
A Uniform Computational Model

for Natural Language Parsing and Generation

Dissertation
zur Erlangung des Grades

des Doktors der Naturwissenschaften
der Technischen Fakultät

der Universität des Saarlandes

von

Günter Neumann

Saarbrücken
1994

Tag des Kolloquiums: 3. November 1994
Dekan: Prof. Dr.-Ing. H. Bley
Berichterstatter: Prof. Dr. H. Uszkoreit

Prof. Dr. W. Wahlster

Acknowledgement

This research begun while I was working at the department of Computational Lin-
guistics at the University of Saarland and the project BiLD, which is supported by
the German Science Foundation in its Special Collaborative Research Program on
Artificial Intelligence and Knowledge Based Systems SFB 314. It continued at the
German Research Center for Artificial Intelligence (Deutsches Forschungszentrum
für Künstliche Intelligenz GmbH, DFKI) in the Computational Linguistics area. I
am grateful to these institutes for their support.

Many, many people have helped me not to get lost during the development of
this thesis. Hans Uszkoreit, my main supervisor, provided a motivating, enthusiastic,
and critical atmosphere during the many discussions we had. It was a great pleasure
to me to conduct this thesis under his supervision. I also acknowledge Wolfgang
Wahlster who as my second supervisor provided constructive comments during my
thesis time as well as on the preliminary version of this thesis.

During many discussions and computer demos of my thesis stuff I received a lot
of valuable comments from at least the following people: Jan Alexandersson, Rolf
Backofen, Sergio Balari, Jim Barnett, Stephan Busemann, Gregor Erbach, Wolfgang
Finkler, Dan Flickinger, Karin Harbusch, Elizabeth Hinkelman, Aravind Joshi, Wal-
ter Kasper, Martin Kay, Bernd Kiefer, Hans-Ulrich Krieger, John Nerbonne, Klaus
Netter, Gertjan van Noord, Stephan Oepen, Thomas Pechmann, Norbert Reithinger,
Vijay Shankar, Mark Steedman, Harald Trost, Mats Wirén.

The following people have read draft versions of the thesis: Rolf Backofen, Eliz-
abeth Hinkelman, Bernd Kiefer, Karin Harbusch, Gregor Erbach, and Mats Wirén.

Needless to say, that I am grateful to all of my colleagues at the Computational
Linguistics department and at the DFKI for their support (and tolerance); especially
I am indebted to the ‘DISCO people’.

Specials thanks to Gertjan van Noord for the great time during our common
‘BiLD time’.

Mein innigster Dank gilt meiner Familie Eva, Kevin und Dennis. Ohne ihre
Hilfe, Toleranz und ständige Aufmunterung wäre diese Arbeit nie beendet worden.

Postscriptum
This thesis has been submitted to the thesis committee in November 1994. In the

meanwhile, an improved and extended version of the thesis content can be found
in G. Neumann: Interleaving Natural Language Parsing and Generation Through
Uniform Processing, Journal of Artifical Intelligence 99, 1998, 121–163.

A recent comparision of several uniform architectures (including the one pro-
posed in this thesis) can be found in: S. Varges: Parsing und Generierung in
uniformen Architekturen, Uni. Düsseldorf, 1997 (see also http://web.phil-fak.uni-
duesseldorf.de/̃ varges/master.html). He also presents a Prolog implementation of
the uniform tabular algorithm developed in this thesis.

Contents

1 Introduction 1
1.1 The Goals of the Thesis . 2
1.2 Overview . 6

2 Current Approaches in Reversible Systems 9
2.1 Arguments for Reversible Natural Language Processing 10

2.1.1 Psycholinguistic Motivations 10
2.1.2 Engineering and Computational Motivations 11
2.1.3 Adaptability to Language Use of Others 12
2.1.4 Possible Arguments against Reversibility 13

2.2 A Classification Scheme for Reversible Systems 15
2.3 Problems with Existing Approaches 19

2.3.1 The Uniform Architecture of Shieber 19
2.3.2 The Head-driven Approach of Van Noord and Shieber et al. . 22
2.3.3 Gerdemann’s Earley Style Processing Scheme 25
2.3.4 Summary . 27

3 Linguistic and Formal Foundations 29
3.1 Constraint-based Grammars . 30
3.2 Constraint Logic Programming . 32

3.2.1 Constraint Languages and Relational Extensions 33
3.2.2 The Constraint Language L 39

3.3 Specification of Constraint-based Grammars in R(L) 44
3.4 Parsing and Generation . 52
3.5 Conclusion . 57

4 A Uniform Tabular Algorithm for Parsing and Generation 59
4.1 Overview of Earley Deduction . 62
4.2 Generalizing Pereira and Warren’s Earley Deduction Scheme 65
4.3 A Data-driven Selection Function . 65
4.4 A Data Structure for Lemmas . 66

i

ii

4.5 The Inference Algorithm . 68
4.6 An Agenda-based Control Regime 71
4.7 Performing Parsing and Generation 74
4.8 Indexing Derived Clauses . 80
4.9 A Uniform Indexing Mechanism . 80
4.10 Extending the Un-indexed Version to an Indexed Version 85
4.11 A Parsing and Generation Example 88
4.12 Processing of Empty Heads . 94
4.13 Properties . 98
4.14 Implementation . 102
4.15 Item Sharing Between Parsing and Generation 109

4.15.1 The Basic Idea . 109
4.15.2 Adaptation of the Uniform Tabular Algorithm 112
4.15.3 An Object-Oriented Architecture 113
4.15.4 Implementation . 116

4.16 Conclusion . 116

5 A Performance Model based on Uniform Processing 119
5.1 The Modular Status of Natural Language Systems 121
5.2 Natural Language Systems and Reversible Grammars 124
5.3 Monitoring and Revision . 130

5.3.1 The Monitoring Model of Levelt 130
5.3.2 The Anticipation Feedback Loop Mode 132
5.3.3 Text Revision . 135

5.4 A Blueprint of the New Model . 137
5.5 Monitoring and Revision with Reversible Grammars 140

5.5.1 Locating Ambiguity with Derivation Trees 141
5.5.2 Overview of the Monitored Generation Strategy 142
5.5.3 Marking a Derivation Tree . 143
5.5.4 Changing the Ambiguous Parts 145
5.5.5 Redefining Locality . 146
5.5.6 Simple Attachment Example 147
5.5.7 Some More Examples . 149
5.5.8 Properties and Implementation 151

5.6 Generation of Paraphrases . 152
5.6.1 A Naive Version . 153
5.6.2 A More Suitable Strategy . 153
5.6.3 A Suitable Strategy . 154
5.6.4 A Simple Example . 156
5.6.5 Properties . 157

5.7 Incremental Interleaving of Parsing and Generation 158
5.7.1 Basic Problems of Incremental Monitoring 159

iii

5.7.2 A Look-Back Strategy . 160
5.7.3 Performing Revision Within the Uniform Algorithm 161
5.7.4 Performing Ambiguity Checks within the Uniform Algorithm 164
5.7.5 Using Shared Items during Incremental Monitoring 169
5.7.6 Implementation . 170
5.7.7 Properties of the Incremental Method 170

5.8 Conclusion . 172

6 Summary and Future Directions 175
6.1 Summary . 175
6.2 Future Directions . 176

6.2.1 Application of Explanation-Based Learning for Efficient Pro-
cessing of Constraint-based Grammars 177

6.2.2 Further Important Directions 179
6.2.3 Cognitive Processing . 181

A A Sample Grammar 185

Bibliography 189

iv

List of Figures

1.1 General control flow of the new model 5

2.1 The four different types of reversible grammar approaches which are
discussed in this work. 16

2.2 A summary of the approaches discussed in relationship to the new
approach. The arrows indicate the relationship of most direct influence. 28

3.1 The left dg G1 directly mirrors the set of atomic constraints expressed
in the example L-constraint, and the right dg G2 bears additional
constraints. Hence, it is more informative than the left one. 41

3.2 Some of the sub-dgs of the dg G1 given in figure 3.1 42
3.3 The relationship between paraphrases and ambiguities. 56

4.1 The procedure for prediction. 69
4.2 The procedure for passive-completion. 70
4.3 The procedure for active-completion. 70
4.4 The procedure for scanning. 70
4.5 An agenda-based control mechanism. 73
4.6 The procedure that adds new items to the table if they are not blocked. 73
4.7 The procedure apply-task. 74
4.8 A trace of parsing the string “weil peter heute lügen erzählt.” For

explanations of the symbols used see text. 76
4.9 The derivation tree of the example sentence. The labels of the node

refer to the names of the rules of the grammar in Appendix A. . . . 76
4.10 A trace of generating from “weil(heute(erzaehlen(peter,luegen)))”.

For explanations of the symbols used see text. 78
4.11 All possible derivation trees admitted by the grammar for the gener-

ation example. 79
4.12 The relationship of generated items of the different inference rules. . 86
4.13 A trace through parsing of the string “sieht Peter mit Maria”. 91
4.14 A trace through generation of “sehen(Peter,mit(Maria))” 93

v

vi

4.15 The item sharing approach using the uniform tabular algorithm. Dur-
ing the different modes the uniform algorithm maintains different
agendas and private active items for the different modes. However,
passive items are shared by both directions. 111

5.1 The Architecture of an nls using a reversible grammar. 123
5.2 Levelt’s perceptual loop theory of self–monitoring. 131
5.3 Relationship between ambiguities and paraphrases. 132
5.4 Schematic structure of an Anticipation Feedback Loop, based on

Wahlster and Kobsa [1986]. 133
5.5 The Architecture of the new reversible system. 137
5.6 Derivation trees . 141
5.7 Marked derivation tree . 144
5.8 Derivation trees of the simple attachment example 147
5.9 Marked tree of German example . 148
5.10 Markers are pushed one level upward 148

Chapter 1

Introduction

In the area of natural language processing in recent years, there has been a strong
tendency towards reversible natural language grammars, i.e., the use of one and
the same grammar for grammatical analysis (parsing) and grammatical synthesis
(generation) in a natural language system.

The idea of representing grammatical knowledge only once and of using it for
performing both tasks seems to be quite plausible, and there are many arguments
based on practical and psychological considerations for adopting such a view (in
section 2.1 we discuss the most important arguments in more detail).

Nevertheless, in almost all large natural language systems in which parsing and
generation are considered in similar depth, different algorithms are used – even
when the same grammar is used. At present, the first attempts are being made at
uniform architectures which are based on the paradigm of natural language process-
ing as deduction (they are described and discussed in section 2.3 in detail). Here,
grammatical processing is performed by means of the same underlying deduction
mechanism, which can be parameterized for the specific tasks at hand.

Natural language processing based on a uniform deduction process has a for-
mal elegance and results in more compact systems. There is one further advantage
that is of both theoretical and practical relevance: a uniform architecture offers
the possibility of viewing parsing and generation as strongly interleaved tasks. In-
terleaving parsing and generation is important if we assume that natural language
understanding and production are not performed in an isolated way but rather can
work together to obtain a flexible use of language. In particular this means a.) the
use of one mode of operation for monitoring the other and b.) the use of structures
resulting from one direction directly in the other. For example, during generation
integrated parsing can be used to monitor the generation process and to cause some
kind of revision, e.g., to reduce the risk of misunderstandings. Research on mon-
itoring and revision strategies is a very active area in cognitive science; however,
currently there exists no algorithmic model of such a behaviour. A uniform archi-

1

2

tecture can be an important step in that direction.
Unfortunately, the currently proposed uniform architectures are very inefficient

and it is yet unclear how an efficiency–oriented uniform model could be achieved.
An obvious problem is that in each direction different input structures are involved
– a string for parsing and a semantic expression for generation – which causes a
different traversal of the search space defined by the grammar. Even if this problem
were solved, it is not that obvious how a uniform model could re-use partial results
computed in one direction efficiently in the other direction for obtaining a practical
interleaved approach to parsing and generation.

1.1 The Goals of the Thesis

The major goal of this thesis is the design and theoretical and practical investigation
of a uniform computational model as the basis of efficient interleaving of natural
language parsing and generation. In particular we are concerned with the following
questions:

• Is it possible to define a uniform algorithm that can efficiently perform natural
language parsing and generation using one and the same grammar?

• How can this algorithm be extended so that it can share partial results in both
directions in order to support interleaving of parsing and generation?

• How is interleaving of parsing and generation used for performing monitoring
and revision during natural language processing?

We will answer these questions as follows:

A novel uniform tabular algorithm is presented that can be used for efficient
parsing and generation of constraint-based grammars without the need for compila-
tion. The most important properties of the algorithm are:

• Earley deduction. The control logic of the new algorithm is based on Ear-
ley deduction, i.e., it realizes a mixed top-down/bottom-up behaviour. The
new algorithm is the first one that is able to apply this strategy for parsing
and generation in a real symmetric and balanced way and consequently will
terminate on a larger class of reversible grammars.

• Dynamic selection function. The uniform algorithm uses a dynamic se-
lection function to determine the element to process next on the basis of the
current portion of the input – a string for parsing and a semantic expression
for generation. This enables us, for example, to obtain a left-to-right control
regime in the case of parsing and a semantic functor driven regime in the

3

case of generation when processing the same grammar by means of the same
underlying algorithm.

• Uniform indexing technique. The same basic mechanism is used for pars-
ing and generation, but parameterized with respect to the information used
for indexing partial results. The kind of index causes completed information
to be placed in the different state sets. Using this mechanism we can benefit
from a table-driven view of generation, similar to that of parsing. For exam-
ple, using a semantics-oriented indexing mechanism during generation massive
redundancies are avoided, because once a phrase is generated, we are able to
use it in any position within a sentence.

• Item sharing. We present a new method of grammatical processing which we
term item sharing. The basic idea is that items computed in one direction are
automatically made available for the other direction as well. The item sharing
approach is based on the uniform indexing technique mentioned above and is
realized as a straightforward extension of the uniform tabular algorithm. The
relevance of this novel method is demonstrated when the new performance
model is presented.

Since the only relevant parameter our uniform tabular algorithm has with respect
to parsing and generation is the difference in input structures the basic differences
between parsing and generation are simply the different input structures. This seems
to be trivial, however our approach is the first uniform algorithm that is able to adapt
dynamically to the data, achieving a maximal degree of uniformity for parsing and
generation under a task-oriented view.

A performance model based on uniform processing. We are also interested
in the uniform process as a basis for performance-oriented approaches like mon-
itoring, revision, disambiguation or generation of paraphrases. We demonstrate
that uniform grammatical processing increases the degree of flexibility of a natural
language system, enabling it to select an utterance appropriate to the particular
context. A suitable model of performance-oriented behaviour on the linguistic level
is an interleaved approach to parsing and generation. We demonstrate that the uni-
form algorithm in combination with the item sharing method leads to a practical
interleaved approach. In particular we present:

• A novel method for monitoring and revision. In situations of commu-
nication where the generation of ambiguous utterances should be avoided our
method is able to compute an un-ambiguous utterance for a given semantic
input. The underlying mechanism will be developed as a chart-based incre-
mental generate-parse-revise strategy: substrings produced during generation

4

are parsed to test whether they lead to some ambiguities. Detected ambigui-
ties are handled immediately by means of revision using as much as possible of
the previously computed structures. We demonstrate that such an enhanced
technology enables a natural language system to reduce the risk of generating
ambiguous sentences in a purposive and efficient way.

• A novel method for the generation of paraphrases. We also demon-
strate how the same method that is used for monitoring and revision can
be used for generation of paraphrases during language understanding. The
idea here is that after parsing an utterance, then if this utterance has several
readings, corresponding paraphrases are generated that reflect the semantic
differences. The user is then asked to choose the one he intended.

The performance model takes full advantage of the uniform tabular algorithm
and the item sharing method. The combination of uniform processing of reversible
grammars and performance–oriented strategies are carried out in an easy and el-
egant way. This means that we are not only able to show – for the first time –
that efficient uniform processing of reversible grammars is possible but also that
systematic pursuit of uniformity in natural language processing – as followed in this
thesis – achieves the necessary preconditions for a practical interleaving of parsing
and generation.

Implementation The uniform tabular algorithm and the item sharing method
have been fully implemented in Common Lisp and tested with several small constraint-
based grammars. The incremental monitoring and revision strategy as well as the
method for generation of paraphrases have also been fully implemented as straight-
forward extensions of the uniform tabular algorithm.

The overall structure of the model’s architecture can graphically be represented
as follows:

5

Monitoring
Revision

Paraphrasing

Control Logic Parsing

Semantic Expression

String

Generation
Mode

Non-Shared Non-Shared
Shared Passive ItemsGenerated

Active Items Active Items
Parsed

Uniform Algorithm

Conceptual System

Mode

Agenda1 Agenda2

Figure 1.1: General control flow of the new model

To give a first flavor how the model works, a brief description of the flow of control
follows: We assume that the conceptual system (see section 5.1 for more details)
communicates via semantic expressions with the uniform algorithm. The uniform
algorithm consists of a control logic (the inference rules) and an agenda mechanism.
This agenda mechanism maintains two different agendas – one for generation and one
for parsing. New items are first stored in one of the agendas according to a given
priority (depending on whether parsing or generation is performed). Computed
items are stored in different item sets, where it is assumed that passive items (which
correspond to completely successfully processed substructures) are shared during
generation and parsing. The reason why only shared passive items are considered
will be given in section 4.15. Monitoring, revision, and paraphrasing is performed
by means of specific methods. These methods are triggered (or activated) by the
conceptual system but are interleaved with normal processing which is indicated by
the dotted arrow.

6

Towards a competence-based performance model of natural language
The reversible grammar, together with the notion of derivation that underlies the
uniform algorithm, constitute the grammatical competence base of a natural lan-
guage system. The grammar declaratively describes the set of all possible grammat-
ical well-formed structures of a language and the uniform algorithm is able to find
all possible grammatical structures for a given input – at least potentially.

The monitoring and revision methods are designed to improve a system’s perfor-
mance in order to obtain an effective and flexible use of language. Thus they belong
to the performance part of a natural language system.

The item sharing approach can be seen as a kind of mediator between the com-
petence and performance methods because it is a straightforward extension of the
competence base, particularly designed to support efficient interleaving of parsing
and generation.

Since the competence base plays an important role for realizing these methods,
the approach followed in this thesis should be seen as a step towards a competence-
based performance model of natural language.

Clearly, additional mechanisms will be necessary for increasing the robustness,
efficiency and flexibility of natural language systems. For example, machine learning
methods as well as statistical or preference-based methods have to be developed
and integrated into such a model in order to improve the system’s performance
by experience, to handle ill-formed or under-specified input, or to realize specific
control strategies (see, for example, [Uszkoreit, 1991; Barnett, 1994; Samuelsson,
1994; Neumann, 1994; Wirén, 1992]).

The results presented in this thesis – especially the uniform tabular algorithm
and the item sharing method – are important foundational contributions for a
competence-based performance model and they should be seen as part of a long-
term scientific program for achieving such a model of natural language. In the final
chapter of this thesis we outline how our new model can fruitfully be combined with
the above mentioned high-level performance methods.

1.2 Overview

In Chapter 2 we summarize the most important arguments for reversible natural
language processing and discuss the state of the art in the area of grammar re-
versibility. We present a classification scheme for reversible systems and apply this
scheme in the discussion of current approaches in grammar reversibility.

In Chapter 3 we present the formal and linguistic foundations on which this
thesis is based. We first introduce constraint-based grammar theories as appropriate
means for specifying reversible grammars. In these theories, the grammatical well-
formedness of possible utterances is described in terms of identity constraints a
linguistic structure must fulfill taking into account information of different strata

7

(e.g., phonology, syntax and semantics) in a uniform and completely declarative
way, e.g., Lexical Functional Grammar (LFG, [Bresnan, 1982]), Head-Driven Phrase
Structure Grammar (HPSG, [Pollard and Sag, 1987]) and constraint-based categorial
frameworks (cf. [Uszkoreit, 1986a] and [Zeevat et al., 1987]).

Most important from a reversibility standpoint is that the theories only char-
acterize what constraints are important during natural language use, not in what
order they are applied. Thus they are purely declarative. Furthermore, since al-
most all theories assume that a natural language grammar not only describes the
correct sentences of a language but also the semantic structure of grammatically
well-formed sentences, they are perfectly well suited to a reversible system, because
they are neutral with respect to interpretation and production.

The computational framework of our approach is based on constraint logic pro-
gramming (CLP). CLP combines very well with the constraint-based view on gram-
mar theories as well as with the deductive view of language processing, where parsing
and generation are uniformly considered as proof strategies (cf. [Pereira and War-
ren, 1983], [Shieber, 1988] and chapter 4 of this thesis). Moreover, we show in this
thesis how a tight integration of parsing and generation can be realized using CLP
in an elegant and efficient way.

These aspects together makes CLP an excellent platform for combining methods
from Computational Linguistics and Artificial Intelligence and hence for achieving
theoretically sound and practical natural language systems.

In Chapter 4 we present the uniform algorithm. We first briefly introduce the
Earley deduction framework introduced in [Pereira and Warren, 1983]. We then
present a first version of the uniform tabular algorithm that makes use of a data-
driven selection function, and show how it is augmented by a flexible agenda-based
control regime. After illustrating how the algorithm performs parsing and gen-
eration, we extend this first version so that it can maintain structured item sets
efficiently. We present a uniform indexing mechanism that can be used in the same
manner for both parsing and generation. However, since we use the current portion
of the input for determining the “content” of internal item sets, the item sets are
ordered according to the actual structure of the input. The effect is that produced
items are split into equivalence classes. The individual classes are connected by
means of backward pointers, so that each item can directly be restricted to those
items that belong to a particular equivalence class.

This uniform indexing mechanism is the basis of the item sharing approach whose
specification is also given in that chapter. The item sharing approach is realized as
an object-oriented extension of the uniform algorithm which allows us to handle
different agendas and hence individual priority functions for parsing and generation.

In Chapter 5 we present a linguistic performance model which is based on the
new uniform processing model and which takes full advantage of the item sharing
method. We first discuss the uniform grammatical model as an integral part of a
natural language system and its implications of the system’s design. On the ba-

8

sis of this discussion we present a fundamental generation strategy, namely that of
avoiding ambiguous output. The idea here is that the generator runs its output
back through the understanding system to make sure it’s unambiguous. The most
advanced technology we are presenting is a chart-based incremental generate-parse-
revise strategy. During natural language generation computed partial strings are
parsed in order to test whether the partial string just produced can cause misunder-
standings. If this is the case this partial string is rejected and another alternative is
determined. This part of the process is called revision, where the parser performs
the task of monitoring the generator’s process.

We also apply this method during the understanding mode of a natural language
system for the purpose of disambiguation by means of the generation of paraphrases.
The idea here is that after parsing an utterance, then if this utterance is ambiguous
leading to several readings, corresponding paraphrases are generated, that reflect
the semantic differences. The user is then asked to choose the one he intended.

These novel techniques are realized as direct extensions of the uniform tabular
algorithm, taking full advantage of the item sharing method. Thus, we are able to
show that our novel approach to uniform processing leads to efficient and practical
interleaving of generation and parsing.

In Chapter 6 we summarize and discuss the basic results of the thesis and outline
some important future directions.

Chapter 2

Current Approaches in
Reversible Systems

Natural language systems are investigated and developed in the area of cognitive
science, computational linguistics, and artificial intelligence. According to [Wahlster,
1986] a system is called a natural language system (nls), if

1. a subset of the input and/or output of the system is coded in natural language
and

2. the processing of the input and/or generation of the output is based on knowl-
edge about syntactic, semantic and/or pragmatic aspects of natural language.

Thus, the two primary tasks to be performed by an nls are understanding and
generating of natural language utterances on the basis of linguistic, discourse, dialog,
and world knowledge.

Although the above definition does not exclude the use of other devices for
communication that are more appropriate in specific situations, e.g. deictic gestures,
graphics or the mix of natural language with such mediums (consider for example
the systems XTRA [Allgayer et al., 1989], WIP [Wahlster et al., 1991], COMET
[McKeown et al., 1990]) the second condition rules out systems which process natural
language purely as strings, e.g. text editors or compiler warnings.

During recent years there has been an increasing interest in the aspect of re-
versibility in natural language processing, i.e. data or programs that are shared by
both natural language understanding and generation, and some significant results
have emerged from theoretical linguistics, computational linguistics, and computer
science.

9

10

2.1 Arguments for Reversible Natural Language Pro-
cessing

A wide range of arguments can be given for reversible natural language processing,
and the most important ones are summarized in the next subsections. We then
present a classification scheme for systems that use reversible grammars, and discuss
current approaches to uniform processing of reversible grammars.

2.1.1 Psycholinguistic Motivations

Theoretically, the assumption of same knowledge sources for both generation and
understanding is essential for the common view of language as an interpersonal
medium and an interface to thought [McDonald, 1987], i.e. if communication is to
take place, a correspondence must be established between the mental representation
of an utterance for a speaker and that for a listener. Consequently, any model of
language behaviour that hypothesises only one linguistic representation is preferable
to one where two different representations are used that are only applicable in one
of the major modes (either understanding or generation). The fact that humans can
understand meaningful utterances they have produced intentionally indicates that
a subset of the internal representations used during understanding and generation
must be the same. Intuitively, this must be the case at least for the mental repre-
sentation of an utterance; otherwise it would be very hard to explain why humans
are able to paraphrase what they have said or heard.

But there are also arguments that motivate the assumption that linguistic en-
tities, i.e. grammatical structures are shared during understanding and generation.
Garrett [1982] argues that if it would be possible to discover that understanding
and generation can be modelled in substantially the same way, one might interpret
this as an evidence for separating the informational structure of a language (e.g.,
the rule system and the lexical component of a grammar) from modality-specific
aspects of the language. This declarative aspect of grammatical knowledge of a lan-
guage is very important for illuminating the relation between grammatical theory
and processing theory. For example, Fodor and Frazier [1980], argue at length that
non-declarative grammars (like the ATN framework, cf. [Woods, 1986]) are inappro-
priate for explaining the interaction of different parsing strategies, specifically when
the parser’s preference for low attachment and its preference for minimal attachment
are in conflict. Frazier concludes that “the claim of shared syntactic knowledge is
at least coherent and consistent with available evidence concerning the mental rep-
resentation of syntactic knowledge “ (Frazier [1982], page 229). There is not only
empirical evidence for shared syntactic knowledge but also that during understand-
ing and generation lexical information are shared and that the actual routines used
in lexical retrieval are common in both processes (see [Garrett, 1982]).

11

2.1.2 Engineering and Computational Motivations

A reversible grammar is also of practical relevance for the design of a natural lan-
guage system. We will consider the following issues in nls design in order to motivate
the practical concerns of reversibility:

• input/output consistency of the system’s language behaviour

• non–redundant knowledge representation

• portability of the system as a whole

• more flexible systems

Consistency In order to achieve effective human-machine communication, it is
very important that a natural language system produces the same language it un-
derstands. Specifically for a dialog system a user will expect that the system will
be able to understand the utterances the system has produced. For example, a user
should be free to use the same words or phrases that have been introduced by the
system itself. But if the system is not be able to understand its own words, it will be
very difficult for the user to accept this system as an interlocutor having equal rights
because the system “makes promises it cannot keep”. A reversible system produces
utterances only from that subset of language that it is capable of understanding.
Therefore, inconsistencies in the language behaviour of the system can be avoided
[Jacobs, 1988].

Non–redundancy When the linguistic knowledge of an nls increases (especially
in the case of lexical and semantic information) a system using reversible knowledge
sources is less redundant and hence more efficient than a system that has to manage
different sources for understanding and generation. In order to avoid inconsistencies
of the language behaviour of the system as mentioned above it is necessary to update
all different sources before the system can use it. The disadvantage of using different
grammars and lexicons is not only that the knowledge has to be specified twice, but
also that the consistency of the new knowledge with respect to the old one has to
be checked in many different places. Using a reversible grammar these problems are
easily avoided. For example if a user uses a word which is unknown to the system,
then acquiring this word during the understanding mode of the system means that
this word is automatically available for generation. Clearly, knowledge acquisition
in this case presupposes that the knowledge is represented declaratively.

Portability and Flexibility Moreover, these aspects are very important if an
nls should be portable across different domains. In particular, if the same system

12

is to be used as a front–end component in the case of understanding and as a back–
end component in the case of generation (systems like HAM–ANS [Hoeppner et al.,
1983], XTRA [Allgayer et al., 1989], DISCO [Uszkoreit et al., 1994] are developed
exactly to serve in that sense) reversibility ensures that a distinct subset of the lin-
guistic knowledge of that system is reusable between different tasks. This is of great
importance for the flexibility of a system. For example, one of the disadvantages of
current generation systems is that they view the structure of linguistic knowledge
only statically. If alternatives exist for a particular linguistic expression, decision
points are evaluated to determine the appropriate actual utterance. It is necessary
to specify corresponding decision points for all possible utterances; otherwise the
choice must be performed randomly (the determination of the appropriate set of
decision points is one of the sources of complexity in existing generation systems).
The flexibility of such systems depends directly on the flexibility that is brought into
the system via the decision points that are specified by hand during the development
of a generation system (i.e. the flexibility is restricted).

When using a reversible system, structures resulting from the parsing task can
be used directly during generation. This reduces the number of decision points
or parameters which have to be specified during the development of an nls which
leads to more flexibility: not all necessary parameters need to be specified in the
input of a generator because decision points can also be set dynamically at run-time.
Consider, for example, the problem of possible ambiguity of a produced utterance.
In many situations of communication a speaker need not worry about the possible
ambiguity of what she is saying because she can assume that the hearer will be able to
disambiguate the utterance by means of contextual information or would otherwise
ask for clarification. But in some situations it is necessary to avoid the risk of
generating ambiguous utterances that could lead to misunderstanding by the hearer,
e.g., during the process of writing text, where no interaction is possible, or when
utterances refer to actions that have to be performed directly, or in some specific
dialog situations (e.g. having an interview with a company). When a reversible
grammar is in use it is possible to directly compare the grammatical structures
obtained during parsing and generation of an utterance. This helps to identify the
relevant sources of ambiguity.

2.1.3 Adaptability to Language Use of Others

Another very important argument for the use of uniform knowledge sources is the
possibility of modelling the assumption that during communication the use of lan-
guage of one interlocutor is influenced by means of the language use of the others
(see also [Neumann, 1991a; 1991b]).

For example, in a uniform lexicon it does not matter whether a lexeme was
accessed during parsing or generation. This means that the use of linguistic elements
of the interlocutor influences the choice of lexical material during generation (if

13

the frequency of lexemes serves as a decision criterion). This will help to choose
between lexemes which are synonymous in the actual situation or when the semantic
input cannot be sufficiently specified. For example, some containers can be denoted
either ‘cup’ or ‘mug’ because their shape cannot be interpreted unequivocally. An
appropriate choice would be to use the same lexeme that was previously used by
the interlocutor (if no other information is available), in order to ensure that the
same object will be denoted. In principle this is also possible for the choice between
alternative syntactic structures.

This adaptation to the partner’s use of language in communication is one of
the sources for the fact that the global generation process of humans is flexible and
efficient. Of course, adaptability is also a kind of co-operative behaviour. This is
necessary, if new ideas have to be expressed for which no mutually known linguistic
terms exist (e.g., during communication between experts and novices). In this case
adaptability to the hearer’s use of language is necessary in order to make it possible
for the hearer to understand the new information.

In principle this kind of adaptability means that the input structures computed
during the understanding process carry some information that can be used to pa-
rameterize the generation process.

This dynamic behaviour of a generation system will increase efficiency, too. As
McDonald et al. [1987] define, one generator design is more efficient than another,
if it is able to solve the same problem with fewer steps. They argue that “the key
element governing the difficulty of utterance production is the degree of familiarity
with the situation.” The efficiency of the generation process depends on the com-
petence and experience one has acquired for a particular situation. But to have
experience in the use of linguistic objects that are adequate in a particular situation
means to be adaptable.

2.1.4 Possible Arguments against Reversibility

There also seem to be certain arguments against the reversibility of understanding
and generation in natural language processing, e.g., differences between active and
passive language use (although this argument — as far as I know — has only been
discussed for lexical material), decision-making during generation vs. hypothesis
maintainance during understanding, or the differences in input structures, which
cause a different traversal of the problem space.

The above discussion can be seen as an argument against this view. Clearly, it
is the case that humans only use a subset of the lexical material they are able to
understand. But this need not necessarily lead to the conclusion that understanding
and generation are substantially different processes. Otherwise the above mentioned
adaptability would be very hard to model. In a similar way [Wilks, 1991] also
argues that phenomena such as active vs. passive lexical usage do not contradict a
symmetrical position. Moreover he claims that “if speaking a language is to utter

14

new and creative metaphors all the time as many researchers assert, then we can
also presume that a language generator must have access to the inverse of that very
same process, . . .”

Some researchers (like [McDonald, 1987; Mann, 1987]) assume that the space
of problems and complexity is too different such that understanding and genera-
tion could be described by the same underlying processes. Although McDonald
[1987] could adopt the view that both processes could employ the same knowledge
represented in the same way he states that “the two processes that draw on the
knowledge cannot be the same because of the radical differences in information flow:
Decision-making [during generation] is a radically different kind of process than hy-
pothesis maintenance [during understanding] . . . Understanding processes must cope
with ambiguity and under-specification, problems that do not arise in generation”.1

However, as we will make clear in section 5.1, generation has also to cope with ambi-
guity and under-specification to be able to produce adequate utterances. Of course,
one could argue that a produced utterance’s ambiguity is not of relevance because
the generator can assume that the hearer will be able to disambiguate it. Under this
assumption generation would be less decision driven on the grammatical level than
understanding, because it would be the task of the hearer to choose between alter-
native readings. In this view, understanding can also be interpreted as a complex
decision process — the decision on understanding an utterance as best as possible.

