camillo.” Q
A

 c
o
re

 c
o
m

p
o
n
en

t

Answer output
device component

FP6 IST-033860 The QALL-ME Architecture

Page 12

Figure 13: A top-down perspective onto the QALL-ME architecture.

At the core of the QALL-ME architecture is the QA object which is the basic

interface for the user, the QA planner and the QA components. It represents the

relevant information of a complete question-answering cycle in form of a quintuple

<Context, Inquiry, IA-query, Answer, AnswerSource>,

whereby:

• Context: is a substructure representing the identification of the user, the

current time of point and the user’s geographical location. The Context
element is used for setting up the space-time and the position of the

question-answering result in the overall structure of an interactive QA

discourse.

• Inquiry: represents the Natural Language question input (speech and/or

text), the source language and the relevant question Meta information, i.e.,

question type (e.g., definition/factoid/list question), expected answer type

and the determined meaning representation of the NL question in form of a

logical form. The Inquiry will be the basic means for initializing the QA

planner and for selecting question-specific QA plans. Hence, a highly

precise analysis of the Inquiry is needed for initializing successful answer

search and extraction.

• IA-query: represents the query expression for the underlying search

engines. The concrete form depends on the specific search engine and the

representation of the information access (IA) units, which can range from a

simple bag of words to a complex semantic search query, see below for

some more details.

• Answer: the identified answer. Its concrete form depends of the question

and expected answer type and ranges from a small text string (e.g., the

textual representation of a person name), a list of text snippets (e.g., a list of

textual descriptions for a definition question) to a multimedia object (e.g., a

FP6 IST-033860 The QALL-ME Architecture

Page 13

picture or a map). Each individual answer will come with a score, so that it

is also possible that a ranked list of answer candidates is delivered.

• AnswerSource: the sources from which the Answer elements have been

extracted. The answer source will also encode its media type.

When the user enters a natural language question, the Context and Inquiry

elements are instantiated first. We assume that the question type and the expected

answer type are used to trigger specific answer extraction strategies or specific

discourse strategies, e.g., the decomposition of the question or the activation of a

clarification dialog. Furthermore, strategies must be developed that integrates the

information from the Context element with the Inquiry element. For example, if the

NL question is “How far is it from here?” and the current location is the DFKI

building in Saarbrücken, then the question should be expanded to something like

“How far is it from DFKI, Saarbrücken?”.

Note that the IA-query is used as input to the data retrieval engine from which the

answers to a NL question will be determined. As such the concrete form will be

computed on basis of all information available in the Context and Inquiry slots of a

QA object. Its concrete realization depends on the type of the initial access media,

e.g., documents, data-base entries, XML annotated text files, etc. Thus possible

realization forms are: standard IR query, SQL like expressions or XML queries, see

Neumann and Sacaleanu (2005) for a possible realization of such an approach.

Further note that the use of our term QA component not only covers standard QA

components, like question analysis, answer extraction or answer selection. We also

consider complex QA components which might consist of a composition of “smaller”

QA components. For example, a language-specific QA system can be considered as a

QA component from our abstract architectural perspective. The main reason for this

perspective is that we can not and we should not pre-define a certain QA granularity of

QA components, because actually this is at least at the beginning of the project not

possible.

22..22..11 TThhee QQAA BBuuss ((QQAA AAsssseemmbbllyy LLiinnee))

The QA Bus mirrors the structure of the OA object. It is the domain for all QA

components, the execution manager of the central QA planner and the QA machine

learning engines. From the perspective of a service oriented architecture (SOA), the

QA Bus realizes the major implementation decisions for the integration of QA

components, the registration of new QA components into the QALL-ME architecture

and the data-oriented communication between QA components. For the integration of

a QA component, the following features are required:

• Component identifier

• NL language

• Input and output types

• Description of its main functionality

• Server coordinates on which the QA component is running

For the integration of a QA component into the QALL-ME architecture, the SOA

framework will provide the main web service specification and wrapper class

definition, so that the new QA component can easily be integrated by providing a

FP6 IST-033860 The QALL-ME Architecture

Page 14

properly defined subclass, whose concrete implementation is the responsibility of the

QA component developer. Thus, a QA component is defined and integrated into the

QALL-ME architecture by means of:

• Component interface (the abstract data type of the component)

• Web service functionality (e.g., SOAP) which is automatically added to the

component interface

• Definition of the main wrapper classes which implements the interface.

