
DESIGN PRINCIPLES OF THE DISCOSYSTEMG�unter Neumann�Deutsches Forschungszentrum f�ur K�unstliche IntelligenzStuhlsatzenhausweg 3D-6600 Saarbr�ucken 11, Germanyneumann@dfki.uni-sb.deTo appear in: Proceedings of the TWLT 5, Twente, Netherlands, 1993.abstractIn this paper we introduce the basic designprinciples of the disco system, a NaturalLanguage analysis and generation system.In particular we describe the disco de-velopment shell, the basic tool for theintegration of natural language compo-nents in the disco system, and its appli-cation in the cosma (COoperative Sched-ule MAnagement Agent) system.Following an object oriented architec-tural model we introduce a two{step ap-proach, where in the �rst phase the archi-tecture is developed independently of spe-ci�c components to be used and of a par-ticular ow of control. In the second phasethe \frame system" is instantiated by theintegration of existing components as wellas by de�ning the particular ow of con-trol between these components. Becauseof the object{oriented paradigm it is easyto augment the frame system, which in-creases the exibility of the whole system�The research underlying this paper was sup-ported by a research grant, FKZ ITW 9002 0,from the German Bundesministerium f�urForschung und Technologie to the DFKI projectdisco.

with respect to new applications. The de-velopment of the cosma system will serveas an example of this claim.1 introductionToday's natural language systems arelarge software products. They consist ofserveral mutually connected componentsof di�erent kinds, each developed by dif-ferent researchers often placed on di�er-ent locations. The integration of thesecomponents has therefore become a soft-ware engineering and mangement prob-lem. We will consider the project dis-co (DIalogue Systems for COoperatingagents) from this perspective.disco's primary goal is the process-ing of multiagent natural language dia-logue. Multiagent capabilities make itan appropriate front end for autonomouscooperative agents, which will be exem-pli�ed by the cosma system (COopera-tive Scheduling MAnagement system) de-scribed in section 4.The project disco as a whole is a four-year, eight-person research e�ort fund-ed by the German Ministry for Researchand Technology. disco is completing its1

fourth year. The �rst task of the develop-ment of the disco system was to providea uniform core formalism based on uni�-cation of feature structures. The secondwas the construction of a modular archi-tecture orthogonal to the representationformalism, as a platform for experimen-tation. Third, research and constructionof dialogue components is ongoing, as is(fourth) investigation of the interface be-tween dialogue components and multia-gent systems.We will emphasize in this paper the sec-ond phase, i.e. the description of the un-derlying architecture. The solutions to theother tasks will be reported briey in thenext section.2 overview of the dis-co systemThe linguistic core machinery extends aconstraint-based approach of linguistic de-scription [Pollard and Sag, 1987]. In thisparadigm linguistic objects are describedby a set of constraints which express mu-tually co-occurence restrictions of phono-logical, syntactic and semantic informa-tion. A fundamental aspect of these the-ories is that they are declarative, i.e. theyonly describe what constraints are neces-sary to describe linguistic objects not theway in what order the constraints involvedare to be solved.Such a uniform view has not only a lotof advantages for linguistic description butalso for the design of Natural Languagesystems because it leads to more com-pact systems. If, for example, the di�er-ent stratas (e.g., syntax, semantics) wouldbe represented and processed in di�erentmodules than a complex internal ow ofcontrol between these modules would benecessary if the mutual co-occurence re-strictions should be maintained. Using an

uniform approach instead allows to pro-cess these constraints in an incrementaland parallel way by the very same con-straint solving algorithm.Figure 1 shows graphically the structureof the linguistic kernel.
(+ Lexicon)NLLSAR SAP.NLL expression
UdineGrammarGeneratorParser X2morf TDLScanningUtterance
DISCO