Moreover, consider the case where a speaker wanted to talk about new ideas.
He has not only to decide how to verbalize these ideas with the material already
available, but he has also to hypothesize about the possible interpretations by the
hearer, i.e. he has to find a way to express the new ideas such that they will be
understandable (as it is usually the case in an expert–novice relationship). However,
if the speaker wants to be sure that his utterance will be understood in the intended
way, he has to assume that the hearer of the utterance will in principle be able
to choose the inferences that he intends to be drawn. If not, it would be more or
less randomly that the speaker produces exactly those structures of which analysis
would lead to the intended meaning or in other words, that the hearer can reverse the
speaker’s computation. For example, if the speaker wanted to highlight a particular
part of his ideas he can do this by choosing a specific ordering of the elements of the
utterance. However, this makes sense only, if he assumes that the hearer is sensitive
to linear order in exactly the same way. But then both processes should better be
viewed as being symmetrical at least on the linguistic level.

In summary, reversibility has important advantages. If it is possible to develop
reversible nls which have at least the same power and functionality as non-reversible
systems, such systems should be preferred. In this thesis however, we also show that
the use of reversible grammars leads to better natural language systems.

1The notes written in square brackets have been added by the author.

15

2.2 A Classification Scheme for Reversible Systems

It is widely accepted that declarative knowledge bases are a fundamental prerequisite
for achieving some degree of reversibility [Appelt, 1987]. From this point of view
one can distinguish two general types of reversible natural language systems:

• systems that use reversible knowledge sources but different processes

• systems that use reversible knowledge sources as well as reversible (or uniform)
processes

Up to now, systems that are capable of analysing and producing language fall
into the first class, i.e., they use different operations for both directions (e.g., the
systems HAM-ANS [Hoeppner et al., 1983], XTRA [Allgayer et al., 1989], CLE
[Alshawi, 1992], LKP [Block, 1994], and the system DISCO [Uszkoreit et al., 1994]).

Currently, it is an open question what degree of reversibility should be and can
be desired (cf. [Appelt, 1987], [Mann, 1987], [McDonald, 1987], [Shieber, 1988],
[Joshi, 1987], and [Neumann, 1991a]). In some areas, however, reversible processing
models have been developed that are based on formalisms which are well suited for
uniform representation and processing, most notably Koskenniemi’s two-level model
of morphology [Koskenniemi, 1984]. In computational morphology it has become
the state-of-the-art to use one and the same approach for performing morphological
analysis and synthesis, using both the same knowledge and the same basic mecha-
nisms.

In the last few years the investigation of constraint-based grammar theories have
opened up the possibility of reversible grammars and even uniform grammatical
processing.

What is a reversible grammar? From a linguistic point of view a reversible
grammar is the specification of grammatical knowledge in such a way that the spec-
ification is neutral with respect to its use for analysis and synthesis of well-formed
expressions. In some sense, almost all modern grammatical theories consider a lan-
guage as a relation between surface strings and representations of their meanings in
some logical language, which are mostly referred to as logical forms. Parsing is then
viewed as a process that assigns to a given string its possible logical forms (defined
by a grammar in use) and generation is thought of as finding all valid strings that
have the same given logical form.

One of the strong points of current constraint-based grammar theories is their
potential to describe this relationship in a strictly declarative way, so that linguists
can abstract away from specific parsing and generation strategies.

However, among researchers who are concerned with the investigation of efficient
parsing and generation strategies, there is currently an active debate whether parsing
and generation can really be described by one and the same efficient process. The
following classification schema gives an overview of the current research directions

16

for parsing and generation of reversible grammars (the figure 2.1 is a graphical
illustration of this scheme):

String

String String

Typ A

Sem. Expr.Sem. Expr.

Sem. Expr.

Typ B

Typ C Typ D

Grammatik Grammatik

Generierungs−
Grammatik

Grammatik

Parsing−
Grammatik

Generierungs−

Grammatik

Uniformer

Uniformer

Algorithmus

Quell−

Quell−

Grammatik

String

Sem. Expr.

StringString

Quell−

Sem. Expr.Sem. Expr.

Parser Generator

GeneratorParser

Grammatik
Parsing−

Quell−

Algorithmus

Figure 2.1: The four different types of reversible grammar approaches which are
discussed in this work.

Type A Systems that use different grammars and different processes that are com-
piled from the same source.

Type B Systems that use a common grammar, but different processes.

Type C Systems that use different compiled grammars but a uniform process.

Type D Systems that use a common grammar, as well as a uniform process.

In systems of type A the linguistic description for parsing and generation is
specified only once but is compiled into two grammars for use in the run-time mode

17

of the system: one grammar only for parsing and one only for generation. The
advantage is that the source grammar can be more ‘tuned’ for efficient processing
during the compilation step. An example of this approach is described in [Block,
1991] where a Tomita-based LR parser is used for parsing and a variant of the
semantic head–driven approach for generation. The main disadvantage of such an
approach is that during run-time the same linguistic knowledge has to be stored
twice which increases the amount of redundancy of the whole system.

In systems of type B the same grammar is also processed during the run-time
mode by a specific parsing and generation program. The advantage of this approach
is that the grammar can be changed and tested easily and that redundancy is not
problematic in the case of linguistic information. An important disadvantage might
be that they are too restricted in one of the directions if either the parser or generator
is incomplete which in some cases can cause inconsistencies in the language behaviour
of the system. An example of this approach can be found in the disco system
[Uszkoreit et al., 1994], where during parsing an Earley style parser is used and
during generation a variant of the semantic head-driven algorithm.

In systems of type C specialized grammars are compiled from the same source,
but are then processed by the same underlying process. For example, such an
approach is followed by [Dymetman et al., 1990]. Here, the basic processing regime
of Prolog is used as the underlying uniform process (top-down, left-right). The
grammar formalism used is lexically based, i.e., most information is contained in the
lexicon (for example, subcategorization information of verbal elements). Because
these kinds of grammars can cause left-recursion problems in the case of top-down
processing, one goal of the compilation step is to transform left-recursive rules into
equivalent non left-recursive ones. Furthermore, special “guides” are introduced
during the compilation step to be able to specifically control parsing and generation.
Clearly, the same disadvantage holds as for systems of type A, i.e., these systems
bear a large amount of redundancy.

Systems of type D are following the most radical approach of reversibility: not
only the same grammar is used but also one and the same interpreter is used
for performing parsing and generation. The first detailed description of an imple-
mented uniform architecture is due to [Shieber, 1988]. In his approach he follows the
paradigm of linguistic processing as deduction introduced by [Pereira and Warren,
1983] in the case of parsing. Currently there are also approaches that view parsing
and generation as type rewriting (cf. [Emele and Zajac, 1990], [Carpenter, 1992]).
The advantage of a uniform approach is that inconsistency in the language behaviour
can be avoided because either the restrictions are the same for both tasks or not.
The main disadvantage which is often claimed, is that it is yet unclear whether and
how these systems can be made equally efficient for both directions, and indeed the
currently proposed approaches are problematic with respect to this issue.

There is a further important advantage of a uniform model, namely that they
allow to tightly interleave parsing and generation, such that the one direction can

18

directly re-use partial results from the other direction. In fact, in this thesis we
present for the first time such an approach, which is also called item sharing method.

Besides the different strategies the several approaches follow, there are commonly
held assumptions about the status of a reversible grammar and the parser/generator:

• Parsing and generation should be sound and complete to be able to discover
(at least potentially) all possible grammatical structures of an input if the
input is covered by the grammar.

• Both tasks take place independently of each other, i.e. an utterance is either
generated or parsed.

• Grammatical processing can be performed without considerations of discourse.

In other words, the grammar as well as the parsing and generation processes
are assumed to constitute the grammatical competence base of a natural language
system, and — more or less explicitly — this competence base is assumed to have
a modular status. Thus these approaches are consistent with important lines of
research that are followed in the area of theoretical linguistics, cognitive psychology,
and artificial intelligence.

When performance aspects are to be considered, additional mechanisms are nec-
essary, for example, to realize some kind of “best-first” strategies, generation of para-
phrases or possibly unambiguous utterances, or to obtain a kind of experience-based
behaviour of the natural language system. If such mechanisms are to be built on
the basis of the grammatical competence, then it is also an important criterion how
these performance–oriented strategies can be combined or integrated with the gram-
matical competence base. The way in which competence and performance aspects
can be combined is thus an important parameter for choosing between alternative
approaches of grammar reversibility.

In this thesis we present a new model of natural language processing that is based
on a strictly uniform model of the grammatical competence base and demonstrate
its relevance for language performance.

We first show how efficient uniform processing is possible, by presenting a new
uniform tabular algorithm for parsing and generation of constraint-based grammars.
We then show how this interpreter can be hooked up with additional mechanisms,
that support a tight interleaving of parsing and generation, and allow a system to
perform a specific kind of self-monitoring usable in such situations where a produced
utterance carries the risk of being misunderstood.

19

In all of these cases, we present novel methods. By describing how these several
methods and their combination benefit from the uniform processing of reversible
grammars, we are able to demonstrate that a uniform model (even today) is not
only theoretically elegant but also of practical relevance. In this sense, our thesis
can be seen as a contribution to competence-based performance models for natural
language processing.

2.3 Problems with Existing Approaches

The purpose of this section is to discuss current approaches that describe parsing and
generation under a uniform approach but explicitly taking into account efficiency
and effectivity considerations. According to the classification schema specified in
section 2.2 we are basically interested in approaches that belong to type D, i.e., we
do not explicitly consider approaches that rely on compilation, e.g. like the one
described in [Dymetman et al., 1990; Strzalkowski, 1989; Block, 1991]. The main
reasons of considering only truly uniform approaches in detail are that they fulfill
the criterion of economy and that only for them it makes sense to develop the new
item sharing approach which is necessary for achieving an efficient and practical
interleaving of parsing and generation.

We also do not consider approaches, that describe alternative approaches of uni-
form processing, for example, the view of parsing and generation as type inference
(see e.g., [Emele and Zajac, 1990]) or the use of synchronous tree-adjoining gram-
mars (see [Shieber and Schabes, 1990]), but only under a formal or principle aspect
because this would exceed the scope of this work.

2.3.1 The Uniform Architecture of Shieber

The first and most prominent attempt to specify a uniform architecture for parsing
and generation has been made in [Shieber, 1988]. In particular, Shieber proposed
an architecture inspired by the Earley deduction work of [Pereira and Warren, 1983]
(which we will describe in section 4.1 in more detail) but which generalized that
work allowing for its use in both a parsing and generation mode by instantiating
only a small set of parameters. As shown in his work, the two basic inference rules
of Earley deduction, namely prediction and completion can be used in the same
way for parsing and generation. The advantage of using this kind of computational
logic specifically for generation is that generation from grammars with recursions
whose well-foundness relies on lexical information will terminate (e.g., lexicalized
grammars like hpsg[Pollard and Sag, 1987], where only the verbal lexical entries
carry subcategorization information). This is actually an improvement of simple
top-down generation regimes like the one described in [Wedekind, 1988] or [Dymet-
man and Isabelle, 1988] which do not terminate in such cases. For these approaches

20

the following rule will cause recursion problems, because the rule forces the subcat-
egorization list sc to be expanded as long as a lexical entry that restricts the length
of this list cannot be found, but the lexical entry will never be found as long as the
recursion occurs:2

sign

cat: vp
sc: Tail
sem: Sem
lex: no
v2: V
phon: P0 -P

←−

sign

(
Arg

[
phon: P0 -P1

])
, sign

cat: vp
sc: 〈Arg|Tail〉
sem: Sem
v2: V
phon: P1 -P

The problem is that the rule does not specify any finite length of the subcatego-
rization list. Thus, this rule causes the same termination problem for generation as
the well-known left-recursion problem for parsing.3 Using an Earley style strategy,
this problem can be solved, because lexical information is available immediately.
However, the Earley style uniform approach described in [Shieber, 1988] has the
following two major problems for generation:

• Both parsing and generation apply the same leftmost-literal selection rule;

• Efficient generation is possible only for grammars possessing the property of
semantic monotonicity.

The first issue is a consequence of the fact that Shieber defines the inference
rules and the meaning of items strictly based on Earley’s original work on parsing
algorithms [Earley, 1970]. This means that in Shieber’s approach, the inference
rules - prediction and completion - follow a leftmost selection strategy and items

2This rule states that verb phrases are built using a subcategorization list as in hpsg [Pollard
and Sag, 1987] (see also [VanNoord, 1993]). Elements of the subcategorization list (bound to the
feature sc) are selected one at the time by this binary verb phrase rule. The value of the sc
feature is a list of signs. In this rule, the first element of the feature sc of the second daughter
is equated with the first daughter of the rule. The remaining elements on the list, i.e., the tail
of the list is percolated to the mother node. If a verb selects several arguments this rule can be
applied iteratively. Furthermore, it is stated in this rule, that the semantics of the second daughter
is identical with the semantics of the mother. The string representation of this rule expresses that
the strings of the subcategorized elements of a verb are concatenated “inside-out” in reverse order.

3In [VanNoord, 1993] a more detailed discussion of the problems of simple top-down generators
can be found.

21

are defined according to the position of the endpoints of the string of a completed
sub-phrase. 4

Clearly, at least in the case of a context-free backbone, parsing benefits from
this characterization, but adapting this “parsing view” also for the case of generation
causes at least the following two problems. Firstly, the left-to-right selection strategy
is inherently more appropriate for parsing than for generation, because in the latter
case this can cause a large amount of redundancies. For example, if a rule specifies
that a noun phrase occurs to the left of a verb phrase then many nondeterministic
possibilities for generation a noun phrase have to be explored (e.g., different cases)
before the verb is generated that would restrict some of the alternatives.

The second, more important problem with a strict left-to-right selection is that
generation cannot take advantage of the indexing based on string position, because
the string is the output of a generator, not the input, of course. Shieber’s conclusion
to this problem is just to “remove the feature of tabular parsing methods such as
Earley’s algorithm that makes parsing reasonably efficient.” ([Shieber, 1988], page
617). However, to entertain a goal-directed strategy for generation he expresses the
following restriction, which directly turns our attention to the second major problem
of Shieber’s uniform approach: The meaning associated with an item must subsume
some portion of the goal meaning. This restriction results in the semantic mono-
tonicity requirement on grammars. This restriction requires that for every phrase
admitted by the grammar the semantic structure of each immediate sub-phrase
must subsume some portion of the semantic structure of the entire phrase.5 But
then, any item which does not subsume some part of the goal meaning can safely
be ignored. For example suppose we start generation from the logical form ‘pas-
sionately(love(sonny,kait))’. Furthermore, assume that the lexicon contains entries
with meaning ‘passionately’, ‘love’, ‘sonny’ and ‘kait’ then a grammar is semantic
monotonic if phrases with meaning ‘sonny’, ‘kait’, ‘love(sonny,kait)’ and ‘passion-
ately(love(sonny,kait))’ will be constructed during the generation process.

Hence, for grammars that exhibit the semantic monotonicity property, Shieber’s
algorithm results in a complete generator. However, as stated by Shieber him-
self, this requirement is too strong because it does not allow generation of id-
iomatic expressions like ‘Peter macht ein Nickerchen’ with logical form ’nickerchen-
machen(peter)’ or expressions involving particle verbs like ‘das Treffen findet morgen
im DFKI statt’ with logical form ‘morgen(stattfinden(treffen, DFKI))’.

4Note that both points are not explicitly required in Pereira and Warren’s original work. Hence,
although Shieber’s approach is a generalization of their work, in the sense that he also applies it
for generation, it also could be seen as a specialization of the Earley deduction method set up in
[Pereira and Warren, 1983]. Basically, this observation is the starting point of our new approach,
which could be seen as real generalization of Pereira and Warren’s work.

5Note that because of this requirement Shieber’s algorithm is coherent in the sense that the
generation process will not augment an input semantic expression.

22

2.3.2 The Head-driven Approach of Van Noord and Shieber et al.

In order to overcome the restriction of semantic monotonicity and to achieve a
goal-directed generation strategy [Shieber et al., 1989] proposed a new generation
algorithm, called the semantic head-driven generation algorithm (shdga, for short)
which has later been extended to parsing by [VanNoord, 1993]. A similar head-
driven algorithm has been developed by [Calder et al., 1989], however, restricted to
use in unification-based categorial grammatical frameworks (cf. [Uszkoreit, 1986a],
[Zeevat et al., 1987]).

The basic motivation behind shdga is that generation from some semantic ex-
pression can only by directed properly if the semantic information in itself is used to
direct the traversal of possible derivations. But then, a strict left-to-right processing
regime cannot be used because the semantic head element (i.e., that element of the
body of a rule that shares the semantics with the head) need not necessarily be
the leftmost one. Consider for instance the subcategorization rule introduced in the
previous paragraph. In this rule, the second element of the right-hand-side (the vp
element) shares its semantics with the left-hand-side. Thus, for generation it would
be more appropriate to choose and complete this element first before the first element
of the right-hand-side is processed, because the head element provides important in-
formation for its ‘argument’. To be able to get this kind of goal-directedness [Shieber
et al., 1989] proposes a semantic-head-first selection rule in the case of generation.

For the identification of possible semantic heads, a subset of the rules of a gram-
mar is distinguished, called the chain rules, in which the semantics of some right-
hand-side element is identical to the semantics of the left-hand-side. This right-
hand-side element is called the semantic head element.6

All remaining rules are called non-chain rules. The separation of the rules of a
grammar is motivated by the notion of the pivot node. The pivot node is defined
to be the lowest node in the derivation tree such that it and all higher nodes up
to the root have the same semantics. Intuitively, the pivot serves as the semantic
head. Note that the pivot itself does not have a semantic head, since otherwise, it
would not fit the definition. Typically, pivots will be lexical items, but in principle
any un-headed phrase can serve as a pivot (e.g., idioms or conjunctions).

Using this characterization, the traversal realized by shdga will proceed both
top-down (when processing non-chain rules) and bottom-up (when processing chain-
rules) from the pivot. The algorithm then can be summarized as follows: Starting
from the goal semantic expression (called the root), a rule is selected whose left-
hand-side unifies with the semantics of the root. If a chain rule has been applied,

6Although I am using here the term introduced by Shieber et al., one should better use the term
semantic functor, since this element need not necessarily be identical with the “syntactic head” of a
phrase. For example, modifiers are often analyzed as the semantic functor of the construction they
modified, whereas the modified part of the construction is the syntactic head (see also [VanNoord,
1993]).

23

the semantics is passed unchanged to the corresponding semantic head element, this
latter non-terminal becomes the new root and the algorithm is applied recursively.
If on the other hand a non-chain rule has been chosen, the algorithm is applied
recursively on each element of the right-hand-side in a left-to-right scheduling. After
a non-chain rule has been completed (i.e., a pivot has been identified) a bottom-up
step is applied that connects the pivot to the initial root along with all intermediate
nodes using a series of appropriate chain-rules. After a chain rule is chosen to move
up one node in the tree being constructed, the remaining elements of the right-
hand-side of this rule must be generated recursively, which is done by shdga using
a leftmost scheduling.

To clarify the strategy by means of an example, suppose that we start generation
from the semantic expression ‘loves(john, mary)’ using the following set of rules
(using Shieber et al.’s dcg framework):

(1) sentence/decl(S) → s(finite)/S

(2) s(Head)/S → Subj, vp(Head, [Subj])/S

(3) vp(Head,Subcat)/VP → vp(Head,[Comp/LF|Subcat])/VP, Comp/LF

(4) vp(Head,Subcat)/LF → v(Head,Subcat)/LF

(5) v(finite,[np/Obj,np/Subj])/love(Subj,Obj) → [loves]

(6) np/john → [john]

(7) np/mary → [mary]

Starting with ‘sentence/decl(loves(john, mary))’ rule (1) is the only possible
candidate to choose. To complete this rule, rule (2) has to be chosen. The body of
this rule contains two elements, so there is a choice point. However, because only the
second element shares its semantics with the left-hand-side this element has to be
chosen and to be completed, before the first element is processed. The next possible
rules to choose are (3) and (4). If (4) is considered first, further expansion of this
rule will fail, because there is no lexical entry in the grammar that can unify the
body of (4). In this case shdga backtracks to the choice point of (4) and chooses (3).
Note that rule (3) extends the subcategorization list of the head element. However,
applying this rule causes a recursion involving the rules (3) and (4). Now, (4) can be
chosen which application will select the lexical entry (5). Now, the bottom-up step
can be applied, which tries to connect the lexical entry with the initial root. During
the application of this step, firstly, the semantic expression ‘mary’ will be realized
as an object np and secondly, ‘john’ will be realized as the subject. The last step
then will connect instantiated rule (2) with (1). The resulting string is ‘john loves
mary’.

The algorithm as it is described in [Shieber et al., 1989] and [VanNoord, 1993] is

24

specified as a meta-interpreter for Prolog, where Prolog’s backtracking mechanism
is used for maintaining alternatives. Potential nondeterminism exists in two places
(see also [Gerdemann, 1991]), namely when the choice of a pivot is not determined
(e.g., in the case of lexical choice) or in the case of the selection of non-chain rules
for phrasal pivots. This latter case is crucial because for non-chain rules the order of
processing the elements of the right-hand side of a non-chain rule is not determined
so that shdga applies itself recursively in a simple left-to-right order.

The most serious problem of shdga, however, is that the top-down processing
of non-chain rules can lead to non-termination (see also [Gerdemann, 1991]). For
example consider the following rule:7

nbar/N → nbar/N, sbar/N

This rule can effect nontermination, if the generator chooses the second element
of the body first. Clearly, if we could define a head-driven Earley style algorithm,
these problems would easily be avoided, and in fact, this has been done by [Gerde-
mann, 1991], which we will discuss in the next paragraph.

However, before we move to Gerdemann’s approach we have some remarks
on head-driven parsing, preliminary to discussing issues of uniformity underlying
shdga.

For parsing, algorithms have also been developed, that favour a head-driven
processing regime, most notably [Kay, 1989; VanNoord, 1993]. Both approaches are
modifications of left-corner parsers [Matsumoto et al., 1983], such that instead of
choosing the leftmost element of the body of a rule the parser selects the lexical
head first (actually, the parser selects a lexical entry and continues to prove that
this lexical entry indeed is the head of the goal, by selecting a rule of which this
lexical entry can be the head). The other rules are then parsed recursively, and
the result constitutes a slightly larger head. This process can be applied iteratively,
until the head dominates all words of a string. Because the bottom-up approach is
head-oriented, these algorithms are also denoted as head-corner parsers.

The algorithm described by [VanNoord, 1993] is closely related to shdga, so
that both approaches can be seen as a uniform framework for reversible grammars.
Although both algorithms are very similar, Van Noord does not try to combine
both, in order to obtain one uniform parameterized approach. Furthermore, it is not
clear whether one and the same grammar can be used efficiently in both directions
without the need of compilation. In fact, [Martinovic and Strzalkowski, 1992] give
an example of a grammar that can be used efficiently for parsing, but which causes
a nondeterministic overhead when directly processed by shdga. The problem they
focused on is that the left-to-right selection strategy might in the case of non-head

7This example is taken from [Shieber et al., 1989] where they discuss the problem in a footnote
on page 10.

25

elements select an element which is not “ready”, i.e., whose semantics is still un-
instantiated. The only way to avoid such problems for shdgawould be to rewrite
the underlying grammar, so that the choice of the most instantiated literal on the
right-hand-side of a rule is forced. However, this can cause a “ping-pong” effect,
because now, it is not guaranteed that the parsing mode will handle this grammar
in the same efficient manner as before.

2.3.3 Gerdemann’s Earley Style Processing Scheme

In his thesis [Gerdemann, 1991] introduced algorithms for parsing and generation of
constraint-based grammars, where both are specific instantiations of an Earley style
approach. The Earley style parsing algorithm is very similar to the one presented in
[Shieber, 1988] and [Shieber, 1989] and differs basically in improvements concerning
the use of efficient application of subsumption checks and in being able to handle
variable length lexical items (including traces). For the purpose of the current
discussion we will therefore focus our attention on his adaption of the Earley style
generator, before discussing its degree of uniformity.

The major aspect of Gerdemann’s generation approach is the use of a head-
driven Earley generation algorithm, i.e., instead of following a left-to-right selection
rule, he adapts the head-first selection rule introduced in shdga. Using this control
regime also in the case of an Earley style approach he shows that he can achieve
the same kind of goal-directness as shdga but avoids the kind of nondeterminism
and recursion loops, for which shdga comes into trouble. Furthermore, he shows
how to handle semantic non-monotonicity and how to use semantic information for
indexing already derived structures, so that in his approach the generator can use
an already generated phrase in more than one place (if necessary). 8

The first issue emphasized by Gerdemann is that the semantic monotonicity re-
quirement is not necessary for an Earley type generation algorithm. As already
discussed in paragraph 2.3.1, in order to be able to use the same generated phrases
on different string positions, Shieber eliminates the string position indexing, by
collapsing all of the item sets to one. However, as argued by Shieber himself “The
generation behaviour exhibited is therefore not goal-directed;” ([Shieber, 1988], page

8It would be possible to avoid this kind of processing overhead also for shdga, using so-called
memoization techniques (for technical aspects of memoization see e.g., [Norvig, 1992; Pereira and
Shieber, 1987]). In fact, [VanNoord, 1993] discusses the use of memoization for semantic-head
driven generators. Memoization can only be performed in combination with subsumption tests.
However, as argued by Van Noord, “Even though the overhead involved in the implementation
of such memo-relations is still considerable, it turns out that for many grammars the head-driven
generator is more efficient if implemented as a memo-relation . . . by a factor 4 for typical grammars.”
([VanNoord, 1993], pages 93-94). It is interesting to note that the same author (when motivating
his own approach) emphasized as a disadvantage of Shieber’s Earley style generator that “. . . the
necessary subsumption checks (for example to check whether a result already is present in the chart)
lead to much processing overhead.” ([VanNoord, 1993], page 80).

26

617). In order to achieve goal-directedness, he introduces the semantic monotonicity
condition (already discussed in 2.3.1). But the goal directedness of Earley’s algo-
rithm does not come from the state sets, it comes from top-down prediction. Clearly,
if a head-first selection rule is chosen (as known from shdga), a goal-directed be-
haviour can be obtained comparable to that of shdga but without the requirement
of semantic monotonicity. Of course, this implies that the restriction function used
in the prediction step should ignore semantic information. Gerdemann concludes
that “If this non-goal directedness due to restriction is ignored, it is not at all clear
why a generation algorithm that collapsed all states into one state set would lose the
normal goal directedness that comes from prediction.” ([Gerdemann, 1991], page
78).

In order to take full advantage of an Earley style strategy for generation, one
has to face the problem of avoiding re-computation of phrases that can be placed
at different string positions, i.e., to avoid backtracking in those cases. The basic
idea followed by Gerdemann is to retain the state sets but to modify them so that
whenever it happens that the generator starts to generate a duplicate phrase at a
new string position, the chart will be readjusted so that it appears that the dupli-
cate phrase is being generated in the same string position as the original phrase
([Gerdemann, 1991], page 80).

In order to make this modification, he introduced a global list (called GRD),
which has to be maintained by the generator. This global structure consists of a list
of all restrictors9 that have been used so far to make predictions with. Note that
Gerdemann requires that restrictors should contain all (local) semantic information,
so that this list also indicates which semantic information has been involved in
making a prediction. Each entry on this global list is of the form [RD,F,C], where
RD was used to make the prediction, F is the number of the state set in which the
prediction has been made, and C is a list of all the complete phrases that have so
far been generated from RD.

The list GRD is now used in the predictor and completor step as follows: If in
the predictor an RD is created that is subsumed by an RD already in GRD, no new
predictions are made, since any such predictions would be subsumed by predictions
made earlier. If the subsuming RD was used in state F, then the current state will be
moved to the Fth state set because any completions that are found for the previously
made predictions will be linked back to the Fth state set. The effect of this moving
operation is that it now appears that the duplicate phrase being predicted is actually
predicted to start at the same string position. But now, by moving the current state
back to the state set of a previously used RD, any completion for the previous state
(recorded in C) can also be used as completion for the current state.

There are two problematic aspects of Gerdemann’s approach with respect to the
degree of uniformity. Firstly, it seems to be the case that a grammar has to be com-

9The reader not familiar with the notation of restriction should consult section 4.1.

27

piled into a specific parsing and generation grammar since in his implementation of
the algorithm he followed a left-to-right scheduling (see Appendix C of [Gerdemann,
1991]). Secondly (and more important), the modifications necessary in order to
maintain the global list GRD to avoid generation of duplicate phrases “. . . have fun-
damentally altered Earley’s algorithm.” ([Gerdemann, 1991], page 89). Since, the
GRD list is only used during generation, the parsing and generation algorithms are
substantially different. Both aspects together strongly weaken the uniform character
of Gerdemann’s approach.

2.3.4 Summary

We can summarize the discussion of current approaches in grammar uniformity as
follows: Based on the pioneering work of [Pereira and Warren, 1983] who demon-
strate that parsing can be modelled as deduction introducing an Earley deduction
method, [Shieber, 1988] generalizes their work to be applicable also for generation.
However, Shieber’s approach depends too strongly on a parsing view, so that in his
approach the generation mode is less efficient than the parsing mode. To overcome
this problem, [Shieber et al., 1989] introduce a new generation algorithm, which
exhibits goal-directed generation behaviour by introducing a semantic-head first se-
lection strategy, instead of the left-to-right one used by [Shieber, 1988]. However,
applying this approach also for parsing, it seemed to be the case that parsing now,
loses efficiency. Furthermore, the algorithm of [Shieber et al., 1989] has to face prob-
lems of nondeterminism and nontermination in the case of the top-down processing
of non-chain rules, basically because they use the simple backtracking mechanism
known from Prolog. To overcome these problems, Gerdemann adapts the idea of
using a head-driven strategy in the case of generation but “backtracks” to Shieber’s
Earley style approach. He then shows that he obtains the same goal-directedness
as Shieber et al., but without the problems of unnecessary re-computation and by
avoiding recursion loops. However, the generator he developed on top of Earley’s
approach fundamentally altered this algorithm (which Gerdemann uses for parsing)
and hence loses a certain degree of uniformity.

The uniform approach that we are going to describe in this thesis is more strictly
based on Pereira and Warren’s approach. It is the first real generalization of their
work with respect to parsing and generation, because our algorithm is able to adopt
itself for the specific tasks at hand. Thus we can take advantage of a left-to-right
selection strategy for parsing and a semantic head-driven selection strategy for gen-
eration using the same algorithm. Furthermore, because we use uniform indexing
techniques we can define prediction and completion in a truly uniform way, thus
avoiding the use of global structures like the one defined in Gerdemann’s approach.
Hence, our approach seems to be the most general view on parsing and generation
which combines the advantages of most of the current approaches in one place. Fur-
thermore, because we can choose any selection function, we easily can take advantage

28

Figure 2.2: A summary of the approaches discussed in relationship to the new
approach. The arrows indicate the relationship of most direct influence.

of a strict data-driven view. Thus, we can put in perspective our new approach using
the figure 2.2.

Finally it is important to note that in none of the current uniform approaches
neither interleaving of parsing and generation nor the possibility of sharing items
between parsing and generation as the basis of a performance-oriented model has
been discussed. Since we demonstrate that such a method is necessary in order to
interleave parsing and generation in a practical way our approach has superior power
than all of the todays uniform approaches.

Chapter 3

Linguistic and Formal
Foundations

This chapter is concerned with the linguistic and formal foundations used for the
competence-based performance model.

We first introduce constraint-based grammar theories as appropriate means for
specifying reversible grammars. In these theories, the grammatical well-formedness
of possible utterances is described in terms of identity constraints a linguistic struc-
ture must fulfill taking into account information of different strata (e.g., phonology,
syntax and semantics) in a uniform and completely declarative way, e.g., Lexical
Functional Grammar (LFG, [Bresnan, 1982]), Head-Driven Phrase Structure Gram-
mar (HPSG, [Pollard and Sag, 1987]) and constraint-based categorial frameworks
(cf. [Uszkoreit, 1986a] and [Zeevat et al., 1987]).

Most important from a reversibility standpoint is that the theories only char-
acterize what constraints are important during natural language use, not in what
order they are applied. Thus they are purely declarative. Furthermore, since al-
most all theories assume that a natural language grammar not only describes the
correct sentences of a language but also the semantic structure of grammatically
well-formed sentences, they are perfectly well suited to a reversible system, because
they are neutral with respect to interpretation and production.

The computational framework of our approach is based on constraint logic pro-
gramming (CLP). CLP combines very well with the deductive view of language
processing where parsing and generation are uniformly considered as proof strate-
gies (cf. [Pereira and Warren, 1983], [Shieber, 1988] and chapter 4 of this thesis) as
well as with the constraint-based view on current grammar theories. Moreover, we
show in this thesis how a tight integration of parsing and generation can be realized
using CLP in an elegant and efficient way.

These aspects together makes CLP an excellent platform for combining methods
from Computational Linguistics and Artificial Intelligence and hence for achieving

29

30

theoretically sound and practical natural language systems.

The rest of the chapter is organized as follows. In section 3.1 we informally
present the basic ideas shared by all modern constraint-based grammar theories.
Section 3.2 presents the formalism of [Höhfeld and Smolka, 1988] which is a gen-
eral characterization of such constraint-based formalisms and an actual constraint
language (called L) for representing linguistic structures. Although we have chosen
a simple constraint language in order to highlight the new results in a clean but
simple way, the generalization of the scheme guarantees that the results of this the-
sis also carries over for more complex constraint languages. In section 3.3 we show
how the formalism is used for writing grammars and in section 3.4 we introduce the
constraint-based view of natural language parsing and generation and discuss the
relationship between ambiguities and paraphrases.