For example, the question analysis component might be defined by the following

simple java interface

used to implement the following standard question analysis class

which is actually used for providing the interface for a language specific question

analysis component:

The concrete implementations are part of the SOA specification and mainly defined

via the Web Service Description Language (WSDL), which is a declarative formalism

for defining the QA component interfaces.

22..22..22 QQAA PPllaannnneerr aanndd QQAA EEppiissooddiicc MMeemmoorryy

The QA planner manages the overall QALL-ME system integration and flow. It

defines necessary conditions that have to be fulfilled to select and activate a basic QA

plan, which executes step by step the call of all necessary QA components that are

needed to answer a question. After each step it validates the utility of the returned

partial result and either refines the current QA planning strategy or continues with the

selected strategy. More precisely, the QA planner starts with an initial QA object

that contains instances of the Context and Inquiry elements. The major goal of the

QA planner is to answer a NL question as soon as possible. Thus, the initial strategy

is:

1. Check whether the QA Episodic Memory already contains an answer for

the question and return the “cached” answer or

Interface QuestionAnalysis {

String process();

}

public class StandardQuestionAnalysis

 implements QuestionAnalysis {

 public QuestionAnalysis() {};

 public String process (String query)

 {return query;}

}

public class GermanQuestionAnalysis

 extends StandardQuestionAnalysis {

 “German specific question analysis”

}

FP6 IST-033860 The QALL-ME Architecture

Page 15

2. Either call a question-type specific QA plan: This is one that has been

automatically learned by the QALL-ME system to be successful for answering

questions of a certain type (e.g., specific plans for answering factoid questions

about persons).

3. Or start answering the question using a standard QA pipeline.

Step 1 means that the QA planner has found that for this question (or a paraphrase of

this question), it already had found an answer in the past, and decides to return this

answer again. This is a sort of QA caching, and hence, similar problems as known

from web page caching have to be considered here as well, cf. (Wessels, 2001). Step 2

is actually an open research problem, and we are not aware of any existing proposal of a

solution of it in the existing QA literature. Step 3 means that the QA planner uses as a

default strategy a standard QA pipeline, which is assumed to be the most effective one

to find an answer as soon as possible. Of course, it might be that during the execution

phase new situations emerge which require the call of more complex strategies, but this

is not known in advance. So seen by selecting a standard QA pipeline, the QA planner
follows a principle of parsimony.

The QA Episodic Memory stores past successful QA results and selected plans. It

mainly interacts with the QA planner, but is accessible also for other QA components

and the QA Machine Learning Engine. However, rather than being a passive caching

component, we consider it as being an active part of the QALL-ME system. It disposes

of complex memory access functions, which support exact and partial matching for

analogical reasoning (in order to support question paraphrases). The fact that the

memory also caches selected plans means that strategies can be developed that realize

an experience-based parameterization of QA planner decisions.

We assume that a QA plan consists of a sequence of calls of a state transition function

of the form <current state, action, new state, weight>. Here a state is

characterized by the QA object element and by additional parameters. The transition

function specifies the actions that can be performed to reach a new state. We consider

one call of the transition function as one atomic operation of a QA plan. For example,

<Inquiry, create_IA_query, IA-query, 0.8> means that the current node is

the Inquiry element of a QA object and when the function create_IA_query is

called then the IA-query element is instantiated. As an alternative <Inquiry,

expand_Inquiry, Inquiry, 0.2> will lead to an expansion of the Inquiry. The

specified weights here mean that the activation of the first transition is more likely than

the second one.

Thus, the main task of the QA planner is to determine and select the most “useful”

sequence of atomic operations. Its main task is the overall controlling, selecting and

invoking of QA components to maximize the expected utility of the information

produced. The basic execution of a QA plan is performed by the QA execution

manager. It performs one action of the current plan (selected by the QA planner),

i.e., it realizes the transition from the current state of the plan to the next state. The QA

planner tells the QA execution manager what component to call and what data to

use. Plans are selected on the basis of the query analysis and the context information. In

each step, the QA planner is able to determine the utility of the results computed by

the QA execution manager. The QA planner can decide to depart from the

initially selected QA pipeline in order to call additional “intermediate” components,

such as error handling or feedback callers eventually causing complex user interactions.