Figure 1: Overview of the disco kernel.Uniform Core Formalism The lin-guistic knowledge is speci�ed in thetyped feature formalismTDL [Sch�afer andKrieger, 1992], which incorporates theuni�cation engine UDiNe. TDL is the ex-clusive formal device employed to speci-fy grammar rules, lexical entries and allother linguistic knowledge relevant for thegrammar. UDiNe serves also as the basicmachinery for linguistic processing (e.g.,

during parsing, generation or speech actrecognition).In TDL, typed feature structures can bede�ned through simple or multiple inher-itance relations. TDL performs full typeexpansion at compile-time, i.e., if in a typede�nition a type inherits from other typesor if the value of an attribute is restrict-ed to a type, these types are replaced bythe associated feature structures with onlylimited simpli�cation.1Uni�cation of feature structures in TDLand elsewhere in the system is executedby the un�er UDiNe, which is one of themost comprehensive uni�ers so far imple-mented. It comprises full negation, in-cluding negation of co-references, and fulldisjunction. UDiNe provides for so-calleddistributed disjunction through which dis-junctive information can be kept as lo-cal as possible in the structural speci�ca-tion. The main advantage of distributeddisjunction is that it helps to avoid thetranslation of structures containing dis-junctions into a disjunctive normal form,which, given the size of structures in ques-tion, could lead to a serious e�ciencyproblem. UDiNe has a mechanism fortreating feature values de�ned as func-tional constraints.Grammar The DISCO grammar is aGerman grammar whose syntactic partwas developed by and described in [Net-ter, 1993] and which has an integrated se-mantic representation described in [Ner-bonne, 1992], [Kasper, 1993]. The style ofthe grammar follows very much the spiritof Head Driven Phrase Structure Gram-mar (HPSG) [Pollard and Sag, 1987], [Pol-1There is now a new version of TDL available,which enables partial or delayed type expansion,the incremental de�nition of types, negation, dis-junctive types and partitioning. However thisversion needs still to be integrated into the wholesystem.

lard and Sag, to appear]. The grammar isreversible in the sense that it is used forboth parsing and generation.Present coverage of German in the dis-co grammar2 includes on the� nominal level: determiners and nu-merals, bare plurals and mass nouns,postnominal prepositional phrases,nominal ellipsis� adjectival level: complex and sim-ple adjective phrases, attributive andpredicative functions� verb level: V-initial, V-second and V-�nal, modal verbs and construction ofverb complexes� clausal level: free insertion of ad-juncts, topicalization, sentence types(Y/N and WH-interrogatives, imper-atives, declaratives).In addition, the grammar has been ex-tended to include multiword lexemes, per-mitting opaque idioms to reside in the lex-icon. Fig. 2 shows an example of suchan entry. This example demonstrates al-so the uniform representation of di�erentlevels of linguistic information in HPSG.Semantic information is representedwithin the grammar following the ideasof constraint-based semantics [Nerbonne,1992]. The current status of semantic rep-resentation in the disco project is de-scribed in [Kasper, 1993]. It follows thepractice to specify the semantic repre-sentation only partially up to a level of`quasi-logical form' which leaves for ex-ample some contextual restrictions out ofconsideration. These are left to a sec-ond step of semantic interpretation. Suchquasi-logical forms contain the followingkind of information:2The following is not a complete list of thecurrent coverage. A detailed description can befound in [Netter, 1993].

(1) np
266666666666666666666666664CAT

26666666666666666666666664SYN
266666664LOCAL26666664HEAD 264MAJ24N +V �35375SUBCAT h iLEXICAL + 37777775377777775SEM 2664PRED timeHOUR 1MIN 2 3775MORPH *264STEM hcardinaliHEAD�VALUE 1 �375;264STEM huhriHEAD�NUM sg�375;264STEM hcardinaliHEAD�VALUE 2 �375;+

37777777777777777777777775
377777777777777777777777775Figure 2: An example of a multi-word lexeme (taken from [Netter, 93]) that coverstime expressions such as \14 Uhr 30" (2.30 p.m.).� predicate-argument-structure� thematic roles of arguments� the modi�cation relation� sortal and selectional restrictions onpredicate-argument structures andmodi�cation. These have provedto be very e�cient means fordisambiguation especially of PP-attachment ambiguities (see [Kasper,1993]).NLL Although the core formalism hasa great deal of power, the disco sys-tem also provides a logical form modulewhich facilitates translation into varioustypes of back-end systems. NLL is arepresentation of standard predicate logic,with lambda abstraction and several fea-tures that support representation of nat-ural language constructions [Laubsch andNerbonne, 1991]. These include� Named predicate argument positionsship(agt:John th:shipment-47time:15-Mar)