3.1 Constraint-based Grammars

Since the last decade a family of linguistic theories known under the term constraint-
based grammar theories play an important role within the field of natural language
processing. One of the reasons for their importance is that they are declarative,
i.e., are able to express grammatical knowledge without regard to any specific use.
Since they also integrate information from different levels of linguistic description
uniformly they are very well suited as the linguistic base of a reversible system. In
this sense, constraint-based grammars are reversible.

The common design feature of these formalisms is that they model linguistic
entities (e.g., words and phrases) “. . . as partial information structures, which mu-
tually constrain possible collocations of phonological structure, syntactic structure,
semantic content, and contextual factors in actual linguistic situations. Such objects
are in essence data structures which specify values for attributes; their capability to
bear information of non-trivial complexity arises from their potential for recursive
embedding (the value of some attribute may be another information structure with
internal structure of its own) and structure-sharing (one and and the same structure
may occur as the value of distinct attributes in a larger structure)” [Pollard and
Sag, 1987], page 7. Since, these informational structures are viewed as partial, they
are used to represent only necessary restrictions or constraints of such properties
a linguistic object must fulfill; hence the name constraint-based theories. To give
an example, consider the following simplified attribute-value representation (also
known as feature structure) in the commonly used feature-matrix notation, which is
intended to represent the (partial) information about the utterance “peter cries”:

31

cat sentence
phon 〈peter, cries〉
syntax . . .

dtrs

〈

cat noun
phon peter

syntax

agr[per 3
num sg

]
semantics Arg

[
rel the-peter’

]

,

cat verb
phon cries

syntax

agr[per 3
num sg

]
semantics

Sem

[
rel cry
arg Arg

]

〉

semantics Sem

This structure expresses that the utterance “peter cries” is a linguistic object of

class sentence, whose phonological representation is 〈peter, cries〉, which has been
formed from two objects, one for the utterance “peter” and one for “cries” and
that the semantic content is the same as that of “cries” which by itself is built
by combining the semantic structure of ‘cry’ and ‘the-peter’. Clearly, this data
structure is only a model of the ‘real’ linguistic object. However, it characterizes
relevant properties of the information the ‘real’ object conveys.

The underlying assumption of all constraint-based theories is that in the actual
utterance situation the specification of linguistic objects is built in a monotonic
way independently of the specific processing task at hand (e.g., parsing, generation)
from different sources, including lexicon and grammar rules, as well as from language
universal and language specific principles. Building larger objects from smaller ones
is assumed to be performed by some sort of constraint-solving whose task is to
collect all constraints of the various attending objects, so that the resulting structure
describes a consistent, i.e., grammatical linguistic object.1

Most important from a reversibility standpoint is that the theories only char-
acterize what constraints are important during natural language use, not in what
order they are applied. Thus they are purely declarative. Furthermore, since al-
most all theories assume that a natural language grammar not only describes the
correct sentences of a language but also the semantic structure of grammatically
well-formed sentences, they are perfectly well suited to a reversible system, because
they are neutral with respect to interpretation and production.

In the last few years constraint-based formalisms have undergone a rigorous
formal investigation (consider for example [Shieber, 1989; Smolka, 1988; 1992]).
This has led to a general characterization of constraint-based formalisms where

1In the beginning of their formalization, unification was the predominant constraint solving
mechanism; hence they often referred to as unification-based grammars.

32

feature structures are considered to constitute a semantic domain and constraints
are considered syntactic representations of such ‘semantic structures’. This logical
view has several advantages. On the one hand, it has been possible to properly
incorporate concepts like disjunction or negation as part of the (syntactic) constraint
language and to interpret them relative to a given domain of feature structures
(usually defined as graph-like or tree-like structures). On the other hand it has been
possible to combine constraint-based formalisms with logic programming, which fits
into a new research area known under the term constraint logic programming (CLP)
[Jaffar and Lassez, 1987]. This enables us to extend the view of natural language as
deduction for essentially arbitrary constraint-based formalisms.

A general characterization of constraint logic programming is given in [Höhfeld
and Smolka, 1988]. They show that the nice properties of logic programs extend to
definite clause specifications over arbitrary constraint languages.

We will use the scheme of [Höhfeld and Smolka, 1988] as our underlying formal
language. We therefore first summarize the most important definitions and state-
ments given there. We then specify a concrete constraint language also called L
which is based on the definitions of [Smolka, 1992] and [VanNoord, 1993]. This
constraint language will be used as the central data structure for representing lin-
guistic objects. The relational extensions provided by R(L) then serve as the basis
for representing grammatical rules, i.e., complex compositional entities. The use of
the presented formalism in writing grammars is illustrated in section 3.3.

3.2 Constraint Logic Programming

In constraint logic programs basic components of a problem are stated as constraints
(i.e., the structure of the objects in question) and the problem as a whole is repre-
sented by putting the various constraints together by means of rules (basically by
means of definite clauses). For example the following definite clause grammar (using
the constraint language L defined in section 3.2.2)

sign(X0)←
sign(X1),
sign(X2),
X0 syn cat

.= s,
X1 syn cat

.= np,
X2 syn cat

.= vp,
X1 syn agr

.= X2 syn agr

expresses that for a linguistic object to be classified as an S phrase it must be
composed of an object classified as an NP and by an object classified as a VP and the
agreement information between NP and VP must be the same. All objects that fulfill
at least these constraints are members of S objects. Note that there is no ordering

33

presupposed for NP and VP as is the case for unification-based formalisms that
rely on a context-free backbone (e.g., [Shieber et al., 1983]). If such a restriction
is required additional constraints have to be added to the rule, for instance that
substrings have to be combined by concatenation.

Since the constraints in the example above only specify necessary conditions for
an object of class S, they express partial information. This is very important for
linguistic processing (or other knowledge-based reasoning), because in general we
have only partial information about the world we want to reason with.

Processing of such specifications is then based upon constraint solving and the
logic programming paradigm. Because unification is but a special case of constraint
solving, constraint logic programs have superior expressive power.

In [Höhfeld and Smolka, 1988] a general relational extension is made for arbitrary
constraint languages. Given a constraint language L and a setR of relation symbols,
L is extended conservatively to a constraint language R(L) providing for relational
atoms, the propositional connectives, and quantification. In particular, they show
how the properties of logic programming carry over to a whole range of constraint-
based formalisms, by abstracting away from the actual constraint language in use.

3.2.1 Constraint Languages and Relational Extensions

Constraint Language To start with we give an abstract definition of a constraint
language. According to [Höhfeld and Smolka, 1988] a constraint φ is some piece of
syntax constraining the values of the variables occurring in it, i.e., which denotes a
set of assignments for these variables relative to a given interpretation.

Definition 1 (Constraint Language) A constraint language is a tuple
〈V AR,CON,V, INT 〉 such that:

1. VAR is a decidable, infinite set of variables

2. CON is a decidable set of constraints

3. V is a computable function CON → 2V AR that assigns to every constraint φ a
finite set Vφ of variables, called the variables constrained by φ

4. INT is a nonempty set of interpretations, where every interpretation I ∈ INT
consists of a nonempty set DI , called the domain of I, and a solution mapping
[[.]]I such that:

(4.1) an I-assignment is a mapping VAR → DI , and ASSI denotes the set of
all I-assignments

(4.2) [[.]]I is a function mapping every constraint φ to a set [[φ]]I of I-assignments,
where the I-assignments in [[φ]]I are called the solutions of φ in I.

34

(4.3) a constraint φ constrains only the variables Vφ, that is, if α ∈ [[φ]]I and
β is an I-assignment that agrees with α on Vφ, then β ∈ [[φ]]I .

The following definitions are all made with respect to some given constraint
language.

A constraint φ is satisfiable if there exists at least one interpretation in which φ
has a solution. A constraint φ is valid in an interpretation I if every I-assignment is
a solution of φ in I, i.e., if [[φ]]I = ASSI . An interpretation I satisfies a constraint
φ if φ is valid in I. An interpretation is a model of a set Φ of constraints if it satisfies
every constraint in Φ.

The subsumption preordering on sets of constraints and the corresponding equiv-
alence relation is defined as follows (following the notation of [Dörre, 1993]):

Definition 2 (Subsumption, Equivalence)

φ v ψ (φ subsumes ψ) :⇐⇒ [[ψ]]I ⊆ [[φ]]I for all I
φ ∼ ψ :⇐⇒ φ v ψ ∧ ψ v φ

A variable renaming is a bijection VAR → VAR that is the identity except for
finitely many exceptions. If ρ is a renaming, a constraint φ′ is called a ρ-variant of
a constraint φ if

Vφ′ = ρ(Vφ) and [[φ]]I = [[φ′]]Iρ := {αρ | α ∈ [[φ′]]I}

for every interpretation I (αρ denotes the functional composition of both functions).
A constraint φ′ is called a variant of a constraint φ if there exists a renaming ρ such
that φ′ is a ρ-variant of φ. Note that renaming is homomorphic with respect to the
subsumption relation, thus it does not affect the subsumption ordering of constraints
(see proposition 2.2 in [Höhfeld and Smolka, 1988]).

A constraint language is closed under renaming if every constraint φ has a ρ-
variant for every renaming ρ. A constraint is closed under intersection if for every
two constraint φ and φ′ there exists a constraint ψ such that [[φ]]I ∩ [[φ′]]I = [[ψ]]I

for every interpretation I.
A constraint language is decidable if the satisfiability of its constraints is decid-

able. In section 3.2.2 we present a decidable constraint language.
A constraint language is compact if for every set of constraints Φ holds: Φ is

satisfiable iff every finite subset of Φ is satisfiable.
Before we present in section 3.2.2 the constraint language to be used in this

thesis we present the relational extension of constraint languages.

35

Relational Extension As already said CLP consists of constraints and rules for
combining various constraints. In the scheme of [Höhfeld and Smolka, 1988] this
is done by adding a set R of relation symbols to a constraint language L which
yields a constraint language R(L) providing for relational atoms, the propositional
connectives and quantification. The restriction to definite clauses then allows the
adoption on well-known standard logic programming concepts like SLD-resolution,
which defines an operational semantics for R(L).

Definition 3 (Relational Extension) The relational extension R(L) of a con-
straint language L with respect to a decidable set R of relational symbols is as fol-
lows:

(1) the variables of R(L) are the variables of L

(2) the constraints of R(L) are inductively defined as follows:

(2.1) every constraint of L is a constraint of R(L)

(2.2) if r is a relation symbol of R and ~x is a tuple of pairwise distinct variables,
then the relational atom r(~x) is a constraint of R(L), provided the tuple
~x has as many elements as r has arguments

(2.3) the empty conjunction ∅ is a constraint of R(L) ; furthermore, if φ and
ψ are constrains of R(L), then the conjunction φ,ψ and the implication
φ →ψ are constraints of R(L)

(2.4) if x is a variable and φ is a constraint of R(L), then the existential
quantification ∃x.φ is a constraint of R(L)

(3) the variables constrained by a constraint of R(L) are defined inductively as
follows: if φ is an L-constraint then Vφ are defined as in L; V(r(x1, . . . , xn))
:= {x1, . . . , xn}; V∅ := ∅; V(φ, ψ) := Vφ ∪ Vψ; V(φ→ψ) := Vφ ∪ Vψ; V(∃x.φ)
:= Vφ - {x}

(4) an interpretation A of R(L) is obtained from an L-interpretation I by choosing
for every relation symbol r ∈ R a relation rA on DI taking the right number
of arguments, and by defining:

(4.1) DA := DI

(4.2) [[φ]]A := [[φ]]I , if φ is an L-constraint

(4.3) [[r(~x)]]A := {α ∈ ASSA|α(~x) ∈ rA}
(4.4) [[∅]]A := ASSA, [[φ, ψ]]A := [[φ]]A ∩ [[ψ]]A

(4.5) [[φ → ψ]]A := (ASSA - [[φ]]A) ∪ [[ψ]]A

(4.6) [[∃x.φ]]A := {α ∈ ASSA|∃β ∈ [[φ]]A ∀y ∈ Vφ.y = x ∨ β(y) = α(y)}.

36

Since R(L) is a constraint language, all definitions we have made for constraint
languages apply to R(L). Thus the notion of a constraint language can be applied
iteratively.

Definite clauses A definite clause is an R(L)-constraint of the form:

p1, p2, . . . , pn, φ→q

where n ≥ 0, p1, p2, . . . pn and q are atoms and ψ is an L-constraint. We call q the
head of a clause and p1, p2, . . . pn its body. We may write a clause as q←p1, . . . , pn, φ
or simply as q←p. In case the head and the body of a clause is empty, we call the
clause an empty clause. In general, an empty clause is of form

←φ

A definite clause specification is a set of definite clauses. Höhfeld and Smolka
show that important properties of conventional logic programs extend to definite
clause specifications, especially the existence of a unique minimal model for each
interpretation in L.

A goal is a possibly empty conjunction of R(L)-atoms and an L-constraint,
written as:

←p1, . . . , pn, φ

that is, a clause with an empty head (or consequent).

An S-answer to a goal with respect to a given definite specification S is a sat-
isfiable constraint ψ, such that ψ→p1, . . . , pn, φ is valid for every minimal model of
S.

Operational semantics Höhfeld and Smolka provide a generalization of the SLD-
resolution method known from standard logic programming (cf. [Lloyd, 1987]) to
definite clauses in R(L). The key result of this generalization is that most im-
portant results from conventional logic programming carry over for definite clause
specifications using arbitrary constraint languages.

The fundamental inference rule for definite clauses in R(L) is the following goal
reduction rule (using a slightly different notation from that given in [Höhfeld and
Smolka, 1988])

p1, . . . , p(~x), . . . pn, φ =⇒ p1, . . . , q1, . . . , qm, . . . , pn, φ, ψ

where p(~x) is the selected element of a goal and

37

p(~x)←q1, . . . , qm, ψ

is a variant of a clause of a definite clause specification S, such that the variables
in the clause do not occur in the original goal, except for the variables explicitly
mentioned, which means that the variant must be variable-disjoint from the original
goal (the antecedent part of the goal reduction rule). A variant of a clause can be
obtained by renaming the variables of the clause.

We also say that the new goal p1, . . . , q1, . . . , qm, . . . pn, φ, ψ is a derived form
and call it the resolvent of the goal p1, . . . , p(~x), . . . , pn, φ and p(~x)←q1, . . . , qm, ψ.
Höhfeld and Smolka show that goal reduction is a sound and complete basic inference
rule for definite clause specifications in R(L).

Note that the inference rule is only applied in case the resulting constraint φ, ψ
is satisfiable, since otherwise we would not be able to find some answer. There-
fore, we will make use of the following optimization known from conventional logic
programming and proven by [Höhfeld and Smolka, 1988] for the general case:

Immediately after a goal reduction step, it is checked, whether the resulting con-
straint φ, ψ is satisfiable through a constraint solver which attempts to compute a
normalized constraint that is equivalent to φ, ψ. Note that this requires the un-
derlying constraint language to have a set of normal L-constraints, as does the one
presented in the next section. If such a normal constraint cannot be computed, we
immediately try another clause since this part of the search space cannot contain
any answer. This kind of constraint solving is related to the ‘unification’ operation
in Prolog or PATR-II. Thus we can define the following optimized goal reduction
rule:

p1, . . . , p(~x), . . . , pn, φ =⇒ p1, . . . , q1, . . . , qm, . . . , pn, ρ

where p(~x) is the selected element of a goal and

p(~x)←q1, . . . , qm, ψ

is a variant of a clause of a definite clause specification S, and ρ is the most general
unifier obtained by unifying φ and ψ, which we also write as ρ = unify(φ, ψ).2

A proof of a goal g for a clause specification S is a sequence of goals G,G1, . . .
where each goal Gi+1 is derived from Gi by applying goal reduction using a variant
of a clause of S and the last goal is the empty clause, where its associated constraint
is said to be the computed S-answer of the goal g. Höhfeld and Smolka show that
answers computed in that way are answers for the goal.

2In the remainder of the thesis we will make use of the optimized goal reduction rule, and will
use the expressions ‘goal reduction’ and ‘optimized goal reduction’ synonymously, unless otherwise
specified.

38

A proof of a goal as described above is a refutation proof, which shows that the
denial of some formula q is inconsistent with the assumptions of S, i.e., if S ∪ {←q}
derives the empty clause. If the empty clause is obtained, then a refutation has been
discovered, and the constraint φ associated with the empty clause is an answer of
the goal.

The sequence of goals obtained during a proof is called an SLD-derivation. A
SLD-derivation may be finite or infinite. A finite SLD-derivation may be successful
or failed. A successful derivation is just a refutation. A failed SLD-derivation is
one that ends in a non-empty goal with the property that the resulting constraint
is unsatisfiable.

The SLD-refutation by itself does not define an algorithm since it does not make
use of a concrete selection function (or computation rule) as well as a strategy for
selecting clauses. The first nondeterminism is known as don’t care and the second as
don’t know. The don’t care property of the selection function is also known as the
“independence property” of the selection function (cf. [Lloyd, 1987]) and means that
in principle a CLP system can choose any local selection function it finds convenient.

The don’t know property means that for the selection of clauses an exhaustive
search is necessary, since it cannot be known in advance which sequence of clauses
will lead to a successful proof. Since for the selected element of a goal several
alternative clauses may be available leading to a set of alternative re-solvents, the
search space is a certain type of tree, called an SLD-tree. Clearly, the whole search
space is only defined implicitly by a definite clause specification, so that an SLD-tree
has to be constructed during the proof of some goal. The strategy used to search
an SLD-tree is defined by the search rule.

An SLD-tree for S ∪{g} of a definite clause specification S and a goal g is a tree
satisfying the following condition (cf. also [Lloyd, 1987]):

• Each node of the tree is a (possible empty) goal

• The root node is g

• Let←p1, . . . , p(~x), . . . , pn, φ be a node in the tree and p(~x) the selected element.
Then each possible resolvent (using all matching clauses from S) is a child of
that node

• Nodes which are the empty clause have no children.

Each branch of an SLD-tree is a derivation of S ∪ {g}, where those branches
which correspond to successful derivations are called success branches, and branches
corresponding to failed derivations are called failure branches. This implies that
each success branch corresponds to a computed answer of g.

A search rule is a strategy for searching SLD-trees to find success branches. An
SLD-refutation procedure is specified by a selection function together with a search

39

rule. For example, Prolog is a SLD-refutation procedure using the leftmost selection
function and a top-down, depth-first backtracking search rule.

In the next chapter we present a SLD-refutation procedure using a data-driven
selection function and an Earley-type search rule. However, in order to illustrate
this new algorithm by concrete examples, we first have to define a specific constraint
language.

3.2.2 The Constraint Language L

We now present an instance of a constraint language that we are going to use in this
thesis. The language is based on the definition of [Smolka, 1992]. Smolka provides us
with a very expressive constraint language including feature equation, conjunction,
disjunction, negation, and existential quantification. For the purpose of this thesis it
suffices to use only a small subset of Smolka’s constructions, namely feature equation
and conjunction.

Although we only use simple constructions in order to highlight the new results
in a clean but simple way, the generalization of Höhfeld and Smolka’s scheme guar-
antees that the results of this thesis also carry over to more complex constraint
languages.3

The same subset has also been used by [VanNoord, 1993] (because of the same
reasons), and following him, we call the “constraint” constraint language L.

Feature Description

We assume three pairwise disjoint sets V AR of variables, C of constants, and L of
features.

Given a feature structure, a sequence of labels is used to extract a substructure.
Such sequence of features is called a path and defined as an expression over L∗ (ε will
be used to indicate the empty path). Constants are viewed as primitive unstructured
informational elements.

A descriptor is a sequence sp, where s is either a variable or a constant and p is
a (possible empty) path.4 A feature equation (or atomic constraint) is defined as the
equality between descriptors, where .= is used as the equality symbol. Thus atomic
constraints are of the form

d1=̇d2

where d1 and d2 are both descriptors. An L-constraint φ is an atomic constraint
or a conjunction of L-constraints, written as φ1, . . . , φn. Note that as more atomic

3This means that our approach will also work for the whole set of constructions provided by
Smolka or for other complex constraint languages (see, e.g., [Backofen and Smolka, 1993; Aı̈t-Kaci
et al., 1994]).

4Here, we are following the notation given in [VanNoord, 1993].

40

constraints are included, the formula describes fewer feature structures, that is,
it becomes less partial and more defined. Thus, these descriptions allow for the
structure, partiality and equationality of information [Shieber, 1989]. For example,
given that {X1, X2} ∈ V AR, {syn, agr, number, person} ∈ L, and {sg, 3} ∈ C,
then

X1 syn agr number
.= sg,

X2 syn agr
.= X1 syn agr

is an L-constraint denoting some feature structure in which there is a substructure
accessible via the path syn agr when the value of the feature number is constrained
to be the constant sg and which can be accessed via the syn label of two different
substructures (denoted by the variables X1 and X2). Since, the ‘agr’ substructure
is part of both ‘outer’ substructures it is also said that they share a substructure.
However, for the ‘agr’ feature it is only required that if a number label is present its
value must be sg. If we add further atomic constraints to this substructure we are
able to express more information. For instance, if we add the atomic constraint

X2 syn agr person
.= 3

we furthermore require that if the person label is present its value must be 3.

Feature Graphs

The semantics of L-constraints will be defined with respect to the domain of feature
graphs. A feature graph is a finite, rooted, connected and directed graph for which
the following properties must hold :

• Edges are labeled with features.

• For every node, the labels of the out-coming edges must be pairwise distinct.

• Every inner node must be a variable and

• every leaf node must be either a constant or a variable.

For example, figure 3.1 shows two possible dgs for the L-constraint:

X1 syn number
.= sg,

X2 syn
.= X1 syn,

X0 dtrs first
.= X1,

X0 dtrs second
.= X2

Formally, a feature graph is defined as follows (cf. [Smolka, 1992]) where xfs is
called an f -edge (with x ∈ V AR, f ∈ L, and s ∈ V AR ∪ C):

41

Figure 3.1: The left dg G1 directly mirrors the set of atomic constraints expressed in
the example L-constraint, and the right dg G2 bears additional constraints. Hence,
it is more informative than the left one.

• a pair (c, ∅), where c ∈ C and ∅ is the empty set; or

• a pair (x0,E), where x0 is a variable (called the root) and E is a finite, possible
empty set of edges such that

1. if xfs and xft are in E, then s = t (i.e., features are functional)
2. if xfs ∈ E, then E contains edges leading from the root x0 to the node
x (i.e., the graph is connected)

Thus, variables are labels of nodes, features are labels of edges, and constants
are the terminal nodes of a feature graph, since no edge can leave a constant node.

A feature graph G is called a subgraph of a feature graph G′ if the root of G is
a variable or a constant occurring in G′ and every edge of G is an edge of G′. For
example,

is a subgraph of the dg G1 of figure 3.1. The subgraphs of a feature graph G are
partially ordered by

42

G′ ≤ G′′ ⇐⇒ G′ is a subgraph of G
′′

For example, for the subgraphs of G1 of figure 3.1 given in figure 3.2 it holds
that G3 ≤ G4, G5 ≤ G4, G5 6≤ G3.

Figure 3.2: Some of the sub-dgs of the dg G1 given in figure 3.1

According to [VanNoord, 1993] we define the traversal of a given feature graph
and a given path as follows: For p = f1 . . . fk a path, and G a feature graph, and x a
node of G, define x/p to be a node in G as follows: If k=0, then x/p = x. Otherwise,
x/p = x

′
/f2 . . . fk, if there exists an f1-edge xf1x

′ (otherwise, x/p is undefined). We
will use the notation G/p to mean x0/p for x0 the root node of G.

If G is a feature graph and s is a constant or variable in G, then Gs denotes the
unique maximal subgraph of G whose root is s. For a feature graph G and a path
p, Gp denotes the subgraph Gs, if G/p = s is defined.

For example the subgraph GX2 of the graph G1 of figure 3.1 (i.e., the unique max-
imal subgraph of G1 with root node X2) is denoted by the expression G1dtrs second

.

Interpretation of Constraints

An interpretation I of L consists of a domainDI which is the set of all feature graphs,
and an interpretation function [[.]]I (see definition 1). Variables and constants will
denote feature graphs, relative to some assignment.

The denotation of a variable X with respect to an assignment α is simply α(X).
The denotation of a constant C is the feature graph (c, ∅) (for any assignment). The
denotation of a descriptor sp is the subgraph at path p of the graph denoted by s.

An interpretation I satisfies an atomic constraint d1=̇d2 relative to an assign-
ment α, if the descriptors are both defined and the same, i.e.,

I |=α d1=̇d2 iff [[d1]]Iα = [[d2]]Iα

A constraint is called satisfiable if it has a solution, and two constraints φ and ψ
are called equivalent if they have the same solutions, i.e., if [[φ]]I = [[ψ]]I . Clearly, not

43

all constraints are satisfiable. For example, the constraint c1
.= c2 is not satisfiable,

since both denote different graphs for all assignments.
The problem of whether a constraint is satisfiable is decidable. For example

in [Smolka, 1992] an algorithm for a more powerful feature logic is presented. In
[VanNoord, 1993] a decidable algorithm for the constraint language L is presented,
which we briefly summarize in the next paragraph.

Satisfiability of a constraint φ is shown by transforming φ into a constraint of
a specific form, called the normal form. This transformation is performed in two
steps. Firstly, all complex paths (paths containing more than one label) are removed
by introduction of some new variables. The resulting constraint (also called basic)
is shown to be satisfiable iff the original constraint was. The next step then rewrites
constraints without complex path expressions into normal form.

If the resulting normal constraint is clash free, i.e., if it does not contain any
constraints of the following form:

• cl=̇d (constant/compound clash)

• c1=̇c2 (constant clash)

then it is called a solved clause. A solved clause C is of the form Xl
.= s or X .= s.

Readable Notation We are using a special representation for complex constraints,
called matrix notation (see also [VanNoord, 1993]). In order to distinguish variable
names from features and constants we adopt the Prolog convention that only vari-
able names start with a capitalized letter and names of features or constants have
to be written in lower case. For example the following constraints on the variable
X0

X0 f1 f3
.=c ,

X0 f2
.=X0 f1 f3

are represented in matrix notation as follows (the variables X1 and X2 are com-
puted during the computation of the basic constraint):

(1)

X0

f1 X1,X2

[
f3 c

]
f2 c

If variables occur only once in a matrix they are omitted. This is the case for

the above example, so that it will also be written as:

(2)

f1

[
f3 c

]
f2 c

Furthermore, empty feature structures will not been shown explicitly, i.e.,

(3)
X0

[
f X1

[]
]

44

is written as

(4) X0

[
f X1

]
For feature structures encoding lists I will adopt the list notation from hpsg[Pol-

lard and Sag, 1987]. The feature structure encoding of the following list

(5)

first a

rest

first b

rest

[
first c
rest end

]

will be written more readable using angled brackets
(6) 〈a b c〉

The empty list then will be written as
(7) 〈 〉

We will also make use of the head/tail representation of lists known from Prolog.
Thus to explicitly represent the first element of a list from the rest we write

(8) 〈First|Rest〉
thus, for instance, 〈a, b, c〉 can also be written as 〈a| < b, c >〉.
The difference list of the feature structure

(9)

dl

first a

rest

first b

rest

[
first c
rest X1

[]

]

el X1
[]

will be written as

(10) 〈a b c|X1〉-X1

The empty difference list will be written as
(11) X -X

3.3 Specification of Constraint-based Grammars inR(L)

Using the formalism of [Höhfeld and Smolka, 1988] a constraint-based grammar
would formally be considered as a definite clause specification using some specific
constraint language. In their simplest form parsing and generation are then viewed
as proof procedures that try to find answers for a given goal with respect to a given
grammar.

Unless we specify what a definite clause specification intended to represent a
natural language grammar, linguistically means, there is obviously no distinction

45

between parsing and generation possible, and computational linguistics would just
be constraint-logic programming. In the same sense as conventional programming
languages are used just as computational means to specify algorithmic solutions of
some problem domain, we adopt the view that CLP is just a formal and operational
tool to specify grammatical theories. The theories itself have to give criteria for
giving parsing and generation a different meaning which they intuitively seem to
convey. It is then a matter of effectivity and efficiency whether they can be realized
by the same process or whether two specialized processes have to be developed.

Clearly, those people who are interested in computational aspects of natural
language cannot wait until the one and only grammatical theory has been found
because grammar theory development certainly undergoes (scientific) evolution. The
basic advantage of currently developed theories that follow the constraint-based
view, however, is that they present an important homogeneous view with respect
to the level of information they try to model that also fits very well with current
developments in CLP. By taking into account this commonality when developing
parsing and generation strategies it is possible to obtain efficient computability for
a broad class of linguistic theories.

Although we do not want to make too many restrictions on the specific form
of a constraint-based grammar we want to process, we have to make some assump-
tions about the representation of phonological and semantic information, and how
linguistic objects can be combined to form larger objects.

Form of grammar rules and lexical entries A grammar G is specified as
a definite clause specification where the literals of each definite clause are unary
relational atoms. Considering only unary atoms is not a general restriction since by
means of reification (see [Pereira and Shieber, 1987], [Genesereth and Nilsson, 1987])
we can also express an n-ary atom r(~X) in terms of constraints of a unary relation
s(Y) using for example the features REL and ARGi such that the relational symbol
r is viewed as a constant bound to the feature REL and each variable xi is bound
to the corresponding feature ARGi. Thus r(~X) would be represented as follows

s(Y), Y rel
.= r, Y argi

.= Xi

Thus the general form of a grammar rule is as follows:

p(x0)←q1(x1) . . . qn(xn)

The relational atoms are assumed to denote possible constituents of a grammar,
either specifically (using for each possible constituent a specific symbol, like NP, VP,
PP) or schematically by only using one symbol, e.g., SIGN. For example, the rule
(i.e., the definite clause)

vp←v, np, pp, φ

46

expresses that a verb phrase VP consists of a verb V, a nominal phrase NP and
of a prepositional phrase PP and the following rule

sign←sign, sign, φ

expresses that a phrase is built from two phrases, no matter what they are (as long
as we do not consider the constraint φ). Although the last rule seems to be useless,
since it does not say very much about the actual structure of an object, this kind
of schematic rule is very prominent in lexicalized grammars, since they allow the
specification of general combinatory rules, which are independent from individual
words (see [Uszkoreit, 1986b] for more details of such lexicalized view). In fact, the
grammar that we are going to use in this thesis and which can be found in appendix
A belongs to this kind of grammars.

Using this notation, we will define lexical entries as unit clauses, and grammar
rules as non-unit clauses (defining non empty productions) as well as unit clauses
(defining empty productions). In order to distinguish between lexical entries and
empty productions we will use the boolean feature lex.

Representation of phonological information In the case of phonological in-
formation of an utterance we make the simplified assumption that it is represented
as a string, i.e., we represent the phonological structure of a sentence as a list of
words. At least in the case of written text this simplification is not that critical and
because most of todays natural language systems are designed for processing written
text we are in good company (but see for example [ICSLP, 1992]).

We adapt the difference list notation known from standard Prolog interpreters
for Definite Clause Grammars. Thus the utterance “Peter loves Mary.” will be
represented as (using the matrix notation):

phon

dl

first peter

rest

first loves

rest

[
first mary
rest ∗end

]

el ∗end

or more readable (using the notation introduced above)[

phon 〈peter, loves,mary〉-〈 〉
]

The phonological information of a lexical entry like “peter” will be of form[
phon 〈peter|T 〉-T

]

47

Now it is very easy to represent a context-free grammar as a definite clause
specification in R(L). For example for the simple context-free grammar

s → np vp
np → peter
vp → sleeps

a possible R(L) grammar is

s(X) ← np(Y),vp(Z),
X phon dl .= Y phon dl,
Y phon el .= Z phon dl,
X phon el .= Z phon el

np(X) ← X phon dl first .= peter,
X phon dl rest .= X phon el

vp(X) ← X phon dl first .= sleeps,
X phon dl rest .= X phon el

Using R(L) constraints we have explicitly to specify the concatenation of sub-
strings to build larger strings, implicitly specified in context-free grammar rules.
However, using the difference list notation this is easily realized.

Note that since we have to explicitly specify how strings are combined to build
larger strings, it is also possible to specify string combinations other than by simple
concatenation, see for example [Gerdemann, 1991; VanNoord, 1993]. To illustrate
this we adopt an example of a categorial style grammar from [Gerdemann, 1991].

sign(X0) ← sign(X1),sign(X2),
X0 phon .= X1 phon,
X1 arg .= X2

sign(X) ← X phon dl first .= tom,
X phon dl rest .= X phon el

sign(X) ← X phon dl first .= friends,
X phon dl rest .= X phon el

sign(X) ← X phon dl first .= call,
X phon dl rest .= X arg phon dl,
X phon el .= X arg phon el rest,
X arg phon el first .= up

which can be represented more readable as follows:

48

sign(
[
phon: X0

]
) ← sign(

[
phon: X0
arg: X1

]
),sign(X1)

sign(
[
phon: 〈Tom|T 〉-T

]
)

sign(
[
phon: 〈Friends|T 〉-T

]
)

sign(

phon: 〈call|R〉-T
arg:

[
phon: 〈R〉-〈up|T 〉

])

The last entry is an example of the head wrapping functor, call up, which shows
that this approach can accommodate operations other than simple concatenation.