FP6 IST-033860 The QALL-ME Architecture

Page 16

A QA plan is not a fixed sequence of operations but more likely is a probabilistic state

model, in the sense of a Partially Observable Markov Decision Process (POMDP, cf.

Kaelbling et al. 1998). A major obstacle currently is how such an approach can be

combined with the web service composition operation of a SOA-based approach. Here,

a promising approach for defining complex control flow is the Business Process

Execution Language (BPEL), which supports the declarative specification of composing

web services. Unfortunately, BPEL does not seem to support probabilistic transitions,

and hence it would not easily be possible to embed utility functions.

33 SSOOAA –– aann AArrcchhiitteeccttuurree MMooddeell ffoorr QQAALLLL--MMEE

The architectural style defining a Service Oriented Architecture (SOA) describes a set

of patterns and guidelines for developing loosely-coupled, highly-reusable services

that, because of separation of concern between description, implementation and

binding, provide both increased interoperability and flexibility in responsiveness to

changes and extensions.

SOA introduces a new abstract layer in terms of analysis, design and development: the

service layer. Built upon existing technologies like object-oriented and component-

based the service layer brings in a new solution that provides more coarse-grained

implementations composed of reusable services, with well-defined, published and

standards-compliant interfaces. (Figure 14)

Figure 14: SOA layers of abstraction

The new artifact introduced, the service, represents another step forward in the

evolution of software packaging beside functions and packages, objects and classes,

and components. Services can provide an abstraction of specific component models,

allowing users of these components to think only in terms of these new concepts and

ignore specific details of the component model and how it is implemented. They

separate the logic of a processing unit from the flow of control and routing, and the

data and protocol transformation. This approach provides loose-coupling, making it

much more reusable and flexible for integration compared to older technologies.

The key characteristics of a service could be defined as:

• A service is available at a particular endpoint in the network, and it receives

and sends messages.

• The service has specific functionality specified through an interface.

• Interfaces and policies are published so that potential users of the service can

discover and be given all the information they need to bind (perhaps

dynamically) to that service.

Service Layer

Component Layer

Object/Class Layer

FP6 IST-033860 The QALL-ME Architecture

Page 17

• You can create new services from existing ones (orchestration) without leaving

the service world (programming in the large).

Conceptually, we distinguish between two major units of programming within the

service layer:

• Services: operations that reflect the functionality of lower layer units

(components); they can be of two types:

o Atomic Services: directly comparable to object-oriented methods, they

have a specific interface and return structured responses.

o Services (composite): represent logical groupings of operations.

• Business Processes: consist of a series of operations which are executed in an

ordered sequence (choreography) according to a set of predefined rules.

One distinguishing characteristic between these two concepts can be found in intended

usage: processes are defined once and used ideally within a single context; services are

defined once and reused many times over within diverse contexts such as different

business processes, domains, and applications.

An abstract view of SOA could be presented as a layered architecture of composite

services that align with the project’s goals and builds upon existing components or

create new artifacts. (Figure 15).

Figure 15: The layers of a SOA.

The relationship between services and components is that components (large-grained

units of programming) implement the services and are in charge of delivering their

functionality and maintaining their quality of service. Business process flows can be

supported by choreography of those exposed services into composite applications. An

integration layer supports the routing, mediation and translation of these services,

components and flows using an Enterprise Service Bus (ESB). The deployed services

must be monitored and managed for quality of service and adherence to non-functional

requirements.

Operational

Systems

Service

Components

Services

atomic&composite

Business

Process

Presentation Portlet WSRP

Object-Oriented Packages Functional

In
teg

ratio
n

 A
rch

itectu
re

Q
o

S
, S

ecu
rity

, M
an

ag
em

en
t &

 M
o

n
ito

rin
g

FP6 IST-033860 The QALL-ME Architecture

Page 18

For each of the above depicted layers decisions in terms of design and architecture

must be made. Therefore, we will approach each of the layers separately and present a

list of items that should be considered toward a full SOA solution for a Question

Answering system.

33..11 SSccooppee

There are two underlying themes behind building an open source Question Answering

framework: heterogeneity and change. They are relevant both to the developer of such

a framework and to the user of it. The framework should allow for the integration of a

range of different QA-systems, applications and architectures contributed by the

partners of the consortium and based on best practice methods, as well as for a smooth

integration of and full interoperability with user-developed components for adapting

the framework to the user’s needs. Moreover, the architecture of such a framework

should sustain the cyclic development of the project with changing and updateable

component requirements as the system evolves.