� Plural termsJim and John are shippers.(exist ?x shipper(inst/i:?x) =(arg1:+fJim,Johng arg2:?x))� Location termsJohn is in Saarbr�ucken on the Saar.located(th:Johnloc:reg-XfSB,on-fn(Saar)g)� Restricted parameters� Generalized quanti�ers� Complex determinersModularity is achieved by providingseveral types of interfaces. NLL struc-tures may be created using constructorfunctions, a structure parser, or a featuredescription language.The goal of modi�ability is realizedthrough the implementation ofNLL usingthe compiler tools, Zebu (a LISP versionof yacc, [Laubsch, 1992]) and refine.Processing Components In the fol-lowing we describe briey the main pro-cessing components of the linguistic kernel(cf. �g. 1).

Scanning The scanner is mainly re-sponsible for preprocessing the inputstring. It is implemented in lex andyacc. The scanner can expand abbre-viations into their full forms, as for ex-ample \h" into \Uhr", \Jan." into \Jan-uar", etc. For tokens algorithmically en-coding their denotations the scanner alsoperforms a morphological analysis by as-signing a feature structure to them. Suchtokens are, above all, cardinal and ordinalnumbers, e.g., \12" and \12.", but alsocomplex time and date expressions, suchas \14:31:15" or \12.03.1993".Morphology The morphological com-ponent receives as input those tokenswhich have not been analysed by the scan-ner. It produces as output a featurestructure which contains as a key or in-dex the lemma of the respective item,as well as other relevant morphosyntac-tic information which uniquely identi�esthe form. During generation, the morpho-logical component receives as input a fea-ture structure description of the form tobe produced.At present, the morphological informa-tion is precompiled into a morphologicalfull form lexicon, so that runtime process-ing reduces to the lookup of full formsand the initialization of the lexical com-ponent with the associated feature struc-tures. The precompilation is performed bythe X2MORF system described in [Trost,1991]. Part of this system was redesignedwith the results that the feature part isnow also speci�ed in TDL, and that themorphology can be integrated into the sys-tem for a full runtime analysis.Parsing The parser is a bidirection-al bottom-up chart parser which oper-ates on a context-free backbone implicit-ly contained in the grammar. The pars-er provides parameterized general parsing

strategies, as well as giving control overthe processing of individual rules. Forexample, it is possible to set the controlstrategy to a breadth-�rst strategy, to givepriority to certain rules, or to determine inwhich order types of daughters, e.g., headdaughters, adjunct daughters etc., as wellas individual daughters in a speci�c ruleare processed. In addition, the parser pro-vides the facility to �lter out useless tasks,i.e., tasks where a rule application can bepredicted to eventually fail due to an in-evitable uni�cation failure.Generation The surface generator cur-rently in use is a variant of thesemantic-head-driven algorithm describedin [Shieber et al., 1991]. It is a (syntac-tic) bottom-up process guided by seman-tic information passed top-down. Givena semantic representation expressed as atyped feature structures it generates allexpressions permitted by the grammar.Instead of using a full-form lexicon asit is the case for [Shieber et al., 1991]the generator yields as output a sequenceof feature structure containing the lexicalstems together with morphosyntacic infor-mation. These elements are then passedto the morphological component whichcomputes the appropriate surface forms.Speech act component The currentdisco system incorporates a �rst proto-type of a surface speech act componentdeveloped by and described in more de-tail in [Hinkelman and Spackman, 1992].In linking text to task, it is crucial tocapture not only propositional content oflinguistic expressions but also the attitudeor intention behind them. Speech acts,or utterances construed as actions, servethis purpose. An agent is assumed to bean inference system with a planning al-gorithm. The planner constructs chainsof actions that would, if executed, result