Representation of semantic information Recently, a constraint-based view
of semantic representation has become quite popular in the area of computational
semantics, e.g., [Fenstad et al., 1987], [Pollard and Sag, 1987], [Alshawi and Pul-
man, 1992], and [Nerbonne, 1992]. The main advantage of representing semantic
information as feature structures is that it allows to express a simple and systemic
syntax/semantic interface, since “. . . it harmonizes so well with the way in which
syntax is now normally described; this close harmony means that syntactic and se-
mantic processing . . . can be tightly coupled as one wishes – indeed, there needn’t be
any fundamental distinction between them at all. In feature-based formalisms, the
structure shared among syntactic and semantic values constitutes the interface in
the only sense in which this exists.” [Nerbonne, 1992], page 3. Thus the constraint-
based view sees the interface as being specified as a set of constraints, to which
non-syntactic information (e.g., phonological or even pragmatic information) may
contribute.

From a processing point of view, the advantages of viewing semantic information
directly as part of a constraint-based grammar, is that not only a parallel view on
the different levels of description is possible, but that the relationship between these
levels can be stated completely declaratively. Processing of semantic information can
then be performed in tandem with the processing of syntactic information, using
the same basic constraint-solving mechanism, e.g., unification. This means that
there are no special processes needed for mapping syntactic information to semantic
information and vice versa (at least with respect to grammatical processing). This
is especially useful in the case of generation, where the basic task is to find for given
semantic information represented as a feature structure the strings licensed by the
grammar.

Although the techniques for processing of reversible grammars are supposed to
abstract away from the different particularities of phonological and semantic repre-
sentation, we have to define some simple semantic structures to be able to illustrate
our methods to be developed in the next chapters by some concrete examples. For

49

this reason we will simply represent semantic structures essentially as predicate ar-
gument structures (following [VanNoord, 1993]). For example, the binary predicate
‘erzählen’ (meaning ‘to tell’) will be represented as follows:

sort binary
pred erz ählen
arg1 X
arg2 Y

where the feature PRED specifies the name of the predicate, the value of SORT
specifies the arity, and the features ARG1 and ARG2 hold the semantic structures
of the arguments. As another example consider the representation of the null-ary
predicate ‘lügen’ (meaning of the noun ‘lies’):

[
sort nullary
pred l ügen

]

If we assume that semantic structures are bound to the feature SEM then the
simplified relationship between the phonological string “peter erzählt lügen” and its
semantic representation ‘erzählen(peter,lügen)’ would be the feature structure

phon 〈peter, erzählt, lügen〉-〈 〉

sem

sort binary
pred erz ählen

arg1

[
sort nullary
pred peter

]

arg2

[
sort nullary
pred l ügen

]

Modifier constructions such as noun-adjective constructions or adverbial modifi-
cations will be represented using the feature MOD, that holds (the possibly complex)
semantic structure of the modifier. However, instead of placing the MOD feature
at the same level as the ARGs feature we will bundle the semantics of the modified
predicate argument structure under the feature ARG1. Thus a modifier construction
consists of a feature structure with top-level feature MOD and ARG1. The sortal
value of such constructions will be restricted to the value modifier. Therefore, the
semantic structure of an utterance “Heute erzählt peter gerne lügen” may look as
follows:

50

sem

sort modifier

mod

[
sort nullary
pred heute

]

arg1

sort modifier

mod

[
sort nullary
pred gerne

]

arg1

sort binary
pred erz ählen

arg1

[
sort nullary
pred peter

]

arg2

[
sort nullary
pred l ügen

]

Representation of grammatical derivations We are also interested in the
derivational history of a parsed or generated expression, i.e., in the derivation tree
which represents how a certain derivation is licensed by the rules and lexical entries
of the grammar. Note that such a derivation tree does not necessarily reflect how
the parser or generator goes about finding such a derivation tree for a given string
or logical form.

We will represent such a derivation tree as a feature structure value of the feature
deriv. Each head of a definite clause of the grammar (i.e., the grammar rules and
lexical entries) has to have an additional feature label which value is a constant that
uniquely identifies this clause. The feature dtrs is used to express the relationship
between the deriv features of the body of a clause and its head. For lexical entries
and for empty productions, the value of this dtrs feature is the empty list, and
for grammar rules other than empty productions, the value will be a list whose
sequence corresponds with that of the elements of the body. Thus the general
structure of a definite clause with the deriv feature is (using our abbreviations for
feature structures):

h(

deriv

[
label “name”
dtrs 〈deriv1 . . . derivn〉

])←b1(
[
deriv deriv1

]
), . . . , bn(

[
deriv derivn

]
)

For unit clauses (representing for example lexical entries) we have the general
form

h(

deriv

[
label “name”
dtrs 〈 〉

])

51

Using the simple context-free grammar we can adapt it for representing the
derivation feature as follows:

s(X) ← np(Y),vp(Z),
X phon dl .= Y phon dl,
Y phon el .= Z phon dl,
X phon el .= Z phon el,
X deriv label

.= s1,
X deriv dtrs first .= Y deriv,
X deriv dtrs rest first .= Z deriv,
X deriv dtrs rest rest .= *end

np(X) ← X phon dl first .= peter,
X phon dl rest .= X phon el,
X deriv label

.= np-peter,
X deriv dtrs

.= *end
vp(X) ← X phon dl first .= sleeps,

X phon dl rest .= X phon el,
X deriv label

.= vp-sleeps,
X deriv dtrs

.= *end

For the string “Peter sleeps” the resulting derivation tree represented as a feature
structure is the following:deriv

label s1

dtrs

〈[
label np-peter
dtrs 〈 〉

]
,

[
label vp-sleeps
dtrs 〈 〉

]〉

Note that the sequence of the daughters derivation directly reflects the sequence
of elements of the clause’s body. However, it does not indicate in which order the
elements of the body have been processed. Furthermore, since we only require that
the rule name identifier should be present in the derivation tree representation, the
derivation tree represented in the grammar only specifies “a backbone”, i.e., it only
says, which rules have been applied. However, applying these rules exactly in this
order (or structure) would “replay” the successful derivation of the result, which
finally would result in the same feature structure.

We say that the value of a deriv feature is complete, if every element of the
dtrs feature is complete. The deriv value of a unit clause is complete by definition,
because its dtrs feature is empty. This means a value of the deriv feature of a
found answer is complete.

We say that the value of a deriv feature is partial, if there exists an element of
the dtrs feature, which is not complete. Since, this incomplete daughter element
corresponds to an element of the body of a clause, this means that for this clause
not all elements have been processed.

52

Readable notation In the following chapters, we make use of a more readable and
simplified representation forR(L)-constraints. Using the matrix notation introduced
for representing L-constraints, we will often leave off the constraint in a definite
clause, and instead replace the variables in the clause with the matrix notation of
the constraint on those variables.

Thus instead of

sign(X0)←
sign(X1),
sign(X2),
X0 syn cat =̇ s,
X1 syn cat =̇ np,
X2 syn cat =̇ vp,
X1 syn agr =̇ X2 syn agr

I write:

sign(
X0

[
syn

[
cat s

]]
) ←

sign(
X1

syn[cat np
agr Agr

]),

sign(
X2

syn[cat vp
agr Agr

])

In the case where variables occur only once I will omit them. Thus the above
clause can also be written as:

sign(
[
syn

[
cat s

]]
) ←

sign(

syn[cat np
agr Agr

]),

sign(

syn[cat vp
agr Agr

])

3.4 Parsing and Generation

From the point of view of parsing and generation, a grammar as considered above
defines a relation between strings of a natural language and representations of the
meaning modelled as part of the grammar, which we call semantic expressions.
Parsing then involves the computation of this relation from strings to semantic

53

expressions, and generation involves the computation from semantic expressions to
strings.

More formally this relationship can be defined as a binary relation R between
objects of two different domains, i.e., R ⊆ S×LF , where S is the domain of strings
and LF the domain of semantic expressions.

Parsing as well as generation can be thought of as a program P that is able to
enumerate all possible pairs of R for a given element either from the domain of strings
or from the domain of semantic expressions.5 More precisely, in the case of parsing P
computes {lfi| < s, lfi > ∈ R} and in the case of generation {si| < si, lf > ∈ R}.
Thus, P is just a constructive realization of R, no matter whether P constructs R
only during parsing or during generation.

Since P can construct R for both domains we call P a reversible program and
R a P-reversible relation, in order to emphasize that P can construct R from both
directions.

Clearly, up to now we have only assumed that R is a (recursively) enumerable
relation. As usual, we assume that the set S of the well-formed strings of a language
is enumerable. For a reversible program P this implies that it can enumerate R also
from the set LF . Furthermore, we also assume that at least S has an infinite cardi-
nality, so that R has to be defined by some finite recursive device, i.e., a grammar.
Intuitively we assume that the same grammar is used for defining both sets of R,
therefore we will call this grammar a reversible grammar.

We have only assumed that P should be able to compute a reversible relation. In
principle this does not exclude the case that there are infinitely many solutions for
some s ∈ S or lf ∈ LF . For example this would imply that there are infinitely many
readings for some sentence or infinitely many paraphrases for some logical form. If
this is the case then either the grammar is intrinsically infinitely enumerable or P
does not terminate (see also [Dymetman, 1991]). Therefore we restrict a program
P to be effectively reversible in the following sense (see also [VanNoord, 1993]):

• A reversible program P is effectively reversible iff

– P enumerates a relation R

– P is guaranteed to terminate

• A relation R is effectively reversible, iff it can be constructed by an effectively
reversible program P . We will say that a grammar is effectively reversible iff
it defines an effectively reversible relation.

This means that P is decidable and that the enumeration of the set of solutions
5Without loss of generality we can assume that parsing and generation are performed by the

same program P . In case we assume a specific parser or generator P would simply trigger these
algorithms by means of a flag.

54

must be finite, i.e., for each input (either sentence or logical form) the resulting set
is ‘one to finitely many’.

Considered under the CLP view, the parsing and generation problem consists
of a goal that has to be resolved with respect to a given grammar G, specified
as a definite clause specification. Parsing and generation differ with respect to the
constraints specified for the goal. Since for parsing we want to find the corresponding
semantic expressions to a particular string, we require that the constraints at least
entail the representation of the string in question, and analogously for generation we
require that the semantic expression for which possible strings should be computed
is specified. For parsing the feature that represents the string can be considered
as an input variable and the feature that represents the semantics found can be
considered as the output variable, and vice versa for generation. We will call the
feature that represents the input the essential feature, short Ea. For parsing we will
assume that Ea is the path phon and for generation it is sem.

A parsing goal then can be defined as a goal of which the essential feature is
phon and whose value is bound to the string in question.

Thus, the parsing problem for the string “heute erzählt peter lügen” would be

sign(
[
phon 〈heute, erzählt, peter, lügen〉-〈 〉

]
)

and analogously we define a generation goal as a goal of which the essential
feature is sem and whose value is bound to the semantic expression in question. For
example for the logical form “heute(erzählen(peter,lügen))” would be

sign(

sem

mod heute

arg1

pred erz ählen
arg1 peter
arg2 l ügen

)

Note that in both cases further constraints may be added to restrict the possible
feature structures of found results, for example to be of a specific category, or that
the subcategorization list should be empty. Moreover, it would also be possible to
specify the entire syntactic information, for example in the case of generation, to
perform some grammar checking. However, what we at least require for parsing
and generation is that the value of the essential feature is instantiated. In the
next paragraph we define more precisely what “instantiation of the essential feature
means.”

Restricted parsing problem So far, we only have required that the value of the
essential feature should be instantiated. However, it has not been specified what
exactly this means. Informally, it can be specified like “show me all signs that
place exactly the following constraints on the following semantic representation.”

55

([VanNoord, 1993], page 56) or string. That is, we want our algorithm to enumerate
all possible feature structures that have a compatible value for the value of essential
feature. Thus if we want to parse a string, we want the feature structure of that string
and analogously for generation we want a feature structure of the input semantics. In
the case of parsing, this restriction is implicitly obtained, if the string is represented
as a proper list and contains no variables.

In [Wedekind, 1988] a formalization of such a criterion has been given for gen-
eration, under the term of coherence and completeness. Let Semφ be the semantic
expression of the goal constraint φ and Semψ the semantic expression of the answer
constraint ψ. Then a generator is said to be coherent if Semψ subsumes Semφ, and
complete if Semφ subsumes Semψ. In other words, a generator is said to be complete
if all information of the goal semantic expression is considered and it is coherent, if
the generator does not add additional semantic information during processing.

Van Noord has generalized this notation under the term p-parsing problem, where
parsing in this sense is the general notation for parsing of a string and generation
of a semantic expression. He gives the following definition. Let the restriction of a
constraint φ with respect to a path p, written as φ/p defined as follows:

[[(φ/p)]]I := {β ∈ ASSI |∃α ∈ [[φ]]Isuch that [[p]]Iα = [[p]]Iβ}

Then the p-parsing problem consists of a grammar G and a goal q such that

←q(X), φ

A answer to a p-parsing problem is a solved constraint ψ such that

• ψ is an answer q with respect to G; and

• [[(φ/Xp)]]I = [[(ψ/Xp)]]I

In our terminology the path p corresponds to the essential feature Ea. Thus
we also use the term Ea-proof problem to indicate that parsing and generation are
proofs of goals in which the value of the essential feature is instantiated.

Ambiguity vs. Paraphrasing The above characterizations express only the case
that for parsing and generation the same relation has to be defined by some grammar
G. But this does not exclude the possibility that G is compiled into specific parsing
and generation grammars, as long as they define the same relation R (providing the
compilation step is correct, e.g., [Strzalkowski, 1989; Block, 1991; Dymetman et al.,
1990]).

In order to distinguish the two cases, where a reversible grammar G is used
only during compile–time or is used during run–time for performing parsing and
generation the terms weakly reversible grammars and strongly reversible grammars

56

are introduced. We will say, that a reversible grammar G is strongly reversible iff
P enumerates the respective sets using G during run–time, otherwise G is weakly
reversible. In this thesis, we are only interested in strongly reversible grammars.

If a sentence s has been associated with more than one interpretation, say
lf1 . . . lfn, the relation R defined by G will contain pairs 〈s, lf1〉 . . . 〈s, lfn〉 and anal-
ogously for a meaning representation lf we will get a set of pairs 〈s1, lf〉 . . . 〈sm, lf〉,
of all possible sentences that have the same interpretation. Accordingly, the sets
are denoted as R(s) or R(lf). The cardinality card(R(s)) of R(s) is defined as the
degree of ambiguity of s and the cardinality card(R(lf)) of R(lf) as the degree of
paraphrases of lf .

Suppose that for some s there exists exactly one semantic expression lf , i.e.,
card(R(s)) = 1. Then, it is not valid to deduce that if generation is performed
starting with lf the resulting set R(lf) is {s}. However, it is guaranteed that
s ∈ R(lf) (see also figure 3.3).

s

lf

. . . 1 . . . s s s m

. . . lf1 lfi lf n. . . i

Ambiguities during Parsing Paraphrases during Generation

Figure 3.3: The relationship between paraphrases and ambiguities.

Of course, this kind of “reversibility” is an intrinsic property of each relation.
But, if two separate grammars for parsing and generation are used in a natural lan-
guage system it has to be proven that they describe the same relation6; otherwise it
would be possible that a sentence which is parse-able cannot be generated and vice
versa. Grammar reversibility is very important in practice because it ensures that
ambiguous structures and its paraphrases are interrelated. If this is not the case
then important aspects of performance like self–monitoring or generation of para-
phrases in order to disambiguate ambiguous sentences cannot be modelled properly
(in chapter 5 we discuss this problem in more detail).

Thus viewed, understanding and generation are dual processes, in the sense that
each sentence which can be understood should also be producible and vice versa.
This kind of duality is naturally captured if reversible grammars are used.

6This is also the case if the two grammars are automatically compiled from one competence
grammar, see,e.g., [Strzalkowski, 1989; Block, 1991].

57

3.5 Conclusion

In this chapter we have introduced constraint-based grammars as an appropriate
means for specifying reversible grammars. We have introduced the constraint logic
programming scheme of [Höhfeld and Smolka, 1988] as an appropriate formal means
for representing constraint-based grammars, which also provides an operational se-
mantics in the form of generalized SLD-resolution. Following the constraint-based
grammar formalism introduced in [VanNoord, 1993] we have shown how to spec-
ify constraint-based grammars by basically specifying the manner of representing
phonological and semantic information.

Although we have chosen a simple constraint language in order to highlight the
new results in a clean but simple way, the generalization of Höhfeld and Smolka’s
scheme will guarantee that the results of this thesis also carries over for more complex
constraint languages.

At this place we want to emphasize, that we had consciously used well-known
and accepted formalisms rather than defining our own formalism. The main reason
is that we are interested in the application of constraint-based formalisms for natural
language processing. Thus our focus of attention is algorithmic rather than theo-
retical. However, basing it on accepted theoretical approaches makes our project an
attractive and worthwhile venture. We start doing this by presenting an efficient
uniform tabular algorithm for parsing and generation of constraint-based grammars.

58

Chapter 4

A Uniform Tabular Algorithm
for Parsing and Generation

In this chapter a practical uniform algorithm for processing of reversible natural
language grammars is presented that can be used for efficient parsing and generation
of constraint-based grammars without the need of compilation. Hence, we call this
approach an interpreter for reversible grammars.

The new approach follows the paradigm of “natural language processing as de-
duction” as introduced by [Pereira and Warren, 1983] for the case of parsing and
extended by [Shieber, 1988] to the case of generation. As described in Shieber’s
work parsing as well as generation can be thought of as the constructive proving of
a string’s grammaticality or of the existence of a string that matches some given cri-
terion (e.g., a given semantic expression). Under this deductive view the difference
between parsing and generation rests in which information is given as premises and
what the goal is to be proved. Thus “parsing and generation can be viewed as two
processes engaged in by a single parameterized theorem prover for the logical inter-
pretation of the formalism” ([Shieber, 1988], page 614). This view is the starting
point of the new approach developed in this thesis.

In order to model parsing and generation using the same basic control logic in a
task specific manner, we will develop the new uniform tabular algorithm along the
following dimensions:

• data-driven selection function

• uniform indexing technique

• item sharing

The first basic idea is to use the same set of inference rules for parsing and
generation – basically we use the Earley deduction proof procedure as introduced in
[Pereira and Warren, 1983] – but to use a data-driven selection function, in the sense

59

60

that the element to process next is determined on the basis of the current portion
of the input. In the case of parsing this is the string, and for generation it is the
semantic expression.

This enables us, for example, to obtain a left to right control regime in the case of
parsing and a semantic head driven regime in the case of generation when processing
the same grammar by means of the same underlying algorithm.

A second novel idea of the new approach is to use an uniform indexing mech-
anism for the retrieval of already completed subgoals (i.e., lemmas). It is uniform
in the sense that the same basic mechanism is used for parsing and generation, but
parameterized with respect to the information used for indexing lemmas. More pre-
cisely, in the case of parsing, lemmas are indexed using string information and in the
case of generation semantic information is used to access lemmas. The kind of index
causes completed information to be placed in the different state sets. Using this
mechanism we can benefit from a table-driven view of generation, similar to that of
parsing. For example, using a semantics-oriented indexing mechanism during gen-
eration massive redundancies are avoided, because once a phrase is generated, we
are able to use it in a variety of places.

Based on the uniform indexing mechanism we present a novel method of gram-
matical processing which we call the item sharing method. The basic idea here is
that partial results computed during one direction (e.g., parsing) are automatically
made available for the other direction (e.g., generation), too. Since now items are
shared by both directions we call them shared items. We show how the uniform
tabular algorithm is easily extended to make use of shared items. The usefulness of
the item sharing approach will emerge when the method of interleaving parsing and
generation is introduced. We demonstrate that both the uniform tabular algorithm
and the item sharing method make the exploration of such an approach a worthwhile
venture.

Furthermore, the uniform tabular algorithm is embedded into an agenda control
mechanism, such that new lemmas are first inserted into an agenda. The agenda is
structured as a priority queue to store lemmas that have not yet been added to the
table. Since lemmas are added to the table according to their priority, we can easily
model depth-first, breadth-first and even preference-based strategies.

These aspects together allow us to consider parsing and generation as the same
uniform process which is capable of efficiently controlling the space of possible con-
structions in a task specific data-oriented manner. On one hand this enables us to
obtain a stronger goal-directed generation behaviour as the one proposed by [Shieber
et al., 1989], by taking advantage of the Earley deduction method. On the other
hand we are able to characterize parsing and generation in a fairly balanced way
without the loss of efficient properties. Hence, we avoid the complications or re-
strictions that [Shieber, 1988] and [Gerdemann, 1991] are confronted with, because
of their “parsing oriented” view of generation. Moreover, the new uniform tabular
algorithm together with the item sharing approach makes interleaving of parsing

61

and generation not only plausible but also practical. Furthermore, because we can
easily adapt our uniform algorithm for more sophisticated control techniques (e.g.,
the use of preferences) it is more amenable to future refinements than most of the
algorithms described so far.

Since the only relevant parameter our algorithm has with respect to parsing and
generation is the difference in input structures – a string for parsing and a semantic
expression for generation – the basic differences between parsing and generation
are simply the different input structures. This seems to be trivial, however our
approach is the first uniform algorithm that is able to adapt itself dynamically to
the data, achieving a maximal degree of uniformity for parsing and generation under
a task-oriented view.

Overview

This chapter is organized as follows. In the next section 4.1 we give a short overview
of Pereira and Warren’s original Earley deduction scheme and introduce some basic
notations. In sections 4.2 through section 4.6 we present a first version of the uniform
tabular algorithm and give a parsing and generation example in section 4.7.

Although this version already realizes novel ideas (e.g., data-driven selection
function, a new top-down semantic-driven generation strategy) it is not as efficient
as it could be. Therefore we present in sections 4.8 and 4.9 a uniform but data-
driven indexing mechanism that is used for efficient retrieval of re-solved lemmas.
In section 4.10 we describe the necessary modifications of the uniform algorithm
to be able to make use of the uniform indexing mechanism and give a parsing and
generation example in section 4.11.

In the section 4.12 we show how to deal with verb second problems. After the
description of important properties of the uniform algorithm in section 4.13 and of
the implementation of the algorithm in section 4.14, we present the item sharing
approach in section 4.15. We first present informally the basic ideas and then show
how the method is integrated within the uniform tabular algorithm, and finally
describe important implementational aspects.

Before we go on in actually doing the things just promised we would like to stress,
that all methods developed in this thesis have been implemented. In order to ab-
stract away from a concrete implementation using a specific programming language
we present the methods in an abstract way (making use of a pseudo programming
language). However, this abstract description is made in just a way that the un-
derlying implementation will be transparent. Thus the way we are describing the
methods and the way they are implemented converges.

62

4.1 Overview of Earley Deduction

In this section we informally describe the Earley deduction method introduced in
[Pereira and Warren, 1983]. Earley deduction is a proof procedure for definite clauses
and is named after Earley’s context-free parsing algorithm. As in Earley’s original
algorithm, in Earley deduction the processing of definite clauses is split into two basic
deduction steps or rules of inference, namely prediction and completion1, dealing
respectively with top-down predictions of new clauses and bottom-up combination
of existing clauses. The results of prediction and completion (the derived clauses)
are lemmas, i.e., logical consequences of the program.

Earley deduction operates on two sets of definite clauses, called the program and
the state. In our case the program just represents the grammar and lexicon and
remains fixed. The state set, on the other hand, will be continually augmented with
new lemmas. Whenever a new non-unit lemma is added, one of its negative literals
is selected (for example, when using the basic Prolog strategy, the selected element
would always be the leftmost literal in the body of a lemma).2

The prediction rule operates on non-unit lemmas, which we also call active lem-
mas. This rule selects an active lemma B from the current state and searches for a
program clause C whose positive literal (i.e., the head of C) unifies with the selected
literal of B. If this is possible the thereby derived clause φ[C] is added to the state
set, where φ is the most general unifier of the two literals. The selected element of
B is said to instantiate the program clause C to φ[C], or in other words, the selected
element has been used to predict an instantiation of C. Clearly, prediction thus
described realizes the top-down step of Earley deduction.

The completion rule operates on unit lemmas, which we also call passive lemmas.
An active lemma C is chosen from the current state set, whose selected element
unifies with the passive lemma, which (if possible) yields a new resolvent φ[C ′], where
C ′ is C minus its selected element. Since the completor actually reduces the number
of the negative literals of an active lemma, repeated application of the completion
rule eventually creates passive lemmas. Note that completion against the selected
literal is sufficient, because if a completion with some other literal of the body is
required, any selection function will sooner or later come to this literal, because the
selection function will have to select from fewer and fewer literals (see also [Pereira
and Shieber, 1987], page 199). Hence, the completor is also said to reduce C to φ[C ′]
or in other words, the completion step (partially) completes derived clauses, in a
bottom-up fashion.

1Pereira and Warren call these phases instantiation and reduction, respectively. Note that the
scanning operation, known from Earley’s algorithm can be seen as a special completion step, namely
the completion with an lexical entry, i.e., a unit clause representing a terminal element.

2Although, [Pereira and Warren, 1983] abstract away from a specific selection function, they do
not suggest how to parameterize the selection in a concrete implementation. Furthermore, they
only consider parsing under the paradigm of deduction.

63

In [Pereira and Shieber, 1987] it is shown that the more specific constraints of
context-free parsing allow a simplification that we cannot take advantage of here.
In Earley’s parsing algorithm, derived clause creation proceeds strictly from left to
right. This means that any passive lemma needed to resolve against some active
lemma is guaranteed to be constructed after the active lemma is created. Therefore,
to perform all the pertinent resolutions, the algorithm need only look for active
lemmas at the time when a passive lemma is created. However, a general Earley
deduction proof procedure cannot guarantee this, so it is necessary to apply the
completor also when active lemmas are created. As we will show, this is specifically
the case for generation, because the structure of the input is not a sequence but
a tree-like structure. In the implementation described in the next sections, we
will separate these two cases into two inference rules, called passive-completion and
active-completion, respectively.

Blocking new lemmas As already suggested, a new lemma is only added to the
state set if no subsuming clause exists in the table (i.e., one which is more general
than the newly derived clause). If a new lemma cannot be added to the state set
because a more general one already exists, then the lemma is said to be blocked.

The subsumption check is necessary, because we are dealing with instantiations of
clauses, not with the clauses directly (as it is the case for context free versions,where
it suffices to check whether the same grammar rule has already been predicted).
Hence, to avoid the repeated prediction of the same program clause, we have to
check whether a more general prediction has already been made. In this case a
newly predicted more specific one can just be ignored. In a similar way, we can
take advantage of the subsumption check to avoid redundant re-computation of
completed lemmas during the completion step. This means, for instance, that once
a passive lemma has been derived it can be used for further completion of different
active lemmas, without redundant re-computation (in section 4.8, we will show how
we can combine this technique with a clever indexing mechanism that is used for
parsing and generation).

Use of a restrictor The prediction rule is used for predicting new instantiations
of grammar rules using the selected element of a non-unit lemma. As known from
the work of [Shieber, 1985] prediction can lead to arbitrary numbers of consequents
through repeated application when used with a grammar with an infinite structured
nonterminal domain. For example, if a grammar handles subcategorization with list
value features (such as in hpsg or the rule (r1) of the grammar given in appendix A),
then non-termination can arise since the subcategorization rule is able to produce
instantiations with successively increasing lengths of subcategorization lists, which
do not stand in a subsumption relation. Hence, neither of the lemmas is blocked.

The solution proposed in Shieber’s work is to use only a restricted amount of

64

information for predicting the element. Thus before the predictor is evaluated a re-
strictor function resct is applied that computes from the constraints of the selected
element a bounded subset of the information of these constraints. The restrictor
function serves to specify how much information is to be used in the top-down phase
of a uniform algorithm. For example, if we use the identity function, all information
would be predicted and if we use simply the constant function yielding the trivial
model, no top-down information is used.

In Shieber’s original work, a grammar-oriented version of a restriction function
is presented, where only those features are predicted which have been chosen by the
user as most useful for prediction. Following [Shieber, 1985] restriction is defined
on the basis of a given restrictor R, which is a finite set of paths through a feature
structure. The restriction of a feature structure F relative to R is the most specific
feature structure F ′ v F , such that every path in F ′ has either an atomic value or
is an element of R.

A more general definition of resct is given in [Haas, 1989]. In this approach, for
a given set of constraints φ a restricted form φ′ is computed by replacing all cyclic
constraints with new variables. Applying this definition to the subcategorization
rule would break the cycle (caused by the variable Tail) of the subcategorization
feature sc.3

In [Shieber, 1989] it is shown that any function can be used, with the prerequisite
that the range of the function is finite. Then termination of prediction can be guar-
anteed because resct divides an infinite number of categories into a finite number
of equivalence classes. Thus, after a finite number of applications of prediction, a
previously generated item would be built and the subsumption check would prune
further applications [Shieber, 1989]. Using a restriction of a feature structure in-
stead of the original feature structure weakens the predicting power of the top-down
prediction step in the sense, that it can over predict lemmas. However, it does not
affect the correctness of the algorithm, since these unnecessary prediction will never
be completed.

In our system we use a restrictor function similar to that of [Shieber, 1985]. How-
ever, instead of specifying which constraints should be used to build a restrictor, we
specify which information of a specified set of features should be ignored (i.e., set
to the top variable). For the grammar in appendix A this is basically the subcat-
egorization feature sc. Thus, before the predictor is applied, then if this feature is
present its value is set to the top variable. Any other information is unchanged. In
this way, we use as much top-down information as possible, however by being able
to ignore “dangerous” features.

3In [Samuelsson, 1994] an alternative approach is taken for deriving restrictors automatically
by making use of anti-unification (also known as generalization). Anti-unification is the dual of
unification – it constructs the least general term that subsumes two given terms. In the case of
restriction it is also used for detecting cyclic constraints.

65

4.2 Generalizing Pereira and Warren’s Earley Deduc-
tion Scheme

We now present an interpreter for definite clauses that performs according to Earley
deduction. Instead of collecting all grammar rules and lexical entries in one data
structure, we will use two separate data structures G, which keeps all grammar rules
and Lex, which holds all lexical entries.

Prediction is used to predict instantiations of grammar rules. Completion
will be performed by three inference rules, namely passive-completion, active-
completion, and scanning. In all three cases, unit clauses will be used to reduce
appropriate non-unit clauses, where the scanning rule can be seen as a special active-
completion rule in the sense, that is looks for unit clauses of the lexicon which it
uses to reduce the non-unit clause in question.

We will use S to denote the state set, to which new lemmas are dynamically
added. However, instead of directly storing lemmas into the table, new lemmas
are stored in an agenda where the lemmas are sorted according to a given priority.
Thus lemmas are added to the table according to their priority. However, since the
inference rules can generate new lemmas which are inserted to the agenda before
they are added to the table, we can use the agenda mechanism to model depth-first,
breadth-first and even best-first strategies. Another advantage of using an agenda
mechanism, is that the subsumption test to see whether an item is already in the
table, is needed only when the item should be added to the table. In the case, where
we only want to yield one result instead of all possibilities, the subsumption test has
to be performed only for those items which are actually added to the table. Thus,
if we follow a depth-first strategy the number of items to be inserted into the table
is less than those which had been inserted to the agenda (if we are only interested
in one result).

4.3 A Data-driven Selection Function

The discussion of current approaches for parsing and generation can be summarized
as follows: parsing and generation, to be goal-directed, differ basically with respect
to the order in which the literals of the body of a clause are selected. For parsing, for
example, [Shieber, 1988; Gerdemann, 1991] have used the leftmost selection strategy,
where for generation [Shieber et al., 1989; Gerdemann, 1991] use the semantic-head
first selection function. The latter should be seen more precisely as a “preference-
based” selection function, since in the case a rule has no semantic head, the leftmost
element is chosen, or if two elements share the semantics with the mother node, the
left one is selected.

However, it is very easy to combine these different strategies used in parsing and
generation, such that the selection function expresses a preference for goals with

66

certain features instantiated.4 Since we want to obtain an input driven algorithm,
the essential feature for parsing should be the phon path (more precisely the path is
〈phon dl〉, that is the path to the list value of the difference list) and for generation
it should be the sem path. We will call this certain feature the essential feature Ea.
Then the selection function can be defined such that it selects the leftmost element
from the body whose essential feature is instantiated, i.e., whose Ea exists and is a
non variable value. If such an element does not exist it chooses the leftmost element.
Now, if we abstract away from a concrete essential feature by assuming that Ea is a
variable, then we can define this selection function more formally as follows:

sf(q ← p1, p2, . . . , pi . . . pn, Ea) =

{
i pi, the first element whose Ea is instantiated
1 otherwise

Now, in order to use this selection function for parsing or generation we have to
specify a path that defines the essential feature (i.e., the phonological or semantic
path). Since, the value of this feature will be a string or semantic expression, this
means that the selection function prefers those goals which are instantiated with a
string or semantic expression. However, now, the grammar itself will be an important
source of control, since it defines how information is decomposed (or composed
depending on the point of view) in the rules. For example, if the phonological
information is expressed as difference lists and partial strings are combined by string
concatenation then the selection function sf “realises” a leftmost strategy. Similarly,
if all rules define a semantic head relation sf simulates the semantic head first
relation. These can both be true at the same time. Moreover, if the grammar rules
are attached with some preference values, the selection function can very easily be
adapted to take into account such preference information. This would help to achieve
a more careful selection.

4.4 A Data Structure for Lemmas

We will use the following notation for an active lemma and its selected element:

〈h←b0 . . . bn ; i〉
4Most recently, [Johnson, 1993] also presents a deduction mechanim which makes use of a dy-

namic selection function. The basic use of this selection function, however, is to support a coroutine-
oriented selection between the body elements of a clause. Since, he only focused on natural language
parsing, we do not consider this method in more detail.