33..22 OOppeerraattiioonnaall SSyysstteemmss LLaayyeerr

This layer consists of existing custom built applications or technology baseline

contributed by the members of the Consortium that should be leveraged as much as

possible. The applications cover all specific areas of the project including:

o Linguistic analysis

o sentence splitters

o tokenizers

o PoS taggers

o Shallow parsers

o Semantic analysis

o Anaphora resolution

o Word sense disambiguation

o Temporal reasoning

o Named Entity Recognition

o Linguistic resources

o Lexical databases

o Ontologies

o Machine learning tools

o Speech technologies

o Automatic speech recognition

o Dialogue systems

o Human digital assistant

o Telephone infrastructure

o Telephone platform

o Multimodal interfaces

o Mapping and geocoding

o Route calculation packages

o Proximity search

o Geocoding and reverse geocoding

o Location based applications

FP6 IST-033860 The QALL-ME Architecture

Page 19

33..33 SSeerrvviiccee CCoommppoonneennttss LLaayyeerr

This layer realizes the functionality of services, either by using one or more

applications in the operational systems layer or providing new components. It typically

uses container-based technologies such as application servers to implement the

components, workload management, high-availability and load balancing.

This components either will be implemented along the development of the system or

exist as custom built units in the available QA applications at each partner’s site.

Architectural decision concerning each of the coarse-grained enterprise components

will be made according to the modeling technology chosen, be it object-oriented,

functional or other.

Components in this layer will directly map to functionalities provided in the existing

subsystems for multilingual question interpretation, data access, multilingual answer

extraction, and multimodal interaction or they will implement new behavior according

to the section 2.1.

33..44 SSeerrvviicceess LLaayyeerr

This layer exposes to the user the underlying functionality of the system as either

atomic or composite services. It also provides for the mechanism to take enterprise

scale components and externalizes a subset of their interfaces in the form of service

descriptions. The design strategy for this service layer consists in two steps: service

identification and service specification.

The identification step consists of a combination of top-down, bottom-up and middle-

out techniques of domain decomposition, existing applications analysis and goal-

related modeling. The top-down process, known as domain-decomposition, consists of

the break-down of the targeted domain (i.e., Question Answering) into its functional

areas and subsystems, including its flow or process decomposition. In the bottom-up

process, known as existing application analysis, existing systems are analyzed and

selected as candidates for implementing underlying service functionality. The middle-

out process, known as goal-related modeling, is covering still not captured services by

either of the previous methods.

The service specification step aims to identify and specify components that will be

required to realize services. One of the most important activities at this stage is to

determine which services should be exposed and specify their interfaces and

descriptions. The main characteristics of a service that should be considered for

externalization are:

• Traceability: the service can be traced back to goals and objectives of the

project.

• Stateless: the service should minimize the amount of information or state

required between requests.

• Discoverable: the service should be exposed externally to the project and have

well defined interface and description.

• Reusability: the service should serve the interest of other processes and be

reused to this extent.

FP6 IST-033860 The QALL-ME Architecture

Page 20

Figure 16 shows a breakdown of possible services and processes that can be defined in

the context of a Question Answering system. The brighter components represent the

services and the darker ones the processes.

Figure 16: Services & Processes Breakdown.

33..55 BBuussiinneessss PPrroocceessss LLaayyeerr

This layer defines the operational artifacts that implement the business processes as

choreographies of services. Services are bundled into a flow through orchestration or

choreography and thus act together as a single application, which can be also exposed

as a service at its turn. Figure 16 depicts some possible business processes that could

be defined in a Question Answering system.

The QA Planner mentioned in section 2.2.2 will be defined in this layer as the

aggregation of the major QA processes.

44 WWeebb SSeerrvviicceess aanndd SSOOAA

Web Services technology is a collection of standards that can be used to implement an

SOA. They provide a distributed computing approach for integrating heterogeneous

applications over the Internet. The Web Services specifications are completely

independent of the programming language, operating system and hardware to promote

loose coupling between the service consumer and provider.

Web Services are self-contained, self-describing, modular applications that can be

published, located and invoked over networks. They encapsulate functionality ranging

from simple request-reply to full process interactions and can be new defined or wrap

around existing applications.