in the achievements of the agent's goal.Plan recognition then consists in revers-ing this process, taking observed actionsas evidence for the intentions.In the approach followed in the discosystem the HPSG framework is used torepresent the necessary inference rules forspeech act recognition (e.g. simple impli-cations can be expressed using negationand distributed disjunction).3 Based onthis kind of representation the relation-ship between sentence types and coven-tionalized speech acts (like inform or re-quest) can be expressed declaratively inthe grammar. Parsing of an expressionnow not only yields an propositional con-tent but also the possible types of speechacts. The current version of the speechact component o�ers solutions to the fol-lowing subproblems:� general linkage between utterancesand intentions� speci�c mechanisms linking speechacts to surface representations� reliable, n-way speech acts.3 the disco develop-ment shellThe architecture of the disco system andcosma have both been realized using thedisco development shell, which wasdeveloped by the author and which we arenow going to present in more detail.The use of modern programming tech-niques in system integration is crucial tosupport the following desiderata:� modularity of NLP components3The current approach only supports speechact recognition but it is planned to use the samebasic approach also for the planning of speechacts (see [Hinkelman and Spackman, 1992]).

� experimentation with ow of control� incorporation of new modules� building of subsystems and stan-dalone applications� accommodation of alternative mod-ules with similar functionalityIn order to perform the tasks mentionedabove we have chosen a two{step approachto realize DISCO's architecture:1. In a �rst step the architecture is de-scribed and developed independent-ly of the components to be usedand of the particular ow of control.Possible components are viewed asblack boxes and the ow of controlis described independently of specif-ic components. In such an abstractview the architecture realizes only aschema called the frame{system.2. Next the frame{system has to be `in-stantiated' by the integration of exist-ing modules and by de�ning the par-ticular ow of control between thesemodules.It is useful to divide the system com-ponents into di�erent types accordingto their speci�c tasks. Currently, wedistinguish:4� tool components (e.g., graphic de-vices, printer, debugger, errror han-dler)� natural languagecomponents (e.g., morphology, pars-er, generator, speech act recognition)� control component4We do not assume that this list is complete.For example, it is also possible to have knowledgesources as components of the frame system.

In order to obtain a high degree of ex-ibility and robustness (especially duringthe development phase of a system) thecontrol unit directs and monitors the owof information between the other compo-nents. The important tasks of the controlunit are:� to direct the data ow between theindividual components� to de�ne which components shouldrun together to form a `subsystem'� to check the data received from onecomponent before they are sent to an-other one� to manage global memory and callspeci�c toolsThere is a command level for directcommunication with the kernel. The pur-pose of the command level is to providecommands that allow users to run subsys-tems, to activate or inactivate tracing ofmodules and to specify printing devices.Users may also specify values for globalvariables interactively or with con�gura-tion �les for each module.Object Oriented Design If a newcomponent must be integrated, one wouldlike to concentrate only on those partsthat are of speci�c interest for these newcomponents. Algorithms or data whichare common to all components (or compo-nents of a speci�c type) should be de�nedonly once and then be added automatical-ly for each new component without side{e�ects to other already integrated compo-nents.We have choosen an object{orientedprogramming style (OOP style) using theCommon Lisp Object System (CLOS) inorder to realize the two{step approachdescribed above. In the object{oriented

paradigm a program is viewed as a setof objects that are manipulated by ac-tions. The state of each object and the ac-tions that manipulate the state are de�nedonce and for all when the object is creat-ed. The essential ingredients of object{oriented programming are objects, class-es and inheritance. Objects are modulesthat encapsulate data and operations onthat data. Every object is an instance ofa speci�c class which determines its struc-ture and behaviour. Inheritance allowsnew classes to specialize already de�nedclasses. The result is a hierarchy of class-es where classes inherit the behaviour (da-ta and operations) from superclasses. Theadvantage for the programmer is that sheneed only specify to what extend the newclass di�eres from the class(es) it inheritsfrom. This supports the design of mod-ular and robust systems that are easy touse and extend.5CLOS The main programming lan-guage for the DISCO project is CommonLisp. Because CLOS is de�ned to bea standard language extension to Com-mon Lisp it is easy to combine `ordinary'Lisp code with OOP style. CLOS al-lows us to de�ne an hierarchical organiza-tion of classes that models the relationshipamong the various kinds of objects. Fur-thermore, because CLOS supports mul-tiple inheritance it is possible to de�nemethods that are de�ned for particularcombinations of classes. Therefore a largeamount of control ow is automatically re-alized by CLOS. This helps us to concen-trate on the individual properties of newcomponents, which simpli�es and speedsup their integration extremly. Of course,CLOS itself does not enforce modularity5The reader should consult e.g., [Keene, 1988]for an excellent introduction into CLOS if moredetailed information on object oriented program-ming is of interest.