One should also keep in mind, that [Pereira and Warren, 1983] already abstracted away from a
specific selection function. For example, they already outlined the idea of a head-oriented selection
function for parsing. This is important to say, because often their approach is viewed to be restricted
only for a left-to-right scheduling.

67

where h←b0 . . . bn is an active lemma and i (0 ≤ i ≤ n) is the index of the
selected element in the body of the lemma. We will call such structure an active
item. The structure of unit lemmas will be represented as:

〈h ; ε〉

where ε indicates that since the body of the lemma is empty the selected element
is also. We will call such structures passive items.

When new lemmas are generated, the actual selection function determines the
next element to process.5 This is either an element of the body of a lemma in the
case the new lemma is non-unit, or ε for unit lemmas.

Specification of Goals

As already noted in chapter 3 a query p as input for parsing or generation is a
possibly empty conjunction of an R(L)-atom and a L-constraint, written as:

←p, φ

Usually, the query corresponds to the root node of the grammar, where the
constraints include at least the string to parse or the semantics to generate. For
example, using the lexical grammar of appendix A for parsing the sentence “weil
peter lügen erzählt” the goal statement would be

←sign
([
phon 〈weil, peter, lügen, erzählt〉-〈 〉
cat comp

])

while the goal statement for generating this string would be

←sign

cat comp

lf

type: unary
pred: weil

arg:

type: binary
pred: erzählen

arg1:

[
type: nullary
pred: peter

]
arg2:

[
type: nullary
pred: lügen

]

However, in order to bind the resulting constraint so that we can easily return it

as a value from the underlying proof procedure, we specify the goal statement as the
negative literal of an R(L) -atom that does not belong to the grammar or lexicon.
The constraints of the new atom will be the same as the goal statement. Thus for
the example above the goal statement will be specified as6

5To be more precise, the selection function returns the index of the selected element. As long
as no misunderstandings are possible, we will use selected element and index of selected element in
the same sense.

6Pereira and Warren also specify goal statements in such a way, eventually because of the same
reason.

68

ans (Fset)←sign
(

Fset

[
phon 〈weil, peter, lügen, erzählt〉-〈 〉
cat comp

])

If this clause can be reduced, the constraints on the head will also express the
resulting feature structure which then can easily be returned as output from the
proof procedure.7

The general structure of such item is:

〈ans (L)←p (L) ; sf(ans (L)←p (L) , Ea)〉

where p is a predicate of the grammar, ans a predicate not in the grammar,
sf(ans (L)←p (L) , Ea) the index of the selected element. We will denote such item
as the start item.

4.5 The Inference Algorithm

Instead of giving the definition in terms of a concrete programming language, we
will use simple pseudo programming language encoding.8

The body of a program will be specified by using well-known logical operators.
The input and output parameters of a procedure are specified using the keywords
in and out. For example the notation

first(in: list; out: element)

means that the input parameter of the procedure first will be bound to the
formal parameter list and its output value will be bound to element. Procedure
names are represented in small caps and primitive operations of the pseudo language
are highlighted using the boldface font (e.g., if, then, else, while). Capitalized
strings are used to denote variables.

7Otherwise, we have to store separately the feature structures of a resolved query, because a
resolved (and hence reduced) query would just be the clause of the form

ε←ε, φ

Note that using the ans atom is only a technical matter and it should be interpreted as a “special
empty head of a clause.” However, since we want to stress also important implementational aspects
of our algorithm, we have decided to make our implementation as transparent as possible.

8It would also be possible to define the inference rules more abstractly in terms of logical inference
rules as for example done by [Shieber, 1988]. However, we are interested in algorithmic and data
structure aspects, since this will be important for the next chapters to come. Hence, we prefer a
more programming language oriented specification of the inference rules.

69

The result of each inference rule (i.e., the new items) will be added to an agenda
using the function add-task-to-agenda. We will assume a global variable Agenda
which is bound to the current agenda. Which priority is determined for a new item
is computed by the procedure prio. The agenda control is then responsible for
adding new items to the state set S according to a given priority. However, a new
item is only added to S, if it is not blocked. We will abstract away from a concrete
definition of this procedure as well as from the embedding of the inference rules until
the agenda-based control mechanism is introduced below.

All inference rules will receive as input an item. We will assume that the global
variable Ea is bound to the actual essential feature. The result of each inference
rule will be either true of false depending on whether new items could be derived
or not. We will indicate this by a boolean variable Candidates?. Its initial value is
false and will only be set to true if a new item is added to the Agenda.

Prediction We start by defining the prediction rule. Figure 4.1 specifies the
procedure.

(1) proc prediction(in: AL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ Rule ∈ G; Φ = unify(resct(sel(AL)), head(Rule)) and Φ 6= ⊥
(4) do NewItem := 〈Φ[Rule]; sf(Φ[Rule],Ea)〉;
(5) add-task-to-agenda(NewItem,prio(NewItem),Agenda);
(6) Candidates? := true;
(7) od.

Figure 4.1: The procedure for prediction.

Prediction will be performed on active items AL and will return true or false
depending on whether a new item has been added to the agenda (see line (1)). It
will predict instantiations Φ[Rule] of all rules Rule in the grammar G whose head
head(Rule) unifies with the restriction of the selected element of the active item,
denoted as resct(sel(AL)) (line (3)) and inserts new items (line (4)) into the agenda
Agenda according to a given priority determined by the function prio individually
for each new item (line (5)).

Completion As already noted in 4.1, completion will be split into three separate
rules, namely passive-completion, active-completion, and scanning.

Passive-completion (see figure 4.2) will be applied on passive items PL. For all
active items AL in S which selected element sel(AL) unifies with the head of the
passive item, the new lemma Red is Φ[AL-sel(AL)], i.e., the unified item AL minus
its selected element (line (4)). The new item NewItem (line (5)) is added to agenda
Agenda (line (6)). Since passive-completion reduces the body of an active lemma

70

(1) proc passive-completion(in: PL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ AL ∈ S; Φ = unify(sel(AL),head(PL)) and Φ 6= ⊥
(4) do Red := Φ[AL-sel(AL)];
(5) NewItem:= 〈Red; sf(Red,Ea)〉;
(6) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(7) Candidates? := true;
(8) od.

Figure 4.2: The procedure for passive-completion.

it will transform it to a passive lemma by repeated application. Furthermore, it
performs the completion step bottom-up.

(1) proc active-completion(in: AL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ PL ∈ S; Φ = unify(sel(AL),head(PL)) and Φ 6= ⊥
(4) do Red := Φ[AL-sel(AL)];
(5) NewItem := 〈Red; sf(Red,Ea)〉;
(6) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(7) Candidates? := true;
(8) od.

Figure 4.3: The procedure for active-completion.

Active-completion (see figure 4.3) is very similar to passive-completion. The basic
difference is that active-completion will receive an active lemma AL and will search
S for passive-lemmas PL that can reduce AL. Thus, active-completion performs the
completion step in a top-down manner. Again, active-completion can transform an
active lemma to a passive lemma by repeated applications.

(1) proc scanning(in: AL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ LE ∈ Lex; Φ = unify(sel(AL),head(LE)) and Φ 6= ⊥
(4) do Red := Φ[AL-sel(AL)];
(5) NewItem := 〈Red; sf(Red,Ea)〉;
(6) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(7) Candidates? := true;
(8) od.

Figure 4.4: The procedure for scanning.

71

Scanning has mainly been described from a parsing perspective in the sense,
that it is limited to only scanning words that match the initial portion of the in-
put. However, when the scanner should also be usable for generation it must be
generalized such that it should be allowed to consider any lexical entry that will
unify with the selected element of an active item. In a constraint-based approach
the input is specified as part of the constraints. This allows us to describe scanning
as a specific active-completion rule, namely the completion of an active item with
possible matching unit clauses from the lexicon.

The scanning rule (see figure 4.4) operates on a given active item AL and returns
the boolean value of Candidates?. The scanner searches through the lexicon to
look for lexical entries LE whose head(LE) unifies with the selected element of the
active item, denoted as sel(AL) (line (3)). For all successful instantiations, the new
lemma Red is Φ[AL-sel(AL)], i.e., the unified item AL minus its selected element
is constructed (line (4) and (5)), and is then added as a new task to the agenda.
Thus, scanning also reduces an active item. Since, the selected element has been
determined on the basis of the value of the essential feature, this also means that the
scanner will consume portions of the input on the basis of available and consistent
lexical information.

We have not explicitly required that scanning should only be performed on ter-
minal elements, i.e., active items, whose selected element belongs to a terminal cat-
egory. The reason is, that in general constraint-based grammars are under-specified
in this respect. For instance, in our example grammar some of the lexical and phrasal
signs belong to the same category (e.g., vp, np) and they are only distinguished by
the boolean feature lex. However, most of the rules are under-specified with respect
to this information. In that case we have to apply scanning and prediction on the
same active item. Of course, if a grammar explicitly distinguishes between nonter-
minal and terminal elements (as it is the case for instance in lfg), we can easily
restrict the application of the scanning rule to terminal elements and the prediction
rule to nonterminal elements.

4.6 An Agenda-based Control Regime

The inference rules will be embedded in an agenda-based control regime along the
line of [Shieber, 1988]. An agenda consists of a list of tasks and a policy for managing
it. A task is simply an item. Whenever an inference rule creates a new item it is
added as a new task to the agenda and sorted according to the given priority function
prio. If the agenda chooses a task as the next item, and this item is not blocked,
it is added to the state set. Using the agenda mechanism in this way has the effect
that the subsumption operation (performed inside the blocking test) is delayed until
an item is explicitly chosen by the agenda control. If our agenda control follows, for
example, a depth-first strategy, then only “useful” items are considered. In chapter 5

72

we show the importance of this behaviour for the case of performing self-monitoring
and revision during natural language generation.

We will assume the following operations to be defined for agendas:
make-agenda() creates a new agenda.

empty-agenda-p(Agenda) is true if the specified agenda is empty.

get-highest-prio-task(Agenda) removes and returns the task with the highest
priority.

add-task-to-agenda(Tasks,Prio,Agenda) adds new Tasks with priority Prio to
the specified Agenda.

prio(Task) determines the priority for the task Task.

The particular agenda that we use is denoted by the global variable Agenda.
The control regime denoted as process will manage the agenda. During the course
of process it dequeues tasks from the agenda until the agenda is empty. However,
note that the inference rules force the agenda to add new tasks.

Each dequeued task is added to the table S. This operation is performed by
the function add-item. However, add-item only adds a new item to the table
if it is not blocked. In that case the task (that actually has been become a real
item) is passed to the procedure apply-task which applies the inference rules that
eventually cause the creation of new tasks.

The procedure process (see figure 4.5) receives as input the goal Goal to prove
and returns as a result either rejection or a list of answers (line (1)). It first creates
a start item StartItem using the function make-start-item and adds it to the
Agenda. Then, while the Agenda is not empty (i.e., there are still tasks waiting to
apply), get-highest-prio-task determines the next task to process (and removes
it from the agenda). If the new CurrentTask is not blocked by some item already
in the table S it is added to S (this test and operation is performed by the function
add-item, see figure 4.6). In that case the new Task is applied on the inference
rules (which is performed by the function apply-task). Note that the inference
rules called by this procedure will eventually create new tasks. If the state set
contains a new answer this is added to the Result list.9

9In our implementation, we distinguish between new and old answers by means of an additional
slot attached to an item named ignore, which is set to true, if an answer is pushed to the Result
list. Then, during further processing this item is ignored. In a sense, the item has become garbage
and could also be removed from the state set, by a kind of garbage collector for items.

73

(1) proc process(in: Goal; out: Result):
(2) StartItem := make-start-item(Goal);
(3) add-task-to-agenda (StartItem,prio(StartItem),Agenda);
(4) while not(empty-agenda-p(Agenda))
(5) do CurrentTask := get-highest-prio-task(Agenda);
(6) if add-item(CurrentTask) then
(7) do apply-task(CurrentTask)
(8) if ∃ I ∈ S; I is of form 〈ans; ε〉 then
(9) Result := push(I,Result); fi
(10) od
(11) od
(12) Result := if empty(Result)
(13) then rejection
(14) else Result fi.

Figure 4.5: An agenda-based control mechanism.

(1) proc add-item(in: Task; out: Candidate?):
(2) if Task is not blocked in S then
(3) do add Task to S;
(4) Candidates? := true;
(5) od else Candidates? := false;
(7) fi.

Figure 4.6: The procedure that adds new items to the table if they are not blocked.

The procedure apply-task (see figure 4.7) applies the inference rules to the task
Task (line (1)). If the current task is a passive item (line (2)) passive-completion
is called (line (3)). Otherwise (line (4)) it is checked whether active-completion
returns true, which means that new items have been added to the agenda. If this
is not the case prediction and scanning are called. The reason why we only
consider prediction and scanning if active-completion returns false (i.e., creates no
new task) is that if active-completion is successful this means that for the selected
element of the current active item there already exists a derived phrase (made for
the same substring or partial semantics) and hence, prediction and scanning would
be redundant.

Scheduling the tasks of an agenda The agenda method is based on a priority
queue. The elements in the queue are ordered relative to their assigned priorities,
where the task with the highest priority is at the front of the queue and the one with
the smallest is at the back. Using this mechanism it is very easy to realize a depth-
first or breadth-first strategy. Suppose that we maintain a counter LemmaCounter

74

(1) proc apply-task(in: Task):
(2) if passive-item(task)
(3) then passive-completion(Task) else
(4) active-completion(Task) else
(5) do prediction(Task);
(6) scanning(Task);
(7) od fi
(8) fi.

Figure 4.7: The procedure apply-task.

that enumerates the stored lemmas starting from one. Directly using the value
of this counter realizes a depth-first strategy, since each new task is added to the
front of the queue. Using its negation instead would realize a breadth-first strategy,
because processing of new items is delayed until older tasks are processed.

The advantage of a depth-first strategy is that in the case only the first result
should be computed the number of items added to the table S is less than the number
of generated items added to the agenda. Since, only in the case an item is added
to the table the blocking rule is applied, the subsumption operation need only be
performed on a subset of the items stored in the agenda. This means, that although
our inference rules exhibit a breadth-first component, using an agenda mechanism
restricts the computional overhead of subsumption on that set of items that are used
in specific situations, e.g., depth-first and best-first strategies.

In addition to a depth-first and breadth-first task-selection function, we have
also defined a definition for prio where the priority is determined randomly using a
built in function random, because all three priority functions together characterize
a representative degree of possible agenda strategies.

However, it would also be possible, to use more complex priority functions as for
instance the one proposed in [Shieber, 1988]). This would open up the realization
of some psychologically interesting strategies (like garden-path phenomena, minimal
attachment phenomena, or more general preference based strategies, see [Kay, 1986;
Shieber, 1988; Görz, 1988; Shieber, 1989; Erbach, 1991]), however using the same
deductive approach. It should be clear, that our specification is open to such more
sophisticated use of priority functions.

4.7 Performing Parsing and Generation

Parsing is defined as a specific call to the main procedure process, by specifying a
concrete value for the global variable Ea. We will use the path 〈 phon dl 〉. The
parser is then just a call to process.

75

(1) proc parse(in: Goal; out: Result):
(2) Ea := 〈 phon dl 〉;
(3) Result := process(Goal)

When called with a goal Goal it simply returns the result of the procedure
process. For example (using the grammar in A, for parsing the string “weil peter
heute lügen erzählt” the input for the parser is

←− sign
(

G

[
cat comp
phon 〈weil, peter, heute, lügen, erzählt〉-〈 〉

])

and the created start item is

〈 ans(G)←− sign
(

G

[
cat comp
phon 〈weil, peter, heute, lügen, erzählt〉-〈 〉

])
; 0 〉

Figure 4.8 shows a trace of the parsing process. The trace does not give a full
example run, because we only considered those steps in the proof which contribute
to the resulting derivation shown in figure 4.9. P stands for prediction, S for scanning
and C for completion. The arrows basically represent the flow of information. The
notation (i), where i is an integer denotes the computation step, e.g., (1) is the
first step and (13) the last one. For simplicity, we have only expressed the phrasal
backbone and the input string (also simplified). Although the subcategorization
rule has been predicted two times, this prediction has been done on different string
positions. However, this rule will only be predicted one time at the same string
position. Thus left-recursion is no problem. Note that we only show the successful
steps.

The generation instance generate differs only with respect to the specified
value for Ea, and that the goal specifies the semantic form for which the program
should generate corresponding strings. Thus, the generation instance is as follows:

(1) proc generate(in: Goal,; out: Result):
(2) Ea:= sem;
(3) Result := process(Goal).

As an example consider generation from the start item

76

Figure 4.8: A trace of parsing the string “weil peter heute lügen erzählt.” For
explanations of the symbols used see text.

Figure 4.9: The derivation tree of the example sentence. The labels of the node refer
to the names of the rules of the grammar in Appendix A.

77

〈 ans(G)←− sign

G

cat: comp
sc: 〈 〉

sem:

type: unary
pred: weil

arg:

type: unary
mod: heute

arg:

type: binary
pred: erzählen

arg1:

[
type: nullary
pred: peter

]
arg2:

[
type: nullary
pred: lügen

]

; 0 〉

Figure 4.10 shows a trace of the generation instance. Instead of directly using
the feature structure representation of the semantic input we simply use the tree-
like list-notation “weil(heute(erzählen(peter,lügen)))”. We furthermore made use
of the same abbreviations as in the parsing trace of figure 4.8. Note that in step
(6) there is already a scanning step possible. The lexical entry can complete the
subcategorization rule and the new item (a reduced copy) is used for scanning the
next possible entry (step (7)). After completion of the rule, this reduced passive
item can be used to complete the predicted subcategorization rule. Thus, although
the subcategorization rule has only be predicted one time, it has been used by the
completor two times. Thus non-termination because of prediction of infinite long
subcategorization lists is avoided.

The derivation of the anlaysis of this semantic input is shown is figure 4.11
tree a. The other two derivations are also possible for this input, but we have not
specified the traces here. However, when these two other alternatives are generated
precomputed substrings will be reused.

78

Figure 4.10: A trace of generating from “weil(heute(erzaehlen(peter,luegen)))”. For
explanations of the symbols used see text.

79

Figure 4.11: All possible derivation trees admitted by the grammar for the generation
example.

80

4.8 Indexing Derived Clauses

Although the tabular version described above already avoids redundant recomputa-
tion because phrases just analysed (i.e., parsed or generated) are stored in a table,
the search for derived lemmas to resolve is not as efficient as it could be. The prob-
lem is that all lemmas are kept in one state set only. For the completor, this causes
an enormous overhead, since the whole state set has to be searched through to look
for active lemmas which can be reduced. In general, this causes a large number
of nonproductive (nonunifying) attempts at applying the completion rule. Further-
more, for each added item the blocking rule has to be performed on the whole set
of items already in S.10

In order to overcome these disadvantages, the items in S should be ordered
according to the structure of the actual problemsize (either string or semantics)
such that the inference rules (and the blocking rule) need only be applied to an
identifiable subset of the states in each state of the process. The different states
of the process can then be defined relative to subsets of items. In this sense, the
progressing process decomposes the state set into a set of internal item sets, which
stand in a relationship according to the structure of the problem size.

For parsing, particular data structures have been developed for achieving such
an efficient behaviour, most notably the chart developed by [Kay, 1986] and the
item set notation developed by [Earley, 1970]. In both approaches the endpoints of
a derived string are explicitly used for indexing stored phrases. Unfortunately, we
cannot use these well-known approaches for generation directly, because the string
is the output of a generator, not the input, of course. For generation, once a phrase
has been constructed, we want be able to use it at various places.

We now present an indexing mechanism that can be used in the same manner
for both parsing and generation. However, since we use the value of the essential
feature for determining the “content” of internal item sets, the item sets are ordered
according to the actual structure of the input. Note that only the selection function
and this indexing mechanism have to be parameterized. However, since the only
parameter is a certain feature and its value we had achieved a maximal degree of
uniformity for parsing and generation under a task-orentied view.

4.9 A Uniform Indexing Mechanism

The basic idea is to split the generated items into equivalence classes and to connect
these classes, so that each item can directly be restricted to those items that belong

10Clearly, this is the worst case. In our implementation, items are stored in hash tables indexed
by the lemma’s head’s predicate name. However, this is only adavantageous if the grammar uses
category specific rules (as in dcg). If only schematic rules are used (as it is the case for the grammar
in Appendix A), then hashing in the described way would not help much, since all lemmas have the
same predicate name.

81

to a particular equivalence class. We will call each equivalence class an item set.
The whole state set then consists of a set of item sets, which we will call a chart. We
will use the current value of the essential feature Ea of some goal G (abbreviated as
val(G/Ea)) as index for an item set.

We then require that for each item L in an item set I with index Idx, that
val(L/Ea) must be the same as Idx. However, we have to distinguish between
passive and active items. We require that for passive items, the essential feature’s
value is determined from the feature structure of the head element. Clearly this
is the only possibility, since passive items have an empty body. For active items,
however, we require that the essential feature’s value is determined by the selected
element.

More formally, we can define an item set I as a tuple 〈AL,PL, Idx〉, where PL
is a finite set of passive items and AL a finite set of active items such that:

∀ pli, plj ∈ PL : val(pli/Ea) = val(plj/Ea) = Idx and

∀ ali, alj ∈ AL : val(sel(ali)/Ea) = val(sel(alj)/Ea) = Idx

Thus all items in one item set share one common property, namely that they are
compatible with respect to the value of the essential feature of one of their literals,
which is the head in the case of an unit lemma, and the selected element in the case
of an non-unit lemma.

In this sense, an item set can be viewed as a kind of meeting place of active and
passive items, such that an active item looks for some passive item to resolve with,
and vice versa, that a passive item looks for an active item which it can resolve.
However, both are identical with respect to the value of their essential feature. If
the result of the reduction operation is a new item, this item will eventually be
placed in another item set.

If we start with a start item representing the goal to prove, the start item will be
inserted into an item set with an index determined from the value of the essential
feature of the query. We will call the item set built from the start item the initial
item set. We end successfully, if the initial item set entails the reduced goal.

The inference rules will be responsible for creating and maintaining item sets.
In order to reuse items that have been predicted in one item set for items in other
item sets, we have to link the serval item sets. We will basically use the same
mechanism as Earley’s algorithm or from Chart parsing, i.e., for each item we keep
a backward pointer. The meaning of the backward pointer is the index of that item
set from which the initial prediction of some goal was made. If an active item can
be reduced, the reduced item inherits the backward pointer from the active item.
Thus, an ancestor of an initially predicted item will have the same backward pointer.
However, since the indices of item sets are determined on the basis of the value of the
essential feature, and the essential feature is the one that carries either a string or

82

semantic expression, the structure of the linked item sets represents the relationship
between parts of the input in the way the grammar has decomposed the input.

Before we can clarify this behaviour, we first have to adopt the item structure
to the requested information. We add two new slots to an item. A new slot from
which holds the backward pointer to the item set the item has been predicted from.
The slot in holds the index of the item set of which the item is a member. The
general form of an item is as follows:

〈h←b0 . . . bn ; i ; in; from〉

Thus each lemma knows from which item set it has been predicted and of which
item set it is a member. The values of these slots for a particular item will be accessed
by functions having the same name as the slot names. Thus in(Item) denotes the
item set Item is a member of and from(Item) denotes the backward pointer.

For active items, the value of the in slot is just the value of the essential feature
of the selected element. If we denote this as ea(i), the general structure of active
items is

〈al; i ; ea(i); ea(k)〉

where the backward pointer ea(k) means that this active item has been predicted
from some active item whose selected element has value ea(k). The general structure
of passive items is

〈pl; ε; ea(k); ea(k)〉

Since the value of the essential feature of the head of the active clause must not
change, when reducing its body, ea(k) is just the value ea(head(al)) or ea(head(pl))
in the case of passive items.11

But then, passive items in some item set correspond to some grammatically well-
formed structure that has been found for ea(k) which corresponds to a part of the
whole input. However, we also know that there must be some active item with which
the passive item can resolve, since passive items are the result of reduction of some
active items.

By definition, these active items and the passive items belong to the same item
set. Since active items must originate from top-down prediction of the start item,
this means that passive items correspond to valid partial grammatical structure of

11However, if we actually inherit the backward pointer from the previous predicted active item,
then we may allow, that the string or semantic expression of the predicted active item may be
changed. Of course, only if this is done in a consistent manner, we will be able to use a reduced
item, i.e., a passive item also for reducing the active item from which the passive item has been
predicted.

83

the input in question. However, this is only true, if the input may not be changed
(by deleting parts or by adding parts). But this is exactly what is required by the
coherence and completeness condition of the Ea-proof problem.

We will next describe the inference algorithm on basis of this notation, before it
is specified in terms of our pseudo programming language.

The indices of the start item will be determined from the value of the essential
feature of a query. This value will serve as the in and from pointer of the start
item. Let q be the query and Ea, the value of its essential feature. Then the start
item is as follows (because q is the only element of the body its index is 0):

〈ans←q ; 0 ; ea(0); ea(0)〉

Thus, if we start with a string or semantic expression, and if we can reduce the
goal, the initial item set contains an answer of the goal that characterizes the input
in question as a valid sign of the language.

The adoption of the four inference rules can be done very similarly. All of them
generate either active or passive items depending on the form of the new lemma of
the generated item. If the generated item is active, this active item will be added to
the item set, whose index is determined on the basis of the selected element of the
new item. If such an item set does not exist, it will be created. If the generated item
is passive, we add it to the item set which is indicated by the backward pointer of
the active item it was generated from. Note that such item set must exist, because
otherwise the passive item would not exist.

In all of the inference rules at least active items are involved. They only differ
with respect to the second structure involved. For the predictor and scanner this
will be the grammar and lexicon. Passive items are involved for passive completion
and active completion. Using the notation above, we can describe the inference rules
as follows:

Prediction will predict new instantiations of grammar rules on the basis of the
selected element of an active item of form

〈h←b0 . . . bn ; i ; ea(i); ea(k)〉

If R is a non-unit unified grammar rule of form bi←p1, . . . , pm with selected
element pj , then generate item

〈R; j ; ea(j); ea(i)〉

otherwise (i.e., R is a unit rule) generate item

〈R; ε ; ea(i); ea(i)〉

84

This means that an instantiated empty production will always be placed into the
same item set from which prediction took place. Note that the predictor basically
links predicted items on the basis of the value of the essential feature of their selected
elements.

Scanning will reduce an active item on the basis of unified lexical material. If
the selected element of an active item of form

〈h←b0 . . . bn ; i ; ea(i); ea(k)〉

can be unified with some lexical entry L, and if the reduced lemma rl (i.e., the
unified clause minus its selected element) is non-unit, then generate item

〈rl; j ; ea(j); ea(k)〉

otherwise, generate item

〈rl; ε ; ea(k); ea(k)〉

Two points are important to note here. First, the scanner reduces an active
item on the basis of lexical material, which corresponds to some part of the input
string or semantics. This means, that for the reduced lemma, this part of the input
has actually been consumed. Second, the new generated item inherits the backward
pointer of the active item. In principle this means that the scanner defines a lower
bound for the chain of predicted items that lead to a unified lexical entry. If the new
generated item is an active one, then the selected element initializes a new prediction
chain.

Passive completion operates on a passive item and searches for active items,
which are in the same item set as the passive one. Thus if the passive item is of
form

〈b; ε ; ea(k); ea(k)〉

and if there is a unify-able active item of form

〈h←b0 . . . bn ; k ; ea(k); ea(l)〉

and if the reduced lemma rl is active, then generate item

〈rl; j ; ea(j); ea(l)〉

otherwise (i.e., rl is passive) generate item

〈rl; ε ; ea(l); ea(l)〉

85

Active completion performs basically the same task with the only difference
that it operates on an active item and searches for passive items. Thus if the active
item is of form

〈h←b0 . . . bn ; k ; ea(k); ea(l)〉

and if there is a unify-able passive item of form

〈b; ε ; ea(k); ea(k)〉

then generate either

〈rl; j ; ea(j); ea(l)〉

or

〈rl; ε ; ea(l); ea(l)〉

Note that both completion rules can call each other indirectly via add-item
depending on the form of the generated item.

In summary, the inference rules work together in such a way that the predic-
tor establishes a prediction chain on the basis of the decomposed input, where the
completion rules (including the scanner) basically stop a prediction chain, by even-
tually initializing a new local prediction chain. The next figure 4.12 serves as an
illustration of this behaviour.

However, in each case only those items are considered whose essential feature
have the same value. Thus each inference rule is only applied on a small subset of
items.

4.10 Extending the Un-indexed Version to an Indexed
Version

We are now in a position to modify our first version, which we also can call the
“un-indexed version” to handle a chart. The agenda control procedure process
need only be changed so that it inspects the initial item set for possible results. For
the function make-start-item we have to make sure that the initial state set is
created using the value of the essential feature as index. The function add-item
must be changed in such a way that the item set in which a new item eventually
is inserted is chosen from the in slot of that item. However, this is easy since each
item knows the item set it is a member of. The procedure apply-task can be used
unchanged. Thus we have:

86

Figure 4.12: The relationship of generated items of the different inference rules.

(1) proc process(in: Goal; out: Result):
(2) StartItem := make-start-item(Goal);
(3) add-task-to-agenda (StartItem,prio(StartItem),Agenda);
(4) while not(empty-agenda-p(Agenda))
(5) do CurrentTask := get-highest-prio-task(Agenda);
(6) if add-item(CurrentTask) then
(7) do apply-task(CurrentTask)
(8) if ∃ I ∈ Sval(Goal/Ea); I is of form

〈ans; ε; val(Goal/Ea); val(Goal/Ea)〉
(9) then Result := push(I,Result); fi
(10) od
(11) od
(12) Result := if empty(Result)
(13) then rejection
(14) else Result fi;

87

(1) proc add-item(in: Task out Candidate?):
(2) if Task is not blocked in Sin(Task) then
(3) do add Task to Sin(Task);
(4) Candidates? := true;
(5) od else Candidates? := false;
(6) fi;

Only the definitions of the inference rules need some more changes to be sensitive
for the state sets of the chart. In principle it is possible that when a new item is
generated, then this may eventually cause the creation of a new item set. However,
since an item is first added to the agenda these item sets are initially empty.

We now give the specifications of the “indexed” versions of the inference rules.
We start with the predictor.

(1) proc prediction(in: AL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ Rule ∈ G; Φ = unify(resct(sel(AL)), head(Rule)) and Φ 6= ⊥
(4) do NewItem:= 〈Φ[Rule]; sf(Φ[Rule], Ea); In; in(AL)〉

(5)
with In := if unit(Φ[Rule])

then in(AL)
else val(sel(NewItem)/Ea) fi

(6) create SIn if it doesn’t exist;
(7) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(8) Candidates? := true;
(9) od;

Scanning operates on active items and reduces the active items on the basis of
found matching lexical material; since this can cause consumption of some portion
of the input, the reduced item is eventually added to another item set.

(1) proc scanning(in: AL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ LE ∈ Lex; Φ = unify(sel(AL),head(LE)) and Φ 6= ⊥
(4) do Red := Φ[AL-sel(AL)];
(5) NewItem := 〈Red; sf(Red,Ea); In; from(AL)〉;

(6)
with In := if unit(Red)

then from(AL)
else val(sel(NewItem)/Ea) fi

(7) create SIn if it doesn’t exist;
(8) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(9) Candidates? := true;
(10) od;

88

Passive-completion will be applied on passive items. The from slot of the pas-
sive item indicates which item set has to be used to look for possible active items.
However, the from slot will be identical with the in slot, thus possible active items
are in the same item set that the passive item set is a member of.

(1) proc passive-completion (in: PL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ AL ∈ Sfrom(PL); Φ = unify(sel(AL),head(PL)) and Φ 6= ⊥
(4) do Red := Φ[AL-sel(AL)];
(5) NewItem:= 〈Red; sf(Red,Ea); In; from(AL)〉

(6)
with In := if unit(Red)

then from(AL)
else val(sel(NewItem)/Ea) fi

(7) create SIn if it doesn’t exist;
(8) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(9) Candidates? := true;
(10) od;

Active-completion will be applied to active items. It will search for passive items
in its own item set.

(1) proc active-completion (in: AL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ PL ∈ Sin(AL); Φ = unify(sel(AL),head(PL)) and Φ 6= ⊥
(4) do Red := Φ[AL-sel(AL)];
(5) NewItem := 〈Red; sf(Red,Ea); In; from(AL)〉;

(6)
with In := if unit(Red)

then from(AL)
else val(sel(NewItem)/Ea) fi

(7) create SIn if it doesn’t exist;
(8) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(9) Candidates? := true;
(10) od;

4.11 A Parsing and Generation Example

We will use the following grammar fragment to illustrate the behaviour of the new
indexed version:12

12We do not claim that this fragment is linguistically adequate. Its sole function is to illustrate
the behaviour of the uniform indexing mechanism.

89

vp(Sem)←v(Sem) np pp
vp(Sem)←v(Sem) pp np
vp(Sem)←v(Sem) np
np(Sem)←n(Sem)
np(Sem)←np(Sem) pp
pp(Sem)←p(Sem) np

The phrasal backbone of this grammar is context-free. Thus we implicitly as-
sume that strings are represented as difference lists which are simply concatenated.
For parsing we can assume that the value of Ea is bound to 〈phon d-l〉 and for
generation the value is bound to Sem.

This grammar fragment has the nice property, that for the string “sieht Peter mit
Maria” two readings “sehen(peter,mit(maria))” and “sehen(peter(mit(maria))” will
be analyzed and for the reading “sehen(peter,mit(maria))” the two strings “sieht
Peter mit Maria” and “sieht Maria mit Peter” are generated. Thus the example
illustrates very well how we can reuse completed structures in parsing as well as in
generation.