44..11 SSOOAA –– BBaassiicc CCoommppoonneennttss

At the most basic level, an SOA consists of the following three components (Figure

17):

• Service provider (Service)

• Service consumer (Requestor)

• Service registry (Discovery facility)

FP6 IST-033860 The QALL-ME Architecture

Page 21

Figure 17: SOA components and operations.

The service provider creates a service and publishes its interface and access

information (WSDL) to a service registry (UDDI). The service registry is responsible

for making the service interface and implementation access information available to

service consumers. The service consumer locates (finds) entries in the service registry

and then binds to the service provider in order to invoke (SOAP) the defined service.

Following are the core technologies used for Web Services and their short description.

44..22 SSOOAAPP

Simple Object Access Protocol (SOAP) is a specification for the exchange of

structured XML based messages between the service consumer, service provider and

service registry. SOAP provides four main capabilities:

• A standardized message structure based on the XML Infoset

• A processing model that describes how a service should process the messages

• A mechanism to bind SOAP messages to different network transport protocols

• A way to attach non-XML encoded information to SOAP messages

44..33 WWSSDDLL

Web Services Description Language (WSDL) is an XML-based interface and

implementation description language. It allows service authors to provide crucial

information about the service so that others can use it. WSDL is what everyone uses to

tell others what they can do with the service.

WSDL UDDI

Requestor

Service Discovery

Facility
Publish

Bind Find

BPEL

SOAP

Message

FP6 IST-033860 The QALL-ME Architecture

Page 22

Figure 18: Structure of WSDL document.

A WSDL document consists of two parts (Figure 18): a reusable abstract part and a

concrete part. The abstract part of WSDL describes the operational behavior of Web

services by describing the messages that go in and out from services. The concrete part

of WSDL allows you to depict how and where to access a service implementation.

44..44 UUDDDDII

Universal Description, Discovery and Integration (UDDI) is both a client-side API and

a SOAP-based server implementation that can be used to store and retrieve

information on service providers and Web services. It plays a central role in the

“service composition” process of creating new functionality by assembling existing

services. UDDI provides a single well-known place that can be searched for services

and provide pointers to more detailed information about the services, including the

WSDL description.

UDDI is itself made up of three different elements:

• A "white pages" This contains the basic contact information for each Web

service entry. It generally includes basic information about the company, as

well as how to make contact.

• A "yellow pages" This has more details about the company. It uses commonly

accepted industrial categorization schemes, industry codes, product codes,

business identification codes and the like to make it easier for companies to

search through the entries and find exactly what they want.

• A "green pages" This is what allows someone to bind to a Web service after

it's been found. It includes the various interfaces, URL locations, discovery

information and similar data required to find and run the Web service.

Entries are created using the Web Services Description Language (WSDL), and then

send to a UDDI registry. UDDI allows registries to exchange entries with each other,

so that if an entry is sent to one UDDI registry, it can be replicated to other registries.

44..55 BBPPEELL

A BPEL process specifies the exact order in which participating web services should

be invoked. This can be done sequentially or in parallel. With BPEL, we can express

Abstract

Concrete

FP6 IST-033860 The QALL-ME Architecture

Page 23

conditional behavior, for example, a web service invocation can depend on the value

of a previous invocation. We can also construct loops, declare variables, copy and

assign values, define fault handlers, and so on. By combining all these constructs, we

can define complex business processes in an algorithmic manner.

BPEL is thus comparable to general purpose programming languages, but it is not as

powerful as they are. On the other hand it is simpler and better suited for business

process definition. Therefore BPEL is not a replacement but rather a supplement to

modern programming languages.

RReeffeerreenncceess

• Kaelbling, L. P., M. L. Littman and A. R. Cassandra (1998): Planning and

acting in partially observable stochastic domains. Artificial Intelligence,

Volume 101, pp. 99–134.

• Neumann, G. and B. Sacaleanu (2005): Experiments on Robust NL Question

Interpretation and Multi-layered Document Annotation for a Cross-Language

Question/Answering System. In: C. Peters and others (eds.): Lecture Notes in

Computer Science, Multilingual Information Access for Text, Speech and

Images, CLEF 2004,volume 3491, p. 411–422. Berlin, Heidelberg: Springer.

• Wessels, D. (2001): Web Caching. O'Reilly and Associates (ISBN 1-56592-

536-X).