or makes it possible to organize programspoorly; it is just a tool that helps us toachieve such modular systems.DISCO's Class Hierachy The dis-co development shell consists of theclass hierarchy and the speci�cation ofclass speci�c methods. Every type of com-ponent and its specializations are de�nedas CLOS classes. Figure 3 shows a portionof the current hierarchy.module is the most general class. Allother classes inherit its data structure andassociated methods. The class languagecomponent subsumes all modules of thecurrent system which are responsible forlanguage processing. A module that is ac-tually used in the system is an instance ofone of the classes.New modules are added to the sys-tem by associating a class with them.CLOS supports dynamic extension of theclass hierarchy so that new types can beadded even at run{time. For example,if we wanted to add a new parser mod-ule we would either use the already exist-ing class parser or de�ne a new class,say alternative-parser. In the �rstcase we assume that we only need themethods that have already been de�nedfor the parser class. In the secondcase we would have to add new methodsor could specialize some of the methodsthat alternative-parser inherits fromparser. In principle it could also happenthat the new parser shares many proper-ties with disco-parser. In that case wewould have to re�ne the parser subnet inorder to avoid redundancy.Protocols The ow of control betweena set of components is mediated by meansof protocols. Protocols are methods de-�ned for the class controller. They specifythe set of language components to be usedand the input/output relation between the

language components. All current proto-cols are de�ned using the same structureas shown in �g. 4.The controller uses the generic functioncall-component to activate an individ-ual language component instance, special-ized to the appropriate subclass. Con-trol ow is determined by the sequence ofcall-component invocations. Betweencalls, output is veri�ed and converted tothe following component's input format bycalling the generic function check-and-transform. This mechanism is very im-portant to support robustness especiallyduring the development phase of the sys-tem. Speci�c methods are de�ned for eachmodule that indicate what to do if a mod-ule does not come up with a correct re-sult. These methods are activated by thecontroller during the call of check-and-transform. In the current version ofthe system further processing is then in-terrupted and the user is informed aboutthe problem that occured.For example, the output of mor-phology de�nes the input to parserand so on. By calling (check-and-transform controller morpholo-gy parser) the controller checks whetherthe morphology yielded a valid output andeventually transforms the output for theparser. If morphology detects an un-known word X further processing is in-terrupted and the user receives a messagenotifying him that X is unknown to themorphological component.Some Remarks If two adjacent com-ponents have been proven to work to-gether without problems check-and-transform need not be called for themas it is the case for the componentscomponent2 and component3 in theexample shown in �g. 5.Input and output for the whole systemis specifed using general communication

Parser Controller Command-ShellLexiconMorphologyScanner MorphixX2morf...Tool ... NLLTrace Handler Printer HandlerLisp Scanner Yacc Scanner Disco Parser
ModuleLanguage Component

Figure 3: A portion of the current class hierarchie in the disco system.(call-component controller component1)(check-and-transform controller component1 component2)(call-component controller component2)(check-and-transform controller component2 component3)(call-component controller component3)...(check-and-transform controller component(n�1) componentn)(call-component controller componentn)Figure 4: Schematic structure of protocols.channels. In the normal case this is thestandard terminal input/output stream ofCommon Lisp. In the cosma systeman e{mail interface for standard e{mail isused as the principle communication chan-nel. Besides the general input/output de-vice the controller also manages workingand long-term memory. These memoriesare used to process a sequence of sen-tences. In this case the controller storeseach analysed sentence in long{termmem-ory.The architecture by itself is not restrict-ed to pipeline processing but would beused in modeling cascade or blackboardarchitectures as well. In the latter casethe working memory can be used to real-ize the (possibly structured) blackboard.This has already been partially realized in
the current version. In principle, the ar-chitecture appeals to be general enough torealize negotiation{based architectures.Current Subsystems For grammardebugging it is possible to run server-al subsystems (called standalone applica-tions), which are activated via the com-mand level. For example, one might wantto run the parser and generator withoutmorphology or only the set of componentsnecessary during analysis aso. In eachcase the same functionality is available aswell as the same set of tools. In principleit would be possible for a user to de�neprotocols himself e.g., to test self{writtenmodules because the integration of mod-ules and the de�nition of protocols takesplace in a standardized fashion.