The figure 4.13 illustrates the indexing mechanism for parsing the string “sieht
Peter mit Maria”. We assume that a lemma counter is used that enumerates the
lemmas just created (starting from 0) and that the agenda mechanism selects tasks
in a depth-first manner. We also count the items that have been placed in some
item set starting by 1. The lemma counter will be attached to an item as a prefix,
and the item counter as its suffix.

Figure 4.13 graphically outlines the trace through the example. To make things
more readable, we are using only the initials of each word of the string. Thus
“sPmM” abbreviates the string “sieht Peter mit Maria”. The sequence in which
item sets are created is indicated by using a counter starting from 0. Thus the index
of the initial item set is “sPmM0”. The counter will then be used as an abbreviation
for the item set indices in an item.

We also show the status of the agenda and the current selected task. We also
show those items which represent alternatives but are suspended in an extra row
“Item of alternative”, to make the depth-first strategy more readable. The trace
can be read as follows (using a telegram-like style):

Add task 0 (the start item) to the initial item set IsPmM0 and remove 0
from the agenda. Task 0 is now item 1. 1 predicts two new task, 1 and
2, from which 2 is the current task. Add task 2 as item 2 to IsPmM0.
Item 2 scans the word “sieht” and the resulting reduced task 3 is added
to the agenda (creating IPmM1); task 3 is added as item 3 to the item set
IPmM1; item 3 predicts two new tasks 4 and 5 from which 5 is determined
as the current task and added as item 4 to IPmM1; scanning of item 4
fails (the difference lists don’t match), so the predictor adds two new

90

tasks 6 and 7 to the agenda (note that 6 is a recursive call to 4; but this
task will be blocked, so that this possible recursive loop is avoided); task
7 is added as item 6 to IPmM1; on item 6 the scanners applies (scanning
“peter”) and the reduced task 9 is added to the agenda (creating ImM2);
task 9 as item 8 predicts task 10; task 10 as item 9 scans “mit” and the
resulting task 11 is added (creating IM3); task 11 as item 10 predicts
task 12; task 12 as item 11 scans “maria” which creates the passive item
12; item 12 completes task 10 which is added as task 15 to the agenda;
task 15 as item 13 completes item 9; the generated task 16 is added as
item 14 to IPmM1; item 16 reduces item 2 which causes reduction of the
start item 0; the first reading “sieht [Peter mit Maria]” is found; now
the second reading “sieht [Peter] [mit Maria]” can benefit from previous
precomputation; it also scans “sieht”, but can directly be reduced with
item 8 and item 15 to yield item 21 and finally item 22; since at this
point the agenda is empty, the whole process stops;

Note that the selection function “simulates” a leftmost selection strategy, since
in each case it is the leftmost element which essential feature is instantiated. Fur-
thermore, it is important to note that each item set fulfills the equivalence condition
as described above, i.e., the inference rules construct well-formed item sets with
respect to their definition.

91

1,6,8 8
1,6,9 9
1,6,10 10

CurrentTask

0[ans ←vp;0;0;0]1
2[vp ←v np;0;0;0]2

sPmM0

PmM1

M3

mM2

Agenda

ε

Item of alternative

Second Result

First Result

1 1

3[vp ←np;0;1;0]3

5

5[np ←n;0;1;1]4

4

4[np ←np pp;0;1;1]

4[np ←np pp;0;1;1]5

7

7[np ←n;0;1;1]6

9[np ←pp;0;2;1]8
10[pp ←p np;0;2;2]9

6[np ←np pp;0;1;1]

1,6,11 11

11[pp ←np;0;3;2]10

1,6,12,13 13

13[np ←n;0;3;3]11

12[np ←np pp;0;3;3]

1,6,12,14 14
1,6,12,15 15
1,6,12,16 16
1,6,12,17 17
1,6,12,18 18
1,6,12 12
1,6 6

19 19
20 20
21 21
22 22

17[vp;ε;0;0]15
18[ans;ε;0;0]16
1[vp ←v np pp;0;0;0]18
21[vp;ε;0;0]21
22[ans;ε;0;0]22

3
2
0 1[vp ←v np pp;0;0;0]

8[np;ε;1;1]7
16[np;ε;1;1]14
19[vp ←np pp;0;1;0]19

15[pp;ε;2;2]13
20[vp ←pp;0;2;0]20

14[np; ε;3;3]12
12[np ←np pp;0;3;3]17

1,6,7
1,4
1,4,5
1,3
1,2
0

Figure 4.13: A trace through parsing of the string “sieht Peter mit Maria”.

92

We now demonstrate how the algorithm is used in the generation mode. Note
that we need to use the path Sem as essential feature. This is the only requirement to
let the indexed version of the uniform algorithm to run for generation in an efficient
manner.

Figure 4.14 shows the trace of the semantic expression “sehen(Peter,mit(Maria))”.
We make a similar abbreviations for the indices. Thus “s(P,m(M))” abbreviates the
semantic expression “sehen(Peter,mit(Maria))”. We also assume that the agenda
control processes tasks in a depth-first manner. The item sets are to be read as
follows:

We start by adding task 0 (the start item) to the agenda. Since, it is also
the current task, it is added as item 1 into the initial state set Is(P,m(M))0;
item 1 predicts two new tasks 1 and 2 from which 2 is determined as the
current task; task 2 is added as item 2 to state set Is(P,m(M))0 which
causes scanning of lexical entry “sieht” and the reduced task 3 is added
to the agenda (this also creates item set IP1); task 3 as item 3 predicts
two new tasks 4 and 5 from which task 5 is added as item 4 to IP1; item
4 scans “peter” and adds new task 6 to the agenda; task 6 as item 5
reduces item 3 which generates task 7 (task 7 creates Im(M)2); task 7 is
added as item 6 to Im(M)2 and predicts new task 8; further processing
yields a new item set Im(M)2 which results after some more steps task
13 which is added as item 15 to Im(M)2; item 13 completes item 7 which
creates task 14; task 14 is added as item 12 to Is(p,m(M))0 which causes
reduction of the start item and the first paraphrase “sieht Peter mit
Maria”; the next tasks to process are 10 and 4 (in that order) which do
not force creation of new tasks; so the next task is task 1 which is added
as item 16 to Is(p,m(M))0; after scanning and active completion with item
3 a new task 16 is added to the agenda which is then added as item 17 to
Im(M)2; item 17 creates a new task 17 which is added as item 18 to IP1;
by active completion of item 17 with item 6 the task 18 is created and
added as item 19 to Is(p,m(M))0; this item leads to the second paraphrase
“sieht mit Maria Peter”, and since the agenda is now empty, we stop!

93

0[ans ←vp;0;0;0]1
2[vp ←v,np,pp;0;0;0]2

s(P,m(M))0

m(M)2P1

M3

1[vp ←v,pp,np;0;0;0]

Agenda Current Task

0 0
1,2 2

1 1

ε

First paraphrase

Second paraphrase

Item of alternative

1,3 3
1,4,5 5 4[np ←np,pp;0;1;1]

5[np ←n;0;1;1]4

1,4,6 6
1,4,7 7
1,4,8 8

8[pp ←p,np;0;2;2]7

1,4,9 9
1,4,10,11 11 10[np ←np,pp;0;3;3]

11[np ←n;0;3;3]9

1,4,10,12 12
1,4,10,13 13
1,4,10,14 14
1,4,10,15 15
1,4,10 10
1,4 4

16 16
17 17
18 18
19 19

14[vp;ε;0;0]12
15[ans;ε;0;0]13
1[vp ←v,pp,np;0;0;0]16
18[vp;ε;0;0]19
19[ans;ε;0;0]20

6[np;ε;1;2]5
4[np ←np,pp;0;1;1]15
17[vp ←np;0;1;0]18

13[pp;ε;2;2]11
16[vp ←pp,np;0;2;0]17

12[np;ε;3;3]10
10[np ←np,pp;0;3;3]14

9[pp ←np;0;3;2]8

3[vp ←np,pp;0;1;0]3 7[vp ←pp;0;2;0]6

Figure 4.14: A trace through generation of “sehen(Peter,mit(Maria))”

94

Note that the selection function “simulates” the semantic-head first selection
function, although coincidentally in all cases the head element is located in leftmost
position. Furthermore, note how the second paraphrase is generated by reusing the
PP “mit Maria” (item 13) and the NP “Peter” (item 6) already computed during
the generation of the first paraphrase. Since the item sets are indexed by means of
semantic information, there is no problem in placing these strings at different string
positions as for the first paraphrase. In this example, the item sets are created
in sequentially because of the depth-first strategy. If we had used a breadth-first
strategy, the item sets IP1 and Im(M)2 would have been created simultaneously.

In the above simple examples we have abstracted away from most details con-
cerning the grammatical “realism” of this fragment. However, in our implementation
we have tested the indexing mechanism not only with the example grammar given
in appendix A, but also with an adaption of the English DCG grammar given in
[Pereira and Shieber, 1987]. We have also processed constructions that make use
of empty elements, such as in the case of gap-threading analysis of topicalization,
wh-movement, and relativization using this grammar without problems.

However, as known from the work of e.g., [Shieber et al., 1989], [Russell et al.,
1990] and [VanNoord, 1993], there is one kind of construction where empty heads are
involved which can cause termination problems for any known generation strategy.
In the next section we discuss this problem in detail and give our solution to it.

4.12 Processing of Empty Heads

In languages such as Dutch and German, there are two positions in a declarative
sentence where tensed verbs may appear: in second position of a main clause, and
in final position of a subordinate sentences.

1. “Heute erzählt Peter Lügen”

2. “daß Peter heute Lügen erzählt.’

3. “Heute erzählt Peter gerne Lügen”

4. “daß Peter heute gerne Lügen erzählt”

One possible approach would be to define specific grammar rules to represent
the different possible distributions of a verb. However, this causes an unacceptable
duplication in the grammar. A more elegant approach would be to use the same verb
phrase rule in both subordinate and main clauses and to use a threading mechanism

95

such that the tensed verb in a main clause is “raised” from an “underlying” sentence-
final position to a surface second position (see [Netter, 1992] for a more detailed
discussion).

In the grammar specified in appendix A (which is an adaption of the one pre-
sented in [VanNoord, 1993]) the subcategorization rule (r1) and the empty vp rule
(r6) realizes such an approach. In these rules the final verb position of a subordinate
clause is directly expressed. For main clauses, it is assumed that the tensed verb in
second position also occupies the final position, but is phonologically empty. This
empty element is defined as the head element of the verbal phrase, which “inherits”
the subcategorization and semantic information in the v2 position. Thus, the empty
element serves as the head of the verb phrase it is an element of, which means that it
will percolate its subcategorization information as well its semantics up to the maxi-
mal projection. This means, that the head is involved in a filler-gap dependency. In
[Netter, 1992] it is also argued for using binary structures instead of a flat structure,
e.g., to allow for insertion of modifiers. This binary branching is expressed in the
rules mentioned above and in the modifier vp rule (r5). Using these rules together
yields the following derivation tree for the string “Heute erzählt Peter gerne Lügen”:

However, parsing and generation of constructions where such rules are involved
is not a trivial task, be they top-down, bottom-up or a mixture of both. And
this is true also for our uniform algorithm, if we do not spend some more effort
to solve the problem. Solving this problem in the uniform approach causes some
problems, because the phenomenon of verb second reveals a real asymmetrical and
dual behaviour for parsing and generation.

96

Parsing For parsing, following a left-to-right on-line strategy, non-termination can
occur for subordinate constructions, because the parser will predict subcategorized
arguments before the verb, that carries the subcategorization frame. If the subcat-
egorization rule (r1) of the grammar in appendix A would only specify information
about phonological information, the predictor has to predict the whole set of gram-
mar rules, which will introduce uninstantiated versions of the empty head rule (r6)
which then causes loops between (r1) and (r6). To overcome these problems, we
have forbidden prediction of the empty head rule at that position by constraining
the value of the feature v2 to be no.13 Now, the empty head rule will not be
applicable because of the clash of the v2 value.

Generation Consider what happens if we generate from the semantic expression
“heute(erzaehlen(peter,luegen))”

If rule (r3) is chosen, then the selected element will be the verb phrase, because
it shares its semantics with the mother node. Using this rule, the predictor will
introduce instantiations of the rules (r1), (r5) and (r6). The latter one, however, has
no body, so that it can directly be used for completion. Completion with the former
introduced rule, will further introduce the same set of rules (modulo restriction),
which clearly brings a termination problem.

The basic problem for generation is that the empty head will receive most im-
portant information from the filler element, which however, cannot be determined
as long as the base case is not found. In order to solve this problem, we have to take
into account filler information at the time the empty head rule is predicted.

A first obvious solution would be to redefine the rule that introduces the verb to
be argument to the slash value, i.e., to change rule (r3) such that the verb and the
verb phrase share the semantics. Now, our selection function would choose the verb
first, whose completion would instantiate the verb phrase proper, so that the above
semantic expression can be handled by the algorithm to produce the string “heute
erzaehlt peter luegen”.

The changed definition expresses that the semantics of the verb second is identical
with the whole verbal phrase. In general however, the verb will not be the semantic
head of the sentence, at least in the case of adverbial modifiers. Thus using the
modification above, it would not be possible to process a sentence like “heute erzaehlt
peter gerne luegen’.

But then, we have to live with the original verb second rule. We now present a
solution which is similar to the one presented in [Shieber et al., 1990]. Our approach
works as follows. When the predictor is applied on a selected element, that could
predict the empty head rule, then after unification with the (restricted) selected
element but before the new item is added to the agenda, we check whether we
can scan with the information of the filler (in our grammar, the value of the v2

13We assume that only the empty head rule has this feature, and that other empty rules do not.

97

feature) a lexical entry. Since, the filler has been instantiated with information
from the selected element, this will only be possible, if the generator has traversed
the semantic expression to the point of finding a verb. For a semantic expression
like, “heute(gerne(erzaehlen(peter,luegen)))” this will be the case for the partial
expression “erzaehlen(peter,luegen)” but not for “heute(. . .)” or “gerne(. . .)”. Only,
if a matching filler can be found, the thereby “completed” empty head rule will be
added to the agenda. This means, that the empty head rule will only be instantiated
(including subcategorization information) by genuine potential fillers. The empty
head can now serve as the base case for the recursive process in the same way as it
would for the lexical filler.

If we assume that the interface between the grammar and the uniform algo-
rithm provides us with a predicate empty-head-p (which returns true if the cur-
rent grammar rule is the empty-head rule) and function filler (which extracts the
information from the filler), then the modified prediction rule is as follows:

(1) proc prediction(in: AL; out: Candidates?):
(2) Candidates? := false;
(3) ∀ Rule ∈ G; Φ = unify(resct(sel(AL)), head(Rule)) and Φ 6= ⊥
(4) do if empty-head-p(Φ(Rule)) then
(5) ∀ Lex ∈ Lex; Ψ = unify(filler(Φ(Rule)), Lex) and Ψ 6= ⊥ do
(6) NewItem:= 〈Ψ[Rule]; ε; in(AL); in(AL)〉;
(7) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(8) Candidates? := true od;
(9) else do
(11) NewItem:= 〈Φ[Rule]; sf(Φ[Rule], Ea); in(AL); in(AL)〉;

with In := if unit(Φ[Rule])
then in(AL)
else val(sel(NewItem)/Ea) fi

create SIn if it doesn’t exist;
(12) add-task-to-agenda (NewItem,prio(NewItem),Agenda);
(13) Candidates? := true;
(14) od

One could criticise this approach because this solution raises the issue of tuning
programs to treat specific problems as they are encountered. Clearly, if an analysis
would be available, that is specified in the grammar rules (in the same sense, as we
used the v2 feature to cope with empty heads in parsing), the specific modifications
are no longer necessary.

In fact, [VanNoord, 1993] proposes a completely different analysis of the verb
second phenomenon. In this analysis grammar rules may combine their daughters by
more complex string operations, e.g., wrapping operations. However, the problem
with van Noord’s approach is that parsing cannot be performed on-line, because at

98

least for the head-corner parser Van Noord’s approach requires that the whole input
string is known in advance. Thus his approach seems problematic for incremental
processing. In this case a left-to-right scheduling combines more naturally with an
incremental (and on-line) approach.

4.13 Properties

The uniform tabular algorithm is a straightforward extension of the optimized gen-
eral SLD-resolution rule whose correctness is proven in [Höhfeld and Smolka, 1988].
Thus it also inherits this property. This can be seen as follows.

Each inference rule applies the optimized goal-reduction rule, i.e., it is checked
whether two clauses can be combined to build a resolvent, whereby satisfiability of
the constraints involved is checked immediately by means of unification. If unifica-
tion fails, it is known that this part of the search space cannot contain an answer,
and consequently the two clauses will not derive a lemma.

The prediction rule generates new items on the basis instantiations of grammar
clauses, i.e., it predicts (instantiated) axioms defined by the grammar. The scan-
ning rule performs a reduction of an active item using an instantiation of a lexical
clause. Thus it also uses axioms for reduction. The rules passive-completion and
active-completion combine two already derived lemmas. However, these completion
operations can only be performed if either prediction or scanning has been applied.
Therefore, these rules are performed on axioms or consequences of axioms. Since
the completion rules reduce the body of an active lemma they will transform it to a
passive lemma by repeated application. Thus the selection function has fewer and
fewer literals from which to select.

Each inference rule is fair because it will generate a set of items where each item
correspond to a possible alternative branch at that point of the derivation. Thus,
they have a “built-in breadth-first” component, which guarantees completeness.

The indexing mechanism does not destroy this property because of the following
reasons. Firstly, the indices are determined directly form the value of the essential
feature, which is done after unification successfully takes place. Secondly, the com-
pletion rules active-completion and passive-completion need only to consider their
corresponding item sets because it is guaranteed that all phrases of a given type
are stored in the table before any attempt is made to use the table to look for
phrases of that type [Pereira and Shieber, 1987]. Furthermore, passive-completion
and active-completion can only take place after prediction and scanning have been
performed. Finally, the backward pointer mechanism as defined in 4.9, guarantees
that no solution of a sub-goal are out of view because all items in one item set share
one common property, namely that they are compatible with respect to the value of
the essential feature of one of their literals, which is the head in the case of an unit
lemma, and the selected element in the case of an non-unit lemma. Thus, an item

99

set is a meeting place of active and passive items, such that an active item looks for
some passive item to resolve with, and vice versa, that a passive item looks for an
active item which it can resolve. However, both are identical with respect to the
value of their essential feature.

All derived candidate items are first added to the agenda before they are placed
into the appropriate item sets. The agenda control guarantees that all derived items
will be inserted into an item set, which means that they are possibly applied by
next application of the inference rules. Before an item is added to an item set, the
blocking test checks whether there is already a subsuming one in there. If so, the
item is not added. Thus, the blocking test guarantees that only most general lemmas
are kept in the item sets.

General flow of control The uniform algorithm is a generalization of the original
Early deduction method presented in [Pereira and Warren, 1983] since it can be used
for parsing and generation in both a uniform but task-oriented manner. The basic
flow of control is a mixed top-down and bottom-up strategy. Prediction is performed
top-down by the inference rule prediction. Passive-completion performs a bottom-
up completion, where active-completion as well as scanning could be viewed as a
kind of top-down completion.

The processing order of the elements of the body of a clause is partially data-
driven. Therefore, the grammar itself is an important source of control, since it is
the place which defines how a string or semantics expression is to be composed. The
selection function we are using is able to dynamically make use of this knowledge.
Thus, it depends on the grammar whether the selection is performed in a leftmost
or head-driven way or whatever. Moreover, if the grammar also expresses a kind of
left-to-right decomposition of semantic information, our algorithm would be leftmost
also in the case of generation. On the other hand, if the phonological information
has a head-oriented representation, our algorithm would be able to “simulate” a
head-corner parser. Thus, although our algorithm is oriented towards efficiency it
can handle a wide range of grammar theories.

Top-down versus bottom-up It has often been argued that lexicalized gram-
mars are better to process bottom-up than top-down because the lexicon defines
important information for termination and because lexicalized grammars like Cate-
gorial Grammar or hpsg only allow very general predictions because of their use of
very general rule schemata. Clearly, the first aspect is valid, if only simple top-down
methods are used. However, using complex (and clever) strategies, these termination
problems are avoided.

If only general rule schemata are used, we can say the following. Because of
the general nature of the schematic rules, and because our algorithm tries to look
for lexical information as early as possible, the size of a predicted derivation tree is

100

small (in the case of lexical grammars). Only when lexical information is available,
its size will increase but be limited with respect to the subcategorization information
of the lexical entry. However, if lexical entries are identified for the next parts of
the input then more and more constraints for constructing the possible analysis are
spread over the derivation tree. But then, more specific predictions are possible,
and the algorithm is strongly goal-directed even in the case of lexicalized grammars
like hpsg.

Coherence and completeness Coherence and completeness as required by the
Ea-proof problem (see section 3.4) is handled in the following way. Note that the Ea-
proof problem requires that only and all elements of the input are considered during
a proof. The coherence part means that during processing no additional information
may be added. To ensure this property, we actually perform scanning in a two step
approach. If scanning is tried for some selected element, we first perform a lexical
lookup using the first element of the string (i.e., the value of the essential feature)
or the current value of the predicate of the lexicon. This is meaningful, since lexical
entries are inserted into the lexicon using exactly this information as a key. Thus if
lexicon lookup fails the scanning process also fails for this selected element. However,
if possible lexical entries can be retrieved we unify them with the constraints of the
current selected element. The advantage of performing scanning in this two step
way, is that (a) we immediately know of some information in the input which is
not valid, (b) that we also can process multiple word entries, and (c) that we only
consider information present in the input. Since, it might be the case that some
lexical entries do not have a semantic information we require that these entries have
a semantic value *nil defining the “null” semantics.

Completeness is checked easily as follows. Note that we require that the reduced
start item should be added to the initial item set. However, this is only possible if
the value of the essential feature is identical to the input (which has been used to
define the index of the initial item set). Thus if we know that the initial item set
does not contain an answer we reject the query, even in the case that some other
item sets contain an answer.

Termination It is known that unrestricted unification or constraint-based gram-
mars have the formal power of a Turing machine (e.g., [Pereira and Warren, 1983],
[Haas, 1989]), thus termination can only be guaranteed for restricted classes of
grammar formalisms. For example in section 4.12 we have shown that the subcate-
gorization rule can cause non-termination through completion if we do not restrict
the applicability of the empty vp-rule.

From the work of [Bresnan, 1982], [Pereira and Warren, 1983], [Haas, 1989], and
[Shieber, 1989] we know that termination can be guaranteed if a grammar is off-line
parsable, i.e., if it is finitely ambiguous. These results, however, have only been

101

worked out for the case of parsing. A termination condition for both parsing and
generation is given in [Dymetman et al., 1990] for the class of “Lexical Grammars”.
It states that if each rule or lexical entry consumes a non-empty part of the input
(either string or semantic expression) then termination can be guaranteed.14 For the
case of generation, for example, this means that termination is ensured for grammars
in which the lexical entries are defined in such a way, that the semantic structures
of each of the elements on the subcategorization list is “smaller” than the semantic
structures of the lexical entry itself (see also [VanNoord, 1993]). If a grammar fulfills
these criterions our uniform algorithm is guaranteed to terminate.

On-line The current approach is defined as an on-line algorithm in the sense, that
it does not initialize the chart for each individual element of the input before these
elements are then combined, but rather creates new item sets on demand.

This is especially useful in the case of generation, because in general the gener-
ator cannot know in advanced which lexical elements belong to which part of the
semantic expression. Of course, our algorithm could easily be adapted to such kind
of initialization step, if a process is available, that can assign to each part of the
semantic expression a corresponding lexical entry. However, at least in the case of
generation, we prefer an on-line approach, because only then syntactic information
can be taken appropriately into consideration to restrict lexical access during early
stages of processing.

Furthermore, using an on-line approach together with top-down prediction is
necessary to satisfy the valid prefix property as discussed for example in [Schabes,
1990] and it is also an important basis for incremental processing which we will
consider in more detail in the final chapter of this thesis.

Uniform indexing mechanism The indexing mechanism that we have intro-
duced could be seen as a generalization of the Chart or tabular approaches developed
in the area of parsing algorithms but now also available for generation. Since we use
the value of the essential feature, the indices of all item sets together simulate a kind
of input traversal. For example, if the grammar describes a left-to-right concatena-
tion of strings, then the indices describe the left-to-right traversal of the string, so
that the index of a “right” item set is a proper substring of the index of a “left”
item set. In the case of generation, the indices can be viewed as being constructed
by a means of predicate/argument traversal. Since, we view a predicate/argument
construction structurally as a tree, generation realizes a kind of tree traversal.

Agenda-based control The inference rules have been embedded in a flexible
agenda mechanism. This allows us to realize not only depth-first or breadth-first
strategies but also more sophisticated preference-based strategies. Although we

14A formal treatment of this property can be found in [Dymetman, 1994].

102

have only used a randomized priority function as a third alternative to depth-first
and breadth-first, it should be clear that if the grammar assigns preferences to its
elements, we can easily take advantage of these preferences. Thus, our uniform
algorithm is also open to such preference-based strategies.

Using an agenda mechanisms allows us to suspend the addition of an item to its
item set until this item is chosen as the current task of the agenda. Each assigned
priority of an item can be viewed as a kind of time stamp, which specifies when the
item should be considered for processing. If the priority queue is handled as a stack
realising a kind of depth-first or best-first strategy and if we suspend processing
after the first successful result has been found, then only those items are added to
the chart, that were needed for deriving this result. Thus only a subset of generated
items is considered by the inference rules as well as by the blocking rule.

4.14 Implementation

The uniform tabular algorithm is fully implemented in Common Lisp. It uses two
well-tested existing tools: UDiNe an advanced feature constraint-solver [Backofen
and Weyers, 1993] and Fegramed, an interactive graphics editor for feature structures
[Kiefer and Fettig, 1994]. Both tools have been developed as parts of the disco
system, a natural language core system for German [Uszkoreit et al., 1994].
UDiNe is a feature constraint solver capable of dealing with distributed disjunc-

tions over arbitrary structures, negative co-references, full negation, and functional
and relational constraints. It is the first (and to our knowledge the only) imple-
mented feature constraint solver that integrates both full negation and distributed
disjunctions. Although we have not made use of disjunction in this thesis, we have
made use of them in some small grammars in order to show that our algorithm is
also capable in dealing with more complex feature representations.

We will now describe some of the implementational aspects of our uniform tab-
ular algorithm. This implementation description is not meant to be the only way or
the best way to implement our uniform algorithm.

Representation of grammar and lexical entries UDiNe is used to represent
feature structures. Feature structures are represented in a string-like notation where
variables are prefixed with the sign %. Such string notation is then transformed by
a special UDiNe reader in some internal Lisp structures.

Definite clause specifications are then described in Lisp-list notation, where a def-
inite clause is represented as a list, where the first element represents the head and
the remaining elements represent the body of a clause. Each relation is represented
as a list, where the first element represents the relational atom and the remaining
elements represents the arguments of the relations directly specified as feature struc-
tures in string notation. The following structure shows the Lisp representation of

103

rule (r1):

((sign "[(cat vp)
(sc %Tail)
(sem %Sem)
(lex no)
(v2 %V)
(string [(d-l %p0)

(e-l %p)])
(deriv [(name vp-sc)

(dtrs [(first %1)
(rest [(first %2)

(rest end)])])])]")

(sign "%Arg=[(sc end)
(v2 no)
(string [(d-l %p0)

(e-l %p1)])
(deriv %1)]")

(sign "[(cat vp)
(sc [(first %Arg)

(rest %Tail)])
(sem %Sem)
(v2 %V)
(string [(d-l %p1)

(e-l %p)])
(deriv %2)]"))

Grammar and lexical rules are transformed in some internal representation,
where the grammar and lexicon are stored as a hash table whose key values are
lists of possible entries. For grammar rules the relation name of the head of a clause
and its arity is used to construct a symbol which is used as the key in the hash ta-
ble. Thus, the above rule would be inserted under the key sign/1. However, storing
of grammar rules in a hash table in that way only makes sense if we use a set of
different relational symbols. For the grammar in appendix A however we only used
the relation name sign. In order to retrieve grammar rules efficiently, we therefore
use the value of the feature cat for determining the hash key. The effect is that
all grammar rules with same category value are stored in a list under the same key.
Our implementation can be parameterized with respect to this issue.

For lexical rules we actually use two different hash tables, where both point to
the same set of lexical entries (i.e., the same set of entries can be retrieved from
two different directions). For parsing we use the first string element (which can be

104

accessed via the path 〈string d-l first〉, and for the generation we are using the
predicate name (via the path 〈sem pred〉).

Using these data structures, scanning is performed in two steps. First, for the
selected element of an active item, a possible key is determined which is either found
under the path 〈string d-l first〉 or 〈sem pred〉. If such a key can be determined
the corresponding entries in the lexicon are retrieved and a list of possible candidates
are returned (which can be the empty list, if no entries exist for this current key).
Each candidate is then unified with the constraints of the selected element. If the
constraints of the selected element do not specify any information about a string
or a semantic information, no key can be determined. If this happens, the scanner
does not apply. This is also the case if no lexical entry for a key can be determined.

In order to syntactically distinguish between definite clauses, that represent
grammar rules and lexical rules, we prefix each clause either with the special gram-
mar rule symbol “< −” or with the lexical entry symbol “<< −”. Thus the above
grammar rule would be rewritten as

(< − (sign “. . . ”) (sign ‘. . . ”) (sign “. . . ”))
where as a lexical entry would be written as

(<< − (sign “. . . ”))
Both symbols are actually macros that call the respective functions.

Representation of item sets The structure of an item is represented as a record
structure using the defstruct construct of Common Lisp in the following way:

(defstruct item
clause ;; internal representation of a definite clause
selected-element ;; the selected element
position ;; its position
unit ;; T if clause is unit otherwise NIL
in-set ;; the index of the item set item is a member of
from-set ;; the backward pointer
number ;; the number of the item
ignore ;; indicates whether the item should be ignored or not
)

The inference rules only use the value of the slot selected-element. We explicitly
represent the position for efficient reduction of a clause.

The structure of an item set is a record of the following form:

(defstruct item-set
index ;; the index of the item set
active-items ;; a hash table that keeps active items
passive-items ;; a hash table that keeps passive items
number) ;; the number of the item set

A global list is then used to store the several item sets.

105

The selection function The selection function returns two values: the selected
element and its position. The Lisp definition of the selection function currently used
is as follows

(defun dynamic-selection (clause &aux (body (clause-body clause)))
(if body

;; if clause has a body
(multiple-value-bind (selected-element pos)

;; determine the selected-element and its position
(get-next-dtr body)

(if selected-element
;; return both if found
(values selected-element pos)

;; otherwise choose the leftmost, which has pos 0
(values (first body) 0)))

;; NIL is used to indicate epsilon
(values nil nil)))

(defun get-next-dtr (body)
"loop through the elements of the body until there is

a body whose essential feature is instantiated. In that
case return the relation and its position. Otherwise return
NIL."
(let ((cnt 0))
(dolist (relation body (values nil nil))
(if (if (equal *ef* *sem-path*)

(get-sem-constraints relation *sem-path*)
(get-string-constraints relation *phon-path*))

(return (values relation cnt))
(incf cnt)))))

We use a dispatching mechanism to store the selection function to be used by
the inference rules. This is easily done in Lisp by storing the selection function as
a property to a specific Lisp symbol. The inference rules then have to access this
property field and then call the bound function to the current arguments. In our
system we use the symbol :selector and the property :function to bind the selection
function. Thus, when a new item is created, the currently bound selection function
is activated by the call:

(funcall (get :selector :function) clause)

We have used such a mechanism to be able to experiment with several selection
functions without the need for recompiling the whole code. Furthermore, if it is
known that for a specific grammar the leftmost selection function is needed, it is

106

very easy to define such a function and to make it available to the inference rules.
For example the definition of the leftmost selection function could be:

(defun leftmost-selection (clause &aux (body (clause-body clause)))
(if body

(values (first body) 0)
(values nil nil)))

Thus, our implementation is modular with respect to the selection function.

Inference rules The Lisp definitions of the inference rules are all very similar and
more or less follow the abstract definitions as used in the previous sections. The
schematic structure of an inference rule is as follows:

(defun <inference-rule> (item)
(let* (<x>

;; X := either the selected-element or the clause of the item itself
<candidates>
;; possible candidates
(coob (make-control-obj *global-fail-context-set*))
(candidates? nil))

(if (consp candidates)
(dolist (candidate candidates candidates?)
(let* ((unify-res (unify-clause x candidate coob))) ; call unifier
(unless (eq unify-res fail) ;; if MGU exist
(let ((new-item

(make-item candidate <some-more>)))
(add-task-to-agenda new-item

(compute-priority new-item
:producer <something>)
agenda)

(setq candidates? T)))
(reset-ctrl-obj coob))))))

The set of possible candidates are determined in dependence of the status of
the current item (active or passive) and of the specific task the inference rule is
defined to fulfill. The unifier UDiNe performs unification destructively, keeping a set
of control objects which can be used to “reset” the effects of destructive unification.
On each candidate the unifier is applied. If unification does not fail, a corresponding
new item is created and added to agenda *agenda*. In our current implementation,

107

each clause of a new item is copied. Thus we only have to keep one control object
which has to be reseted after unification takes place (in all cases).

Note that because of the general scheme for inference rules, it might also be
possible to define additional inference rules, for example one, that performs some sort
of bottom-up prediction. We have actually implemented such rules (for experimental
reasons), however, one should be aware of the fact, that this might change the
characteristic behaviour of the whole algorithm. For this reason, we do not want to
discuss this further possibility.