Input/Output from/to general device (e.g., email)

Component-2

Component-3

Input

Output

Input

Output

Component-1

Component-4

ControllerUnit

Input/Output

Input

Output

Output

Input

Figure 5: Flow of control between four components. In this protocol component 2and 3 interact directly. The controller views them as being one component (indicatedby the dotted lines around them).4 overview of the cos-ma systemIn this �nal section we will give a briefoverview of the cosma system. Theprinciple idea behind the cosma systemis to support scheduling of appointmentsbetween several human participants bymeans of distributed intelligent calendarassistents. Instead of using a central-ized solution where only a global calendardatabase is maintained we have choosena distributed solution. Scheduling of ap-pointments between several participants isthan viewed as a cooperative negotiationdialogue between the di�erent agents.We assume that each person has its own(therefore local) calendar database avail-able on her computer where each calen-
dar is managed by an individual planningcomponent. Each cosma system consistsof three basic components� An intelligent assistent that keepsand manages the calendar database� A graphical user interface to the cal-endar data{base application planner� The natural language system discoIt is assumed that electronic mail willbe used as a basic communication chan-nel. Information concerning the scheduleof particular appointments (e.g., requestto arrange a meeting, cancelation of a pre-viously setup appointment or other infor-mation relevant in performing some nego-tiation) is sent around the set of relevantparticipants via e{mail. Using standard

e{mail software has the advantage thatscheduling of appointments can be donein a distributed and asychronous way.Natural language (NL) comes into playbecause we allow humans to participatewho have no calendar assistent available.The only restriction is that they have elec-tronic mail available. Such a (poor) per-son is responsible for mantaining an old{fashioned calendar but is allowed to usenatural language during appoinment nego-tiation. Consequently, each cosma sys-tem needs to be able to process naturallanguage, either to understand a NL dia-logue contribution or to produce one.Each user of a cosma system has ac-cess to the calendar data{base by meansof a graphical user interface. The graphi-cal user interface | developed by StephenSpackman who named the tool dui |is used to display and update existingitems and enter new items into the data{base. The intelligent calendar managermaintains the calendar database. Thecurrent version (developed by the AKA{MOD group of the DFKI) consists of timeprocessing functions, a �nite-state proto-col for arranging appointments, and anaction memory storing the protocol stateand original e{mail for each arrangementin progress. The principle task of the dis-co system is to extract that informationfrom an natural language expression thatcan be used by the calendar manager. dis-co is also responsible for the productionof natural language text from the inter-nal representation of scheduling informa-tion computed by the calendar manager.The produced text is sent in addition tothe internal structure of scheduling ex-pressions to the participants via e{mail.[Busemann, 1993] describes the currentapproach for generating natural languageexpressions in cosma in more detail.

Short Example Figure 6 gives anoverview of a con�guration where threeparticipants, a human (Tick) and twocosmas (Trick, Track) are involved.A possible appointment scheduling is asfollows (abstracting away from details):Track to Trick and Tick:arrange(meeting, 21.10.1992,1p.m.)Trick to Track:accept(meeting)Tick to Track:Ich bin mit dem Termin einverstanden. (Iaccept the appointment).Track to Trick and Tick:con�rm(meeting)In words: Track wanted to arrange ameeting and sends this request to Trickand Tick (in form of an internal planningexpression). Trick automatically sends anacception. Because there are no conict-ing entries in his calendar data{base, Ticksends an acception using NL. Track willupdate its calendar while sending a con-�rmation to the two participants notify-ing them that all participants accepted theappointment.The current version of the system is ableto handle more complex dialogs, e.g., ap-pointment scheduling initiated by a non-cosma user, cancellation and modi�ca-tion of already set up appointments.5 conclusionIn this paper we have given an overviewof the disco system and a detailed de-scription of the disco developmentshell. The disco development shellhas been proven very useful in setting upthe cosma system. It was possible tointegrate the new modules independent-ly from the rest of the system. Existingmodules have been exchanged by new oneswithout the need of adding new meth-ods. Because di�erent researchers were