The agenda control The Lisp definition of the basic agenda control looks as
follows (abbreviated where convenient):

(defun prove (goal)
(let ((goal-pred (predicate (clause-head goal)))

(start-item (make-start-item goal)))

(add-task-to-agenda start-item
(compute-priority)
agenda)

(do ((task (get-highest-priority-task *agenda*)
(get-highest-priority-task *agenda*)))

((null task) (if (consp *result*) T))

(if (add-item task) ;; only adds item if not blocked;
(let ((result (get-answer goal-pred task)))

;; check initial item set
(if result

(progn
(setf (item-ignore result) T)

;; ‘‘simulates’’ removal of found answer from item set
(push result *result*)
(if *all-p* ;; non-interactive mode

(process-one task)
(progn
(print-result (lemma-clause result))
;; used fegramed to show result
(if (yes-or-no-p

"~&Should we continue looking for solutions? ")
;; Prolog-like interactive mode
(process-one task)

(return T)))))
;; if currently no answer has been found

108

(process-one task)))))))

(defun process-one (item)
(if (item-unit item)

(passive-completion item)
(or (active-completion item))

(progn
(prediction item)
(scanning item))))

109

4.15 Item Sharing Between Parsing and Generation

The uniform tabular algorithm developed so far is new and exhibits several relevant
novel ideas, e.g., a dynamic selection function for parsing and generation and the use
of a uniform indexing mechanism for both tasks. It combines previous approaches for
parsing and generation in one computational framework, and shows that parsing and
generation can be realized uniformly and efficiently. Since we have considered parsing
and generation in an isolated way, we are still in the main stream of grammatical
processing.

However, we now present a novel method for grammatical processing, namely
the use of items produced in one direction (e.g., parsing) directly in the other direc-
tion (e.g., generation). We will call this method item sharing between parsing and
generation.

If one assumes that parsing and generation are performed in an isolated way, then
such method seems to be an overhead. However, in the next chapter we will argue
at length that a tight integration of parsing and generation is necessary in order to
handle performance aspects like monitoring, revision or generation of paraphrases.
On the basis of this discussion we present a set of new methods (in order of increasing
complexity) that benefit from the uniform tabular algorithm in combination with
the item sharing approach.

To my knowledge, the possibility of sharing items between parsing and generation
has not been addressed in the literature so far. Under this perspective, our item
sharing approach is a new dimension in the area of uniform processing of reversible
grammars and demonstrates that the integration of parsing and generation can be
achieved in an efficient way.

4.15.1 The Basic Idea

In this subsection I will outline the realization of the item sharing method. Assume
that the uniform algorithm is in the parsing mode. Then in each case a passive
item is computed we automatically make available this item also for the generation
mode. Thus, for example, if we are going to generate from the semantics of the
parsed input we directly can return the previously computed answer during parsing
as result of the generation mode (i.e., if we only consider one paraphrase). More over,
if we perform generation using a different semantics as the “parsed” one, but which is
identical with respect to some partial semantics structures (e.g., some arguments are
semantically identical), then the generator also can “reuse” the results determined
through parsing. Clearly, this kind of processing makes only sense if during parsing
and generation the same grammar is used.

The restriction of sharing only passive items is plausible for the following reasons.
Note that passive items have no selected element, and the value of the in and
from slots are the same. Assume we are in the parsing mode. Then, by means

110

of the definition of item sets (see section 4.9), the appropriate values for the in
and from slot for the direction mode can directly be determined on the basis of
the semantics information of the passive item. This guarantees that shared passive
items produced during the parsing mode, are at their right places when they are
used by the generation mode.

On the other hand, for active items, in general the chosen selected elements dur-
ing parsing and generation will be different, and the essential argument of the other
direction will be un-instantiated. Therefore, it would not be possible to determine
the right place of an shared active item as it is the case for shared passive items.

On the basis of these observations, the structure of an item sharing approach
using the uniform tabular algorithm is as follows: We assume that the uniform
algorithm maintains two different agendas, one for the parsing mode and one for
generation. This is no overhead, because it allows us to order the tasks of an
agenda using, for instance, different preferences. Since items sets are considered as
equivalence classes, that are determined on the basis of the value of the essential
argument, we assume that parsing and generation have different item sets. Item sets
consist of active and passive items. Now, we require that passive items are shared
between the item sets determined during parsing and generation. This means, that
the parser and generator each have there own private active items but can operate
on the same set of passive items. Figure 4.15 illustrates the structure of the item
sharing approach.

111

Figure 4.15: The item sharing approach using the uniform tabular algorithm. During
the different modes the uniform algorithm maintains different agendas and private
active items for the different modes. However, passive items are shared by both
directions.

112

4.15.2 Adaptation of the Uniform Tabular Algorithm

In order to adapt the uniform algorithm for the item sharing method we change the
structure of an item such that it contains different slots in and from for parsing
and generation. Thus, we have

〈L; i; inp; fromp; ing; fromg〉

where L denotes the lemma of an item, i the (position of the) selected element.
During parsing the slots inp and fromp are used and during generation the slots
ing and fromg.

If we are in one of the two possible directions, say parsing, then for active items
only the corresponding in and from slots are filled with values of the essential fea-
ture. The other slots are unbounded which will be denoted by using the symbol
none. We will use the notation phon(i) to denote the value of the essential argu-
ment used during parsing and sem(i) to denote the value of the essential argument
used during generation. Then the general structure of active and passive items is as
follows. In the case of parsing, active items are of form

〈al; i; phon(i); phon(k);none;none〉

and for passive items we have

〈pl; ε; phon(m); phon(m); sem(m); sem(m)〉

where al is an active lemma with selected element at position i in the body of
al, phon(i) is the index of the item al is a member, and phon(k) is the backward
pointer. pl is a passive item with no selected element, and m the pointer to the
head of the passive lemma. Note that in the case of passive items, the value of the
essential arguments for both parsing and generation are determined on the basis of
the constraints of the passive lemma’s head. This is consistent with respect to the
definition of item sets.

Analogously, for generation active items are of the form

〈al; i;none;none; sem(i); sem(k)〉

and for passive items we have

〈pl; ε; phon(m); phon(m); sem(m); sem(m)〉

Now the inference rules can easily be adapted to handle such item structure.
Firstly, the uniform algorithm only considers one in-from pair, depending on the
major mode, for example parsing. If a new re-solved lemma (determined through
prediction or completion) is active, only the in-from pair of the major mode is

113

filled with the value of the essential argument. The value of the generation slots
are by default none. However, if a passive lemma is re-solved the slots used by
generation receive values determined on the basis of the essential feature specified
for this direction (i.e., the value of the sem path). However, this is actually only
done, if the essential argument is indeed instantiated, otherwise the default value
none is used. This guarantees that for passive items, where only the essential feature
of one direction (for parsing this is the string feature) is instantiated are not shared,
which is necessary, if empty rules are involved. As a consequence, we forbid that
empty elements (like gaps) are not shared unless they are filled with some value.

4.15.3 An Object-Oriented Architecture

Clearly, to be able to assign the correct values to the in and from slots, the uniform
algorithm has to know in which mode it is. To make this an automatic task the
uniform algorithm has been embedded in an object-oriented environment. In this
environment parsing and generation are defined as instances of a class proof, and
the control mechanism of the underlying object-oriented language automatically will
choose the right slots.

The item sharing method has been implemented on the basis of the implementa-
tion of the uniform tabular algorithm. Since Common Lisp now also entails the Com-
mon Lisp Object System (CLOS for short, [Steele, 1990]) as an standard extension,
it has been very easy to embed the uniform tabular algorithm in an object-oriented
environment.15 The definition of the general class proof is as follows:

(defclass proof ()
((name :accessor name :initarg :name

:documentation "The name of the prover.")

(sf :accessor sf :initarg :sf
:documentation "The specified selection function.")

(start-item :accessor start-item :initarg :start-item
:documentation
"The item that carries the goal to prove.")

(result :accessor result :initarg :result
:documentation

15In [Keene, 1989] and [Winston and Horn, 1989] good introductions to CLOS can be found. In
[Neumann, 1993] we describe an CLOS-based framework for natural language system design. This
approach has been used for the realization of the architectural platform of the systems DISCO and
COSMA, cf. [Uszkoreit et al., 1994].

114

"Holds the result of the proof.")

(agenda :accessor agenda :initarg :agenda
:documentation

"The agenda processed by the prover.")

(task-counter :accessor task-counter :initarg :task-counter
:documentation "Counts tasks from 0 upward.")

(prio-fct :accessor prio-fct :initarg :prio-fct
:documentation

"The priority function to be used by the agenda.")

(restrictor-fct :accessor restrictor-fct :initarg :restrictor-fct
:documentation

"The restrictor function defined for prover instance.")

(lex-access-fct :accessor lex-access-fct :initarg :lex-access-fct
:documentation
"The function that performs lexical access.")

)
)

Note that for the above definition as well as for the definitions that come we
make use of implementational aspects already described in 4.14.

Parsing and generation are simply defined as subclasses of this class and instances
are created in the following way:

(make-instance ’parse
:name "Parsing direction"
:sf #’dynamic-selection
:agenda (make-agenda)
:task-counter 0
:prio-fct #’depth-first
:restrictor-fct #’restrict-clause
:lex-access-fct #’string-access
)

(make-instance ’generate
:name "Generation direction"

115

:sf #’dynamic-selection
:agenda (make-agenda)
:task-counter 0
:prio-fct #’depth-first
:restrictor-fct #’restrict-clause
:lex-access-fct #’sem-access
)

Note that the slot :lex-access-fct is the only slot that is assigned with different
(functional) values.

All functions (with the few exceptions given below) are defined as methods for
the class proof. This means, that the control function, the inference rules, as well
as the agenda mechanism is still the same, and defined only once. In some sense,
this means that the uniform tabular algorithm only exists one time, but is used by
the two different instances. The advantage of using two different instances is that
we can easily maintain different agendas or can use specific priority functions for
both instances. Thus, our implementation directly mirrors the architecture of the
item sharing approach as shown in figure 4.15.

The only functions that are defined as specific methods for the parsing and
generation classes are make-item and add-item (see section 4.14), and they differ
only with respect to one additional call of a function. For the case of make-item,
we have to provide, that if a new lemma is passive, we have to determine values for
the slots of the direction that is currently not active. And for the case of add-item
we additionally have to add the new item to the corresponding item set (which has
been created trough make-item, if the new lemma is passive) maintained by the
inactive instance. Note that this does not mean that the new item is copied, but
that the parsing and generation instances actually share this item (internally this
means that Lisp provides two pointers to the same internal object).

To illustrate the behaviour of the item sharing approach consider the parsing
and generation example given in section 4.11 (see also figures 4.13 and 4.14). For
example, when during parsing the passive item for the partial string “mit Maria” is
re-solved (in figure 4.13 it is the item with task counter 15 and item number 13), then
this will cause the creation of an item set for generation with index “mit(Maria)”.
Additionally a pointer to the passive item 13 is established. In the item sharing
approach the structure of the item 13 is (making use of the abbreviations introduced
in section 4.11):

15[pp; ε; ‘mM ′; ‘mM ′; ‘m(M)′; ‘m(M)′]13

Thus if we perform generation with the semantics “sehen(Peter,mit(Maria))” the
“parsed” passive item for “mit Maria” with semantics “mit(Maria)” can directly be
used during the generation mode.

116

4.15.4 Implementation

The item sharing approach has been implemented as an object-oriented extension of
the uniform tabular algorithm as described above. We have further provided some
parameterization with respect to possible applications. For example, it is possible
to specify whether during one direction shared items should be ignored or not. This
means that only during one direction, say parsing, passive items computed during
generation are used, but that generation will ignore passive items computed during
parsing. In the final chapter of this thesis we give an example of an application
which can make use of this kind of parameterization.

Furthermore, also in the case of the shared item method the Prolog-like interac-
tive mode is still available (see section 4.14). This gives the possibility to simulate
some sort of preference-based behaviour, because the user can interactively choose
the most appropriate answer. In the final chapter we will come back to the issue of
preference-based strategies.

In the chapter 5 we show in detail how the item sharing approach is used for
performing self-monitoring and revision during generation.

4.16 Conclusion

In this chapter we have presented a uniform tabular algorithm for parsing and gen-
eration of constraint-based grammars and a method for sharing items between both
processing directions.

The uniform tabular algorithm is based on Pereira and Warren’s Earley deduc-
tion method. However, for obtaining an efficient and task-oriented behaviour of the
uniform algorithm we use a data-driven selection function and a uniform indexing
mechanism for efficient retrieval of partial results.

Both the selection function and the indexing mechanism are parameterized with
respect to the input in question (a string for parsing and a semantics expression
for generation). Since the only relevant parameter our algorithm has with respect
to parsing and generation is the difference in input structures the basic differences
between parsing and generation are simply the different input structures. This seems
to be trivial, however our approach is the first uniform algorithm that is able to adapt
itself dynamically to the data, achieving a maximal degree of uniformity for parsing
and generation under a task-oriented view.

Besides the facts that the new uniform tabular algorithm is data- and goal-
directed and maintains partial results in a practical way, the uniformity of the in-
dexing mechanism also makes possible that parsing and generation are able to share
their results. We have – for the first time – presented such a technique, which we
call item sharing. This method is in particular useful and important if parsing and
generation have to be interleaved in solving specific problems like paraphrasing or
revision. The item sharing approach developed in this thesis shows for the first

117

time how a tight integration of parsing and generation can be done efficiently and
effectively. In the next chapter we are going to explain in detail how the uniform
tabular algorithm in combination with the item sharing approach is used to realize
such a behaviour.

118

Chapter 5

A Performance Model based on
Uniform Processing

The uniform tabular algorithm just developed together with a reversible grammar
constitutes the grammatical competence base of a natural language system. The
grammar declaratively describes the set of all possible grammatical well-formed
structures of a language and the uniform algorithm is able to find all possible gram-
matical structures for a given input – at least potentially.

Grammatical knowledge and processing in this sense is necessary to render pos-
sible natural language processing. This is not only a principal emphasis in computa-
tional theories of human language ability but also in artificial intelligence [Wahlster,
1986]. However, if we accept the view that the primary motivation for developing
natural language systems is to facilitate human-machine communication and/or to
extend, clarify or verify theories that have been put forth in linguistics or cogni-
tive psychology then it is necessary to investigate the relationship between linguistic
competence and linguistic performance. This means that we have to consider the
grammatical competence under the perspective of language use, for example, in order
to explain how preferences, disambiguation, paraphrasing, incrementallity, monitor-
ing and revision or active vs. passive language use can be explained on the basis of
language competence.

The scientific goal followed in this chapter is to explain how such methods can
be modelled by means of the uniform grammatical competence base. Of course,
it would exceed the scope of this work to consider all of these aspects. Therefore,
we concentrate ourself on the issue of monitoring, revision and paraphrasing dur-
ing natural language generation. In the final chapter we outline how the uniform
grammatical model can also be used to accommodate other aspects, like the use of
preferences and fully incremental text processing.

It is a fact that speakers monitor what they are saying and how they are saying
it [Levelt, 1989]. When they are making a mistake, or express something in a less

119

120

felicitous way, they are able to make a repair. It is furthermore evident that speakers
monitor almost any aspect of their speech, ranging from content to syntax to the
choice of words to properties of phonological form and articulation (see [Levelt, 1989],
page 497). In this thesis we are concerned with monitoring on the grammatical level
and explain how revision can be performed in order to reduce the risk of generating
ambiguous sentences that could be misunderstood by the listener. However, the
methods we are going to develop can also be used to handle other monitoring and
revision strategies. We demonstrate this by showing how the new methods are used
during natural language understanding as a means of disambiguation. Furthermore,
in the final chapter we outline how these methods in combination with preference
strategies can be used to realize hearer adaptable strategies.

The underlying strategy followed in the methods to be presented is a tight inter-
leaving of parsing and generation. It will turn out that the uniform tabular algorithm
in combination with the item sharing approach leads to an elegant and effective spec-
ification of these performance-oriented methods. Furthermore, the methods can be
straightforwardly be combined with the uniform algorithm in such a way that the
original behaviour of the uniform algorithm is not affected. This means that it is
possible to interrupt the monitoring and revision process in such a way that further
processing proceeds in the normal un-monitored way. Thus, we achieve an elegant
synergy of competence and performance-oriented processing.

Overview

This chapter is organized as follows. In the next two sections we discuss the modular
status of natural language systems and the consequences of grammar reversibility for
the system’s design. We will show that the use of a uniform grammatical component
leads to more compact systems and helps to identify a clean linguistic and conceptual
separation. On the other hand, this kind of modularity implies a serious problem,
namely that the conceptual component cannot control completely whether and how
the linguistic system will realize a given semantic structure.

In section 5.3 we will argue that in order to maintain a modular design additional
mechanisms are necessary to perform some monitoring and revision of the generator’s
output. We will argue that the best way in realizing these mechanisms is by means
of a tight integration of parsing and generation. Before, however, in section 5.4
the new competence-based performance model is presented we discuss in section 5.3
previous approaches that also take an integrated view of parsing and generation.

In order to make clear how the new model is used to solve particular problems,
we present in section 5.5 a fundamental generation strategy, namely that of not
producing ambiguous output. The idea here is that the generator has to run its
output back through the understanding system to make sure it’s unambiguous. In
particular we demonstrate how reversible grammars are used to make such strategy
effective and efficient.

121

In section 5.6 we also apply this method during the understanding mode of a nls
for the purpose of disambiguation by means of the generation of paraphrases. The
idea here is that after parsing an utterance, then if this utterance has several read-
ings, corresponding paraphrases are generated, that reflect the semantic differences.
The user is then asked to choose the one he intended.

An important property of both methods is that the nature of the underlying
parsing and generation strategy is not important, i.e. the strategy can be used with
any parsing- or generation strategy. However, an obvious restriction for both is
that monitoring only takes place when the generator has finished computing a first
string. Therefore, the underlying monitoring strategy could also be denoted as a
non-incremental generate-parse-revise strategy.

The basic strategies followed in the non-incremental approach also allow the
specification of a monitoring strategy that interleaves generation and parsing more
tightly in such a way that monitoring can take place even during generation. In
section 5.7 we present such an approach. As it will be clear such an incremental
approach is much more flexible and natural. The method we are presenting takes
full advantage of the uniform algorithm. In particular, the top/down generation
approach followed in the uniform algorithm as well as the item sharing approach
makes the incremental monitoring and revision method a practical one.

5.1 The Modular Status of Natural Language Systems

Natural language processing is often viewed as a complex modular system consist-
ing of interacting components whose mode of operation may be radically different.
The different components can be collected into two subsystems according to their
different tasks:

• a linguistic system

• a conceptual system

In the case of language understanding, the basic task of the linguistic system is to
determine a semantic representation of a given utterance from which the conceptual
system can draw general inferences, e.g., in order to resolve anaphora, and to deter-
mine the speakers intention behind the utterance. In order to perform these tasks
the conceptual component acts primarily on the basis of world knowledge, discourse
model and situation knowledge. The basic knowledge sources of the linguistic sys-
tem are the grammar and the lexicon of a language which represents in a declarative
way the relation between well-formed utterances and their associated semantic rep-
resentations. The central process for analysing the grammatical structure of a given
utterance is called parsing. The output the parser delivers is the set of possibly all
semantic representations that the grammar associates to that utterance.

122

In most natural language understanding systems nlu, i.e. systems where only
language understanding is considered, a clean separation between the two systems
is assumed. In this view, the linguistic system is modular in the sense, that it is the
only component that is concerned directly with the form and content of the grammar
while the conceptual system is the only one that is responsible for general inference.
In these kind of models the semantic representation specified in the grammar serves
as an intermediate representation between the linguistic and conceptual system.

This division of labour is also the basis of current natural language generation
systems nlg developed in the area of artificial intelligence and computational linguis-
tics (see e.g.,[Dale et al., 1990; Paris et al., 1991] for a collection of state-of-the-art
reports) as well as in cognitive science (see e.g., [Levelt, 1989]). It is an increasing
consensus that the input to an nlg should be of the form of a communicative
intention, i.e. some goal that the speaker wants to communicate by means of nat-
ural language. To be able to produce an utterance that adequately communicates
the speaker’s goal several subtasks have to be performed, e.g.,

• the determination of the content of an utterance

• the organisation of that content in a coherent discourse

• the determination of its linguistic realization

Most of the work of determining the content of a discourse is done by the con-
ceptual component. In order to perform its tasks it also takes into account world
knowledge, discourse and dialog knowledge as well as knowledge about the inter-
locutors (however, not necessarily represented in the same way or the same account
of knowledge). The linguistic system is responsible for realizing the content of a
discourse determined by the conceptual component in a natural language. On the
basis of a grammar and a lexicon the grammatical structure of a given content has
to be produced in order to determine a well-formed utterance. The process that is
responsible for this task will be called grammatical generation or short generation.1

Although the modular design of an nlg into a conceptual and linguistic compo-
nent has been proven fruitful for the investigation of natural language production
it is a matter of active debate what the input for the linguistic component exactly
should look like. For example, many researchers (e.g., [Danlos, 1987; Appelt, 1985;
Hovy, 1987; Finkler and Neumann, 1989; Reithinger, 1991; Neumann, 1991a]) have
argued that the conceptual and linguistic decisions are strongly dependent upon
each other; e.g., in the case of lexical gaps, choice between near synonymous or
paraphrases a communication between the two phases is required. On the other

1Thus viewed, we ignore for the moment relevant aspects of generation, like morphological and
speech generation, since the main point to discuss already falls out without explicit consideration
of these aspects.

123

hand in many approaches it is assumed that the conceptual component has to pro-
vide all information needed by the linguistic component to make decisions about
lexical and syntactic choices (e.g., [McDonald, 1983], [McKeown, 1985], [Levelt,
1989], [McKeown et al., 1990]). They assume that feedback from the linguistic to
the conceptual component would be exception rather than rule. The different views
have lead to different architectures where the line between the conceptual and lin-
guistic component have been drawn in different ways, i.e. there is no such clean
separation between the two components as it is the case for most nlu systems.

N

L
A
N
G
U
A
G
E

G
E
N
E
N
E
R
A
T
I
O
N

World Knowledge
Discourse Knowledge

Dialog Knowledge
etc.Planning

Intended
Meaning

Goals

Utterance

Domain,
Discourse,
Utterance

Anaphora
Resolution,

Inference

L
A

G
U
A
G
E

U
N
D
E
R
S
T
A
N
D
I

G

N

Conceptual System

Linguistic System Semantic Expression

Uniform Process Reversible Grammar
(incl. Lexicon)

General

Figure 5.1: The Architecture of an nls using a reversible grammar.

124

5.2 Natural Language Systems and Reversible Gram-
mars

If we use a reversible grammar for language understanding and generation then this
implies that at least with respect to the grammatical knowledge these processes must
be symmetric. This implication as been pointed out by [Appelt, 1987] and we can
draw the organization of a reversible system as shown in figure 5.1.

In this graphic the conceptual component is divided into two parts: one used
during understanding and one used during generation. This is done in order to
emphasize the different tasks to be solved during both directions. It should not
exclude the possibility that during both tasks same processes, knowledge sources or
formalisms can be used. Furthermore we do not want to make any claims about
the whole internal structure and status of the conceptual system so we view it as an
open system (indicated by the dotted lines).

In this system we assume that semantic information is represented by some
kind of logical formulas that are used to abstract predicate–argument structure and
quantifier scoping from sentences. We need not to make further assumptions about
the concrete form of the logical language in order to discuss the basic claims in this
section. For utterances we make the simple assumption that they are represented as
strings, i.e., we represent the phonological structure of a sentence as a list of words.

The graphic in figure 5.1 makes clear that the semantic representation of the
grammar serves as an intermediate representation during understanding and gen-
eration. For the whole system we have a clean separation between conceptual and
linguistic processing in both cases (indicated by the dashed line). The linguistic
system has a modular status because it is the only component directly concerned
with grammatical knowledge declaratively represented in a reversible grammar. This
means that while performing both tasks the same grammatical power is potentially
available (regardless of the actual language use). Clearly, such a modular design has
the advantages already discussed in section 2.1.

Giving the linguistic component a modular status in that way, however, implies
a serious problem especially for natural language generation, namely that the con-
ceptual component constructs a logical form only on the basis of non-grammatical
knowledge while the linguistic component processes logical forms only on the basis
of grammatical knowledge. This means that the conceptual component cannot con-
trol completely whether and how the linguistic system will realize a given semantic
structure.

For example, the following can happen. A message which is constructed precisely
enough to satisfy the conceptual component’s goal can be under-specified from the
linguistic component’s viewpoint. In particular, the generator can run into the risk
of being misunderstood because of the produced utterance’s ambiguity. We call this
the choice problem of paraphrases.

125

For example, if the conceptual component specifies the following structure SEM
as input to the linguistic component:2

(12)

SEM

CONT

RELN remove ′

AGENT you ′

PATIENT folder
INSTRUMENT system tools ′

CONX

[
SPEECH ACT imperative

]

then a possible utterance is ‘Remove the folder with the system tools’ with the
corresponding derived grammatical structure where the PP ‘with the system tools’
is an adjunct to the VP:

(13)

PHON 〈remove the folder with the system tools〉
SYNSEM S [imp]

DTRS

HEAD

[
PHON 〈remove〉
SYNSEM VP [fin]

]

COMP

[
PHON 〈the folder〉
SYNSEM NP [acc]

]

ADJUNCT 〈with the system tools〉

From the generator point of view this utterance is grammatical and reflects

exactly what the generator wants to express. For the hearer however there also
exists the alternative grammatical structure where the PP ‘with the system tools’
is a nominal adjunct:

(14)

PHON 〈remove the folder with the system tools〉
SYNSEM S [imp]

DTRS

HEAD

[
PHON remove
SYNSEM VP [fin]

]

COMP

PHON 〈the folder with the system tools〉
SYNSEM PP

DTRS

[
HEAD 〈with the system tools〉
COMP 〈the folder〉

]

with the semantic reading SEM′:3

2We are using an HPSG-like notation close to that of [Pollard and Sag, to appear].
3If the generator is part of an intelligent help system, the choice of this reading could have

tremendous effects on the system itself.

126

(15)

SEM

CONT

RELN remove ′

AGENT you ′

PATIENT

[
INDET x
RESTR folder ′(x) ∧ with ′(x , system tools ′)

]

CONX
[
SPEECH ACT imperative

]

The whole situation can graphically be represented as follows:

Remove the folder with the system tools

The left triangle represents the domain of the derivation between the semantic
structure SEM and the utterance ‘Remove the folder with the system tools’ obtained
during generation. Both triangles represent the domain of derivation between the
utterance and the semantic structures SEM and SEM′ computed during parsing.
Now the problem can be stated as follows:

Since during generation the linguistic component is mainly guided by
the compositional structure of the semantic input, it cannot determine
by itself those particular combinations of partial strings of the whole
utterance which will lead to alternative derivations when the hearer is
parsing this utterance. This means that possible ambiguities are out of
the generator’s view, and will only arise during parsing.

Of course, one could argue that if the generator had produced the utterance
‘Remove the folder by means of the system tools’ instead of ‘Remove the folder with
the system tools’ then the kind of ambiguity exemplified above would not occur.
Choosing the former instead of the latter in order to avoid ambiguity would mean
that the conceptual component is able to foresee that the generation process will
run into the risk of generating an ambiguity, and hence of conveying misinformation.
The problem here depends on the alternative possible realizations of the instrument
role, namely ‘with’ or ‘by means of’. The conceptual component could have chosen
‘by means of’ for some reasons internal to it (e.g., stylistic reasons, preferences,
etc.) but not because it could foresee the ambiguity of ‘with’. In other words,
given the modular design, the fact that at some point a potentially ambiguous LF
surfaces as a non-ambiguous string cannot be assumed to be due to the fact that
the ambiguity was foreseen, just other factors, independent from that, made the
utterance unambiguous. If the conceptual component chooses ‘by means of’ in order

127

to restrict the set of possible derivations during parsing, this would mean that it is
able to make decisions because of grammatical reasons.

The particular realization of the instrument role is not always relevant in order
to avoid ambiguity. For example, in German (a language with relatively free word
order) it would also be possible to utter:

‘Mit den Systemwerkzeugen den Ordner löschen’
‘[With the system tools] [the folder] remove’

(which can only mean Remove the folder by means of the system tools)

In this case the utterance is disambiguated by means of a specific ordering of
the constituents. But now the same problem occurs: Without detailed grammatical
background the conceptual component would not be able to specify the correct
ordering in order to avoid ambiguity.

One might argue that when adding functional features to the feature system of a
grammar (like focus, rhema, theme) in order to distinguish grammatical structures
that have equal semantics but differ with respect to their functional value (cf. Fedder
[1991], Bateman et al. [1992]) the problem would not occur. Consider for instance
the possible realizations of topicalization in German. Topicalization can be realized
using either a passive construction or by fronting movement. Assume for instance
that the conceptual component wants to verbalize the following semantic feature
structure:

(16)

SEM

PREDICATE drive
AGENT peter
COAGENT maria

PRAG

[
FOCUS +

]

This semantic information4expresses that ‘Peter is the one who drives Maria’.
The value of the focus feature expresses that Maria is the current focus of the
communication situation. Possible utterances in German are (17) and (18).

(17) Maria wird von Peter gefahren.
Maria is driven by Peter.

(18) Maria fährt Peter.
Maria, Peter drives.

In both cases the syntactic construction can be marked by the two binary features
focus and emphasis. In the passive case, the values of the focus and emphasis
features would be defined as in the feature structure of (19) and for the fronting
movement rule as represented in (20).

4This and the following representations of the example are simplified in order to make clear the
relevant aspects of the current discussion.

128

(19)

PRAG[FOCUS +
EMPHASIS −

]
(20)

PRAG[FOCUS +
EMPHASIS +

]
The problematic construction is that of (18) because during parsing there is also

the unmarked reading possible, which says that Maria is the agent. Clearly, if the
conceptual component wants to avoid misunderstandings it can choose the passive
form. But to do this, it has to know that the value of emphasis is necessary to dis-
tinguish both cases. But to have knowledge about this specific kind of combination
of features means that it has to foresee that (18) is ambiguous. Hence it has to have
detailed knowledge about the functional system and the way they are combined with
specific constructions. Consequently it needs detailed knowledge about the actual
grammar.

There is also psychologically grounded evidence for assuming that the input to a
tactical component might not be necessary and sufficient to make linguistic decisions.
This is best observed in examples of self-correction [Levelt, 1989]. For example, in
the following utterance:5

“but aaa, bands like aaa- aaa- aaa- errr- like groups, not bands, - groups,
you know what I mean like aaa.”

the speaker discovers two words (the near-synonymous ‘group’ and ‘band’) each of
which comes close to the underlying concept and has problems to decide which one
is the most suitable. In this case, the problem is because of a mis–match between
what the conceptual component want to express and what the language is capable
of expressing [Rubinoff, 1988].

It is important to note here that the problem does not arise only when using
reversible grammars but is an intrinsic problem of modularity. Every natural lan-
guage model that assigns the grammatical component a modular status must face
the problem. An important advantage of using reversible grammar is that we can
consider the problem more clearly in the case of language processing. Moreover,
in this thesis we demonstrate that a consistent use of reversible grammars is the
starting point for solution of these problems.

Summarizing, it should be clear now that the conceptual component cannot have
this kind of control because otherwise this would blur the modular design of a gen-
eration system mentioned above. Fortunately, in many situations of communication

5This example is taken from Rubinoff [1988] and is originally from a corpus of speech collected
at the University of Pennsylvania.

129

a speaker need not worry about the possible ambiguity of what she is saying be-
cause she can assume that the hearer will be able to disambiguate the utterance by
means of contextual information or that she would otherwise ask for clarification
(nevertheless, in the next chapter we show that the same problem mentioned above
occurs also during clarification dialogs). However, an adequate generation system
should also be able to avoid the generation of ambiguous utterances in some specific
situations, e.g., when utterances refer to actions that have to be performed directly
or in some specific dialog situations. As long as the conceptual component has no
detailed knowledge of a specific grammar it could not express ‘choose this particular
form to avoid ambiguity’. Therefore it can happen that the intended message will
not be conveyed.

Currently, in generation systems where a modular design is advocated the prob-
lems are sometimes ‘solved’ in such a way that the conceptual component has to
provide all information needed by the linguistic component to make decisions about
lexical and syntactic choices [McDonald, 1983], [McKeown, 1985], [Busemann, 1990],
[Horacek, 1990], [McKeown et al., 1990], [Dale, 1990]. As a consequence, this im-
plies that the input to the linguistic component is tailored to determine a good
sentence, making the use of powerful grammatical processes redundant. In such ap-
proaches, linguistic components are only front–ends and the conceptual component
needs detailed information about the language to use.

Hence, they are not separate modules because they both share the grammar. As
pointed out in Fodor [1983] one of the characteristic properties of a module is that
it is computationally autonomous. But a relevant consideration of computationally
autonomy is that modules do not share resources (in our case the grammar).

In order to be able to handle these problems, more flexible linguistic components
are necessary that are able to handle, e.g., under-specified input. In [Hovy, 1987],
[Finkler and Neumann, 1989; Neumann and Finkler, 1990] and [Reithinger, 1991]
approaches are described how such more flexible components can be achieved. A
major point of these systems is to assume a bidirectional flow of control between the
conceptual and the linguistic component.

The problem with systems where a high degree of feedback between the concep-
tual and the linguistic component is necessary in order to perform the generation
task is that one component could not perform its specific task without the help
of the other. If the linguistic component has a modular status as assumed in this
thesis then it is important for a component’s mode of operation that it is minimally
affected by the output of another component. Levelt [1989] argues that “it makes
no sense to distinguish a processing component A whose mode of operation is con-
tinuously affected by feedback from another component, B. In that case, A is not
specialist anymore, it won’t come up with the right result without the ‘help’ of B.”
([Levelt, 1989], page 15). If this is the case one should better describe A and B as
being one component.