This Cosma is authorized

to make appointments

TICK TRACK

TRICK

Planner

DUI

DISCO

DUI

Planner

DISCO

(traditional)

Human
Human

(loves AI)

Emailer

e-mail

e-mail
e-mailFigure 6: General Overview of the Sample Scenariosable to run subsystems the developmentof the whole system could be done in adistributed way. Therefore eight very dif-ferent modules have been intergrated inless than three weeks including test phas-es.Based on these experiences we believethat the oject{oriented architectual mod-el of our approach is a fruitful basis formanaging large{scale projects. It makesit possible to develop the basis of a wholesystem in parallel to the development ofthe individual components. Therefore it ispossible to take into account restrictionsand modi�cations of each component asearly as possible.

References[Busemann and Harbusch, 1993]Stephan Busemann and Karin Har-busch, editors. Proc. DFKI Workshopon Natural Language Systems: Mod-ularity and Re-usability, Saarbr�ucken,germany, 1993.[Busemann, 1993] S. Busemann. Towardsthe con�guration of generation systems:Some initial ideas. In Busemann andHarbusch [1993].[Hinkelman and Spackman, 1992]Elizabeth A. Hinkelman and Stephen P.Spackman. Abductive speech act recog-nition, corporate agents and the cos-ma system. In W. J. Black, G. Sabah,and T. J. Wachtel, editors, Abduction,Beliefs and Context: Proceedings ofthe second ESPRIT PLUS workshop incomputational pragmatics, 1992.[Inc., 1990] Reasoning Systems Inc. Re-�ne user's guide. Technical report, PaloAlto, CA, 1990.[Kasper, 1993] Walter Kasper. Integra-tion of syntax and semantics in feature

structures. In Busemann and Harbusch[1993].[Keene, 1988] Sonya E. Keene. Object-Oriented Programming in CommonLisp. A Programmer's Guide to CLOS.Addision-Wesley, 1988.[Laubsch and Nerbonne, 1991] J. Laub-sch and J. Nerbonne. An overview ofnll. Technical report, Hewlett-PackardLaboraties, Palo Alto, CA, 1991.[Laubsch, 1992] J. Laubsch. Zebu: A toolfor specifying reversible lalr(1) parsers.Technical report, Hewlett-Packard Lab-oraties, Palo Alto, CA, 1992.[Nerbonne, 1992]John Nerbonne. Constraint-based se-mantics. In Paul Dekker and MartinStokhof, editors, Proceedings of the 8thAmsterdam Colloquium, pages 425{444.Institute for Logic, Language and Com-putation, 1992. also DFKI RR-92-18.[Netter, 1993] Klaus Netter. Architectureand coverage of the disco grammar. InBusemann and Harbusch [1993].[Pollard and Sag, 1987] C. Pollard andI. A. Sag. Information Based Syntaxand Semantics, Volume 1. Center forthe Study of Language and InformationStanford, 1987.[Pollard and Sag, to appear]C. Pollard and I. M. Sag. InformationBased Syntax and Semantics, Volume 2.Center for the Study of Language andInformation Stanford, to appear.[Sch�afer and Krieger, 1992] UlrichSch�afer and Hans-Ulrich Krieger. TDLextra-light User's Guide: Franz AllegroCommon LISP Version. DISCO, 1992.[Shieber et al., 1991] S. M. Shieber,F. C. N. Pereira, G. van Noord, and

R. C. Moore. Semantic-head-drivengeneration. Computational Linguistics,16:30{42, 1991.[Trost, 1991] Harald Trost. X2MORF:A morphological component basedon augmented two-level morphology.Technical Report RR-91-04, DeutschesForschungsinstitut f�ur K�unstliche Intel-ligenz, Saarbr�ucken, Germany, 1991.