130

5.3 Monitoring and Revision

In order to maintain a modular design additional mechanisms are necessary to per-
form some monitoring and revision of the generator’s output. Several authors argue
for such additional mechanisms [Jameson and Wahlster, 1982; DeSmedt and Kem-
pen, 1987; Joshi, 1987; Levelt, 1989; Neumann, 1991b]. For example, Levelt [1989]
pointed out that “speakers monitor what they are saying and how they are saying
it”. In particular he shows that a speaker is also able to note that what she is saying
involves a potential ambiguity for the hearer and can handle this problem by means
of self-monitoring. In this thesis we will present for the first time a computational
model of monitoring based on reversible grammars.

The model introduced here is based on a strict integration of parsing and gener-
ation in the sense of

• using one mode of operation (e.g., parsing) for monitoring the other and

• using resulting structures of one direction directly in the other direction

Before we give a detailed algorithmic characterization of the integrated approach
we will consider current approaches that also take an integrated view of natural
language processing.

5.3.1 The Monitoring Model of Levelt

With very few exceptions monitoring has only given an appropriate focus of attention
in cognitive science. In that area there is no denying that humans watch over what
they say. In [Berg, 1986] and [Levelt, 1989] good overviews of the current state of the
art are given. We will now describe the model described in [Levelt, 1989] which is
currently one of the best elaborated monitoring models (although not implemented)
in more detail.

Figure 5.2 shows the architecture of the monitoring model developed in [Levelt,
1989]. The language model Levelt describes follows the same modular design as dis-
cussed in section 5.1, i.e., he also divides his system into a conceptual component and
a linguistic component. The linguistic component consists of two subsystems, one for
production and one for understanding. The production system is further subdivided
into a formulator and an articulator. The formulator receives a preverbal message
from the conceptual component and produces a phonetic plan based on lexical and
grammatical information. The phonetic plan is then transformed into spoken ut-
terance by the articulator. During understanding a spoken utterance is mapped by
the audition component to a phonetic string from which the speech comprehension
system computes parsed speech, a representation of the input speech in terms of
phonological, morphological, syntactic, and semantic composition. This representa-
tion is further processed by the conceptual component. The model introduced by

131

Figure 5.2: Levelt’s perceptual loop theory of self–monitoring.

Levelt is basically discussed from the production view. He therefore abstracts away
from details concerning the inner working of the comprehension model.

Levelt identifies the editor with the language-understanding system to avoid
reduplication. A speaker can attend to his own production in just the same way as
he can attend to the speech of others (cf. [Levelt, 1989], page 469). The perceptual
loop theory he discusses consists of a double “perceptual loop” to model that a
speaker

• can attend to his own internal speech before it is uttered and

• that she can also attend to her self–produced overt speech.

Discussion In Levelt’s model parsing and generation are performed in isolation
using two different grammars (although he only considers generation in full detail).
The problem with this view is that generation of un-ambiguous paraphrases can be
very inefficient, because the source of the ambiguous utterance is not used to guide
the generation process. If, for example an intelligent help-system that supports a
user by using an operating system (e.g. Unix, [Wilensky et al., 1984]), receives as
input the utterance “Remove the folder with the system tools” then the system is
not able to perform the corresponding action directly because it is ambiguous. But
the system could ask the user “Do you mean ‘Remove the folder by means of the

132

system tools’ or ‘Remove the folder that contains the system tools’ ”. This situation
is summarized in the following figure (LF

′
and LF

′′
symbolize two readings of S):

Figure 5.3: Relationship between ambiguities and paraphrases.

If parsing and generation are performed in isolation then generation of para-
phrases can be very inefficient, because the source of the ambiguous utterance S is
not used directly to guide the generation process.

5.3.2 The Anticipation Feedback Loop Mode

In the area of natural language systems a similar method that also integrates under-
standing and generation like Levelt’s model is known under the term of anticipation
feedback loop (afl) which has been motivated as a special case of exploitation of a
user model [Wahlster and Kobsa, 1986]. The basic idea of the afl model is the use
of the system’s natural language understanding part to anticipate the prefered user’s
interpretation of an utterance which the system plans to realize. User-modelling is
necessary to answer a question like (cf. [Wahlster, 1991])

If I had to analyze this communication act relative to the assumed knowl-
edge of the user, then what would be the effect on me?

To answer such question a produced utterance is fed back to the system’s nlu
part under the consideration of the user model. If the result of the understanding

133

process does not match the system’s intention in planning, it has to re-plan its
utterance. Figure 5.4 shows the schematic structure of a system which incorporates
an anticipation feedback loop.

Figure 5.4: Schematic structure of an Anticipation Feedback Loop, based on
Wahlster and Kobsa [1986].

A possible utterance S generated from a semantic representation SR1 is fed back
to the understanding component of the system. The result SR2 has been computed
under consideration of the user model. If this result does not match the original goal
SR1 the system interprets this as a possible source of misunderstandings. Therefore
SR1 is iteratively revised until the analysis of the produced utterances matches the
system’s intention.

In [Jameson and Wahlster, 1982] this method was used for generating elliptical
utterances in the HAM–ANS system. A local anticipation feedback loop is used to
ensure that the system’s generated ellipses are not so brief as to be ambiguous or
misleading. Suppose for example the user as entered the question:

(21) Are there three beds and at least one desk in the room?

134

If the room has in fact three beds and three desks, an appropriate answer of the
system would be

(22) Yes, three beds and three desks

instead of one of the possible other answers like

(23) Yes.
Yes, three.

because they are undetermined with respect to correct interpretation. Therefore,
the semantic representation SRQ of the user’s question is taken into account during
the process of ellipsis generation in the following way. After constructing the com-
plete semantic representation SRA of the system’s answer, SRA is compared from
the top downward with SRQ in order to determine the set of essentially identical
subtrees of both representations. The top-down approach orders them automatically
with respect to their size. The smallest identical subtree is chosen as a possible can-
didate for an elliptic utterance. Before that partial semantic representation SRpart

is actually passed to the surface transformation process, SRpart is fed back to the
system to check whether SRpart will possibly be understood by the user according to
the system’s intention. Using the ellipsis reconstruction component of the system’s
understanding part, SRpart is compared with SRQ to be able to determine whether
SRpart is actually a part of SRQ (which must be the case because otherwise the
system itself is in an inconsistent state). If SRpart occurs only in one subtree of SRQ

then it is chosen as a candidate and passed to the verbalization component. If two or
more subtrees exist in SRQ that match SRpart, SRpart is rejected and the next larger
subtree of SRA is chosen from the list of possible candidates and the same method
is applied again. In summary, before verbalizing an elliptic utterance immediately,
the system attempts to reconstruct its semantic representation as the user would,
i.e. by determining how it fits into the structure of the original question SRQ.

Discussion In the method described above the anticipation feedback loop operates
only on the semantic level, i.e. whether an elliptic utterance will be ambiguous or
not is determined only under semantic considerations. If a candidate partial subtree
has been found the grammatical construction of it is done without checking the
utterance’s grammatical ambiguity. The implicit assumption made here is that the
string determined for an unambiguous SRpart will also be analyzed definitely as
SRpart. But this does not avoid the risk of being misunderstood in general, because
it could be the case that the resulting string is still ambiguous. Most interesting
from a reversibility standpoint is that Jameson and Wahlster [1982] also vote for the
use of reversible knowledge sources

. . ., the recognition component must operate on the same kind of struc-
ture as those returned by the system’s ellipsis generation component.

135

In HAM–ANS the generation and understanding components share the same
internal representation language. However, two different grammars are used during
parsing and generation. If afl were also designed for grammatical processing (actu-
ally they do not consider integration of parsing and generation) the same problems
as already mentioned for Levelt’s model would also occur.

5.3.3 Text Revision

In [Vaughan and McDonald, 1986] and [Meteer, 1990] a model of text revision in
natural language generation is proposed that is based on an integrated approach to
parsing and generation. It is based on the observation that during composition of
a text, a multi-pass system of writing and rewriting is used to produce an optimal
text. They describe a model that includes a generator, a parser and an evaluation
component which assesses the parse of what the generator had produced and deter-
mines strategies for improvement. The revision process they outline is modelled in
terms of the following three phases:

1. recognition, which determines where there are potential problems in the text;

2. editing, which determines what strategies for revision are appropriate and
chooses which, if any, to employ;

3. re–generation, which employs the chosen strategy by directing the decision
making in the generation of the text at appropriate moments.

The recognition phase is responsible for parsing text and building a representa-
tion rich enough to be evaluated in terms of how well the text coheres. The text
representation they developed is called text structure and serves as intermediate level
of representation of text planning (cf. [Meteer, 1990]). The recognition phase ana-
lyzes the text as it proceeds using a set of evaluation criteria (e.g., to find ambiguous
referents, flag places where optimizations may be possible, such as predicate nomi-
nal). For each problem there is a set of one or more strategies for correcting it. The
task of the editing phase is to determine which of these strategies to employ (e.g.,
if the subject has a relation to a previous referent which is not explicitly mentioned
in the text, more information may be added through modification). The final step
is actually making the change once the strategy has been chosen. This essentially
involves marking the input to the generator, so that it will query the revision compo-
nent at appropriate decision points. For example, if the goal is to put two sentences
into parallel structure, the generator when reaching this marker asks the revision
component whether it should realize two main clauses or if it should realize one as
a subordinate and how it should be realized (e.g., active or passive).

136

Discussion It is very difficult to compare the model in detail with the model de-
scribed in this thesis because “A similarity between Penman’s revision module and
the model described in this paper is that neither has been implemented.” ([Vaughan
and McDonald, 1986], page 95). Although Meteer [1990] gives a detail description of
the relationship between text structure and revision it is unclear how the proposed
model could contribute to the choice problem of paraphrases (see section 5.2). How-
ever, from the approach described above and from the system described in [Meteer,
1990] we can draw the following conclusions. Only the generator’s input is marked.
If the generator encounters alternative realizations the revision component is asked
to make the decision. However, to be able to do this it needs detailed knowledge
about the grammar. Therefore grammatical knowledge has to be duplicated. The
linguistic realization component used in [Meteer, 1990] is mumble-86 [McDonald,
1986]. The text structural representation level must completely specify the infor-
mation to be expressed by the utterance. The mapping has to ensure that all the
necessary linguistic information is present. Mumble’s procedural grammar is used
only for generation purposes. Therefore it is without reach for the revision model
to take into account relevant sources of ambiguities.

137

5.4 A Blueprint of the New Model

The model that we use for this approach basically consists of three components:

• the kernel linguistic component , subdivided into a reversible grammar plus
lexicon and a parser/generator

• the common knowledge pool for derivation trees

• the editor that performs comparison and revision

The reversible system introduced in section 5.2 (see figure 5.1) can be represented
more detailed as shown in figure 5.5.

Figure 5.5: The Architecture of the new reversible system.

The linguistic core system consists of a reversible grammar (plus lexicon) and the
uniform algorithm used for parsing or generation. Both together constitute the com-

138

petence base of a natural language system. Thus, we are following an extended com-
petence description as known from cognitive linguistics (see e.g., [Schwarz, 1992]),
such that we do not only consider the grammatical knowledge as the only source of
language competence (cf. [Chomsky, 1986]), but also those processes that are able
to determine all possible well–formed grammatical structures of a language, at least
potentially. However, during run-time of a system we assume that only a subset of
possible solutions are computed. This makes sense at least in the case of genera-
tion because in practice only one utterance should be produced for a given semantic
representation. In our view, the methods or techniques that are used to determine
most adequate readings or paraphrases in some specific situation, or those that are
used to perform for instance some kind of robustness or monitoring, belong to the
performance issue of language use.

The derivations obtained during parsing and generation are stored in a common
memory which we will call common knowledge pool for derivation trees, abbreviated
as ckp.

The editor is that part of the system that compares structures obtained during
monitoring and stored in ckp and eventually revises previously computed solutions.
We assume that the editor has a functional nature consisting of a set of specific
functions for performing particular tasks (e.g., generation of unambiguous utterances
or paraphrases). These functions are selected according to the major flow of control
(either understanding or generation) and in dependence of the specified goals, e.g.,
‘be as unambiguous as possible’, ‘re-solve ambiguities explicitly’.

Monitoring is not performed by a separate module. Instead the understander
or generator fulfill this part (either during generation or understanding). The basic
task of monitoring is to gain information about processing which is not necessarily
obvious, i.e., a device is called for which this information can be available to the
speaker or the hearer. In has often been argued in cognitive psychology (cf. [Berg,
1986; Levelt, 1989]) that it is highly desirable to find a mechanism that is an integral
and independently motivated part of the whole system and one that performs the
monitoring function by its own nature. Clearly, if it is possible to use devices that
are needed anyway for natural language processing, this fulfills our effort to avoid
redundancies and to obtained a certain degree of economy.

Whether monitoring and editing should take place is decided by a central plan-
ning unit which is part of the conceptual component. We assume that the degree of
monitoring and editing that takes place during processing depends on the degree of
attention a system has in ongoing communications. This depends on the relevance
of the dialog contribution and on the specific dialog situation. For example, if mon-
itoring is switched on by the central planner then it depends on the relevance of the
information to be uttered if editing should take place. If the system is under time
pressure then the planner might decide to avoid editing because it would take to
much time in order to utter the information immediately. Or if the editor cannot
find an un-ambiguous reading then the planner has to decide whether to recompute

139

the communication goal that possibly can be mapped to an un-ambiguous utterance
(actually the planner would delegate the task of re-computation of the original plan
to the text planner; this is indicated by the dashed line in figure 5.5.). The central
planning unit will not be further investigated in this thesis because we are mainly
concerned with the realization aspects of monitoring and editing on the grammat-
ical level. However, as mentioned above we assume the existing of this unit as the
primarily activator for monitoring.

The integrated approach developed in this thesis, is basically used for revision of
previously produced utterances. These utterances are assumed to be grammatically
well-formed. The integrated approach is used in order to reduce the risk of being
misunderstood in the case of the utterance’s ambiguity. However, monitoring can
also be very useful for detection and correction of speech errors. There is psycholog-
ical evidence that monitoring mechanisms are also involved in the case of self-repair
of lexical errors (using wrong lexemes for a known concept), errors forced by trouble
during phonological encoding (wrong spelling or prosody), slip of the tongue phe-
nomena or errors on morphological and grammatical level [Levelt, 1989]. In this
thesis we do not consider self-repair of utterances containing errors. In principle,
it could be questionable, whether a computational model of such error handling is
of interest not only for cognitive psychology but also for the development of nls,
in general. However, the detailed discussion of this question is beyond the scope of
this work.

What does this model contribute to system design? To use Gerhard Kem-
pen’s words (cf. [Kempen, 1989], page 15)

Nevertheless, the addition of a monitor may contribute to the solution
of practical and theoretical problems significantly. Take for example the
above issue of one-way versus two-way traffic between strategic and tac-
tical components.6 Suppose the monitor can intercept the linguistic out-
put from the tactical component (preferably before the point of speech)
and feed it into a parser/understander. The latter evaluates the gener-
ator’s utterance from relevant viewpoints and informs (via the monitor)
the strategic component of its diagnosis. This would establish the line of
communication postulated by Danlos and others without complicating
the generator’s design — the parser is needed anyway.

In a similar vein, Mann [1987], page 207 suggests that

More substantial sharing occurs in the area of knowledge representation
and inference. Here the problems and solution, not just the recogni-
tion of phenomena, are shared. There is hope for convergence, for one

6In the authors term, the strategic component corresponds to the conceptual system and the
tactical to the linguistic system.

140

all-sufficient underlying representational form, and for a non-directional
view of language. It is often suggested that an adequate text generator
must have an understander inside to check its work. Still, the research
activity is dominated by the differences rather than the shared elements.

Putting both citations together our approach can be seen as an important step
in that direction. We have to incorporate into language interfaces the same kind of
sensitivity to later audience reactions that we have ourselves. If we are able to do
this, then this will lead to more flexible natural language systems. Clearly, in order
to get a real-time behaviour of our systems, the amount of feedback between the
conceptual and linguistic system should be reduced as far as possible. If the evalua-
tion of some decision points cannot be performed deterministically with information
of the input the system should be free to choose according some preferences (for
example ‘the first alternative you can get’ or ‘take that with the highest priority’).
However, if we are in a particular situation, then the conceptual component espe-
cially the monitor should be able to delegate the appropriate goals to obtain a more
carefully realization to the linguistic component. This component is now responsible
for doing its best. By means of monitoring the conceptual component can be part
of this process in that it can observe the input/output behaviour of the linguistic
system and evaluates the results with respect to the specified goals.

This kind of modelling means for the design of a whole system, that the par-
ticular goals that have to be fulfilled in order to obtain adequate realization can
be formulated in a discourse independent abstract way. Because during run-time
the conceptual and linguistic component are able to solve the goals in a cooperative
way, the overall system is able to react on particular situations more flexible during
run-time. If we would deny the importance of such mechanisms for the investigation
of nls then we have to foresee in a system the creative aspect of possible situations
and hence, we are forced to specify the flexibility by hand.

5.5 Monitoring and Revision with Reversible Grammars

In this section we present a method for self-monitoring and revision with reversible
grammars that does not depend on the use of any specific generation and parsing
algorithm. We therefore use generate and parse as abstract names for the algorithms
used. In section 5.5.8 we describe how specific methods (including the uniform
algorithm) can be adapted for use in the monitoring strategy.

A fundamental assumption is that it is often possible to obtain an unambigu-
ous utterance by slightly changing an ambiguous one. Thus, after generating an
ambiguous utterance, it may be possible to change that utterance locally, to obtain
an unambiguous utterance with the same meaning. In the case of a simple lexical
ambiguity this idea is easily illustrated. Given the two meanings of the word ‘bank’

141

Figure 5.6: Derivation trees

(‘riverside’ and ‘money institution’) a generator may produce, as a first possibility,
the following sentence in the case of the first reading of ‘bank’.

(24) John was standing near a bank while Mary tried to take a picture of
him.

To ‘repair’ this utterance we simply alter the word ‘bank’ into the word ‘river
side’ and we obtain an unambiguous result. Similar examples can be constructed
for structural ambiguities. Consider the German sentence:

(25)
Heute ist durch das Außenministerium bekanntgegeben worden,
daß Minister van den Broek den jugoslawischen Delegationsleiter
aufgefordert hat, die Armee aus Kroatien zurückzuziehen.
Today it was announced by the ministry of foreign affairs that minister
van den Broek has requested the Yugoslav delegation leaders to
withdraw the army from Croatia.

which is ambiguous (in German) between ‘withdraw [the Croatian army]’ and
‘[withdraw [the army] away from Croatia]’. In German this ambiguity can be re-
paired locally simply by changing the order of ‘aus Kroatien’ and ‘die Armee’, which
forces the second reading. Thus again we only need to change only a small part of
the utterance in order for it to be un-ambiguous.

5.5.1 Locating Ambiguity with Derivation Trees

We hypothesize that a good way to characterize the location of the ambiguity of
an utterance is by referring to the notion ‘derivation tree’. We are assuming that
the underlying grammar formalism comes with a notion ‘derivation tree’ which rep-
resents how a certain derivation is licenced by the rules and lexical entries of the
grammar. Note that such a derivation tree does not necessarily reflect how the

142

parser or generator goes about finding such a derivation for a given string or logical
form.

We assume that a derivation tree is represented as part of the feature structure
of a linguistic sign as introduced in chapter 3, section 3.3. However for convenience,
we will represent derivation trees using the well-known tree-like representation.

For example, the derivation trees for the two readings of ‘John is standing near
the bank’ may look as in figure 5.6. The intuition that the ambiguity of this sentence
is local is reflected in these derivation trees: the trees are identical up to the difference
between bank4 and bank7.

5.5.2 Overview of the Monitored Generation Strategy

The derivation trees obtained during generation and parsing will be used for guiding
the monitored generation strategy in the following way: Given a logical form the
normal generator first produces only one string (instead of all possible strings). Only
if the overall system specified as a primarily goal that the produced string should
be unambiguous (in order to avoid the risk of being misunderstood), the monitored
generation strategy is activated. It first passes the produced string (say α) to the
parser. If the parser yields severals readings, the obtained parsed derivation trees
are now used for comparison with the generated derivation tree of α. This derivation
tree is marked at that places, where in corresponding places of the parsed derivation
tree, different rules have been applied. It is assumed that this indicates a source of
structural ambiguity. Therefore, the semantics of the root node of such a marked
subtree is revised using a different rule from that of the original generated derivation
tree. This will eventually create a new string α′. This ‘new’ string is then also
revised, if it is still ambiguous.

If we want to make use of the representation of derivation trees as introduced
in chapter 3, section 3.3, we have to make sure that we can retrieve for each node
of a derivation tree its local semantics and string. However, this is easily obtained
by adding two new features sem and phon to the derivation tree of grammar rules
and lexical entries whose values are just pointers to the values of the corresponding
features of the sign. For example, rule (r1) of the grammar in appendix A is modified
as follows:

143

(r1) sign

cat: vp
sc: Tail
sem: Sem
lex: no
v2: V
phon: Str P0 -P

deriv

rulename vp-sc
sem: Sem
phon: Str
dtrs 〈D1, D2〉

←−

sign

Arg

v2: no
phon: P0 -P1

deriv D1

 , sign

cat: vp
sc: 〈Arg|Tail〉
sem: Sem
v2: V
phon: P1 -P
deriv D2

The advantage of this kind of representation is that for each node of a derivation
tree we know which part of the input (either semantics or string) is covered by the
corresponding sub-derivation. Now, if a node has been marked as an ambiguous
source, it is easy to call the normal generator for the marked node’s semantic ex-
pression in order to produce an alternative string. The next paragraph describes
how a marked derivation tree is obtained.

5.5.3 Marking a Derivation Tree

Given a derivation tree t of a generated sentence s, we can mark the places where
the ambiguity occurs as follows. If s is ambiguous it can be parsed in several ways,
giving rise to a set of derivation trees T = t1 . . . tn. We now compare t with the
set of trees T in a top-down fashion. If for a given node label in t there are several
possible labels at the corresponding nodes in T then we have found an ambiguous
spot, and the corresponding node in t is marked.

Thus, in the previous example of structural ambiguity we may first generate
sentence (25) above. After checking whether this sentence is ambiguous we obtain,
as a result, the marked derivation tree of that sentence. A marked node in such a
tree relates to an ambiguity. The relevant part of the resulting derivation tree of the
example above may be the tree in figure 5.7.

We will define a procedure mark that marks the generated tree given the trees
found by the parser. Marking a node will be done by adding the feature marked
with value yes in addition to features label and dtrs. If a node has been marked

144

Figure 5.7: Marked derivation tree

then scanning of its subtree will stop, i.e., the nodes of a subtree with a marked root
will not be marked. Thus, the definition of the procedure mark is as follows:

mark(Tree, TreeSet):
if root_same(label(Tree),TreeSet)
then mark_ds(dtrs(Tree),get_ds(TreeSet))
else
return mark_node(Tree).

root_same(Label,TreeSet):
if empty(TreeSet)
then return true
else
if equal(Label,label(first(TreeSet)))
then root_same(Label,rest(TreeSet))
else return false.

We first compare the rule names of each root node of trees in the set of parsed
trees TreeSet with the rule name of the root node of the generated tree Tree, using
the function root same. If all are the same (i.e., the same rule has been applied
during generation and parsing), we conclude that no ambiguity has occurred at that
level so we scan the next level of the trees in parallel, using the function mark ds,
where the function call dtrs(Tree) just returns the daughter trees of Tree, and
the call get ds(TreeSet) returns a list containing all daughter trees of all trees in
TreeSet preserving the relative order. More precisely, we return a list of lists where
the i-th list contains the i-th daughter of each tree in TreeSet. Within the function
mark ds the function mark is called recursively on each daughter tree of Tree.

145

If, however, the root nodes are not equal, we return the Tree after having marked
the root node of Tree using the function mark node. This function destructively
adds the feature marked with value yes.

5.5.4 Changing the Ambiguous Parts

Generation of an utterance given a marked derivation tree informally proceeds as
follows. The generator simply ‘repeats’ the previous generation in a top-down fash-
ion, as long as it encounters unmarked nodes. This part of the generation algorithm
thus simply copies previous results. If a marked node is encountered the embed-
ded generation algorithm is called for this partial structure. The result should be a
different derivation tree from the given one. Now clearly, this may or may not be
possible depending on the grammar. The next paragraph discusses what happens if
it is not possible.

The function mgen is used to generate an utterance, using a marked derivation
tree as an extra guide.

mgen(MarkedTree):
if marked_node(root_node(MarkedTree))
then generate(semantics(root_node(MarkedTree)))
else apply_rule(root_node(MarkedTree));

mgen_dtrs(dtrs(MarkedTree)).

mgen_dtrs(Dtrs):
if empty(Dtrs)
then return T
else
mgen(first(Dtrs));
mgen_dtrs(rest(Dtrs)).

This function scans a marked tree, and if it encounters a marked node it just
calls the normal generator generator with the semantic expression of the marked
node7. For each unmarked we redo the previous made computation of the normal
generator and proceed by scanning the subtrees of the next level.

7In section 5.5.8 we give some more details how the actual used normal generator might be
embed into the monitoring strategy.

146

5.5.5 Redefining Locality

Often it will not be possible to generate an alternative expression by a local change
as we suggested. We propose that the monitor first tries to change things as locally
as possible. If all possibilities are tried, the notion ‘locality’ is redefined by going up
one level. This process repeats itself until no more alternative solutions are possible.
Thus, given a marked derivation tree the monitored generation strategy first tries
to find alternatives for the marked parts of the tree. If no further possibilities exist,
all markers in the trees are inherited by their mother nodes. Again the monitored
generation strategy tries to find alternatives, after which the markers are pushed
upwards yet another level, etc.

It is possible that by successively moving markers upwards in a marked derivation
tree the root node of the tree will be marked. If also in that case no unambiguous
alternative will be possible then this means that the generator is not able to com-
pute a grammatically unambiguous alternative. In this case the whole monitored
generation process terminates and the strategic component has to decide whether
to utter the ambiguous structure or to provide an alternative logical form. We will
assume the definition of a function named mark l g for pushing markers one level
up. Now, the whole algorithm can be completed as follows.

monitored_generation(goal):
GenTree := generate_one(goal),
TreeSet := find_all_parses(string(root_node(GenTree)))
if null(rest(TreeSet))
then string(root_node(GenTree))
else Guide := mark(GenTree,TreeSet);

revision(Guide)

generate_one(goal):
‘‘just compute the first string and then stop’’

find_all_parses(string):
‘‘find all readings for a given string;
ignore spurious ambiguities, in such a way
that if two parsed trees have the same semantics
then retain only one.’’

revision(Guide):
NewRes := mgen(Guide)
if unambiguous(NewRes)
then string(NewRes)
else revision(mark_l_g(Guide)).

147

Summarising, the generator first generates a possible utterance. This utterance
is then given as input to the monitor. The monitor calls the parser to find which
parts of that utterance are ambiguous. These parts are marked in the derivation
tree associated with the utterance. Finally the monitor tries to generate an utter-
ance which uses alternative derivation trees for the marked, i.e., ambiguous parts,
eventually pushing the markers successively upwards.

5.5.6 Simple Attachment Example

In order to clarify the monitoring strategy we will now consider how an attachment
ambiguity may be avoided. The following German sentence constitutes a simplified
example of the sort of attachment ambiguity shown in (25).

(26) Die Männer haben die Frau mit dem Fernglas gesehen.
The men have the woman with the telescope seen.

Suppose indeed that the generator, as a first possibility, constructs this sentence
in order to realize the (simplified) semantic representation:

mit(fernglas, sehen(pl(mann), frau))

The corresponding derivation tree is the left tree in figure 5.8.

Figure 5.8: Derivation trees of the simple attachment example

To find out whether this sentence is ambiguous the parser is called. The parser
will find two results, indicating that the sentence is ambiguous. For the alternative
reading the right derivation tree shown in figure 5.8 is found. The derivation tree of
the result of generation is then compared with the trees assigned to the alternative
readings (in this case only one), given rise to the marked derivation tree shown in
figure 5.9.

148

Figure 5.9: Marked tree of German example

The monitored generation will then try to find alternative possibilities at these
marked nodes. However, no such alternatives exist. Therefore, the markers are
pushed up one level, obtaining the derivation tree given in figure 5.10.

Figure 5.10: Markers are pushed one level upward

At this point the monitored generator again tries to find alternatives for the
marked nodes, this time successfully yielding:

(27) Die Männer haben mit dem Fernglas die Frau gesehen.

At this point we can stop. However, note that if we ask for further possibilities
we will eventually obtain all possible results. For example, if the markers are pushed
to the root node of the derivation tree we will also obtain

(28) Mit dem Fernglas haben die Männer die Frau gesehen.

149

5.5.7 Some More Examples

In the same principle way the monitoring algorithm is able to generate the following
pairs of ambiguous and unambiguous sentences. These examples have been produced
by a Prolog version of the monitored generation strategy used in the PlayMoBiLD
system – developed as part of the project BiLD (short for Bidirectional Linguistic
Deduction) [Neumann, 1991a].8 The embedded generator and parser are described in
[VanNoord, 1993]. The systems runs with a lexicalized grammar for Dutch (written
by Gertjan van Noord, which is in its style similar to the one given in appendix A,
but covers more constructions) and with a lexicalized grammar for German written
by Wojciech Skut.

For both grammars, it is the case that the primarily motivation of their design
and form of representation is a linguistic one, i.e., they have not been realized “with
monitoring in mind”. This is important, because otherwise one could criticize that
the grammar “meets” the particular problem specification, and therefore might only
be use-able for that specific purpose.

We will give first some examples produced by the monitored generator using the
Dutch grammar:9

8The BiLD project is supported by the German Science Foundation in its Special Collaborative
Research Program on Artificial Intelligence and Knowledge Based Systems SFB 314. The project
location is the department of Computational Linguistics at the University of Saarland, and the
principle investigator is Hans Uszkoreit.

9We also give English literal and (hopefully) correct translations. It should be clear that the
English translations need not necessarily be ambiguous or unambiguous in the same way.

150

input semantics: [schijnt([ziet([bob],[arie])])]
ambiguous string: bob schijnt arie te zien

*bob seems arie to see
bob seems to see arie

unambiguous string: het schijnt dat bob arie ziet
*It seems that bob arie sees
It seems that bob sees arie

input semantics: [schijnt([perf,vertelt([arie],[slaapt([bob])],[jan])])]
ambiguous string: jan schijnt arie te hebben verteld dat bob slaapt

*jan seems arie to have told that bob sleeps
jan seems to have told arie that bob sleeps

unambiguous string: dat bob slaapt schijnt arie jan te hebben verteld
*that bob sleeps seems arie jan to have told
that bob sleeps seems arie to have told jan

input semantics: [[met([bob])],schijnt([ziet([jan],[man,plur])])]
ambiguous string: met bob schijnt jan de mannen te zien

*with bob seems jan the men to see
jan seems to see bob with the men

unambiguous string: met bob schijnt het dat jan de mannen ziet
*with bob seems it that jan the men sees
it seems that jan sees the men with bob

Next some German examples:

input semantics: past(bringen(the(mann(singular(Z6))),
peter(singular(P8)),
the(geldinstitut(singular(L8)))))

ambiguous string: der mann hat peter zur bank gebracht
*the man (NOM) has peter to-the bank brought
The man has brought peter to the bank

unambiguous string: der mann hat peter zum geldinstitut gebracht
*the man has peter to-the money-institution brought
The man has brought peter to the money institution

151

input semantics: lieben(hans(singular(V5)),maria(singular(G7)))
ambiguous string: hans liebt maria

*hans (NOM) loves mary
peter loves mary

unambiguous string: maria liebt der hans
*mary loves the hans (NOM)
mary, hans loves

input semantics: sehen(exists(spion(singular(L6))),
the(mann(singular(D8))),
the(fernrohr(singular(Z7))))

ambiguous string: ein spion sieht den mann mit dem fernrohr
a spy sees the man with the telescope

unambiguous string: der mann wird mit dem fernrohr gesehen von einem spion
*the man is with the telescope seen by a spy
the man is seen by a spy with the telescope

Although, these successfully processed examples must be considered relative to
the coverage of the grammars in use, they give a sense of the potential power the
monitored generation strategy bears.

5.5.8 Properties and Implementation

Properties Some of the important properties of the non-incremental approach
can be characterised as follows.

The strategy is sound and complete in the sense that no ambiguous utterances
will be produced, and all un-ambiguous utterances are produced. If for a given
semantic structure no un-ambiguous utterance is possible, the current strategy will
not deliver a solution (it is foreseen that in such cases the planner decides what
should happen).

The strategy is completely independent of the grammars that are being used
(except for the reliance on derivation trees). Even more interestingly, the nature of
the underlying parsing and generation strategy is not important either. The strategy
can thus be used with any parsing- or generation strategy.

During the monitored generation previously generated structures are re-used,
because only the ambiguous partial structures have to be re-generated.

Finally, for the proposed strategy to be meaningful, it must be the case that
reversible grammars are being used. If this were not the case then it would not
make sense to compare the derivation tree of a generation result with the derivation
trees which the parser produces.

Implementation A Prolog version of the monitored generation strategy is de-
scribed in [Neumann and van Noord, 1992]. In this version, a semantic-head-driven

152

generation algorithm is used for normal generation, and for parsing a head-corner
parser is used. A detailed description of both algorithms can be found in [VanNoord,
1993].

Using the bottom-up generation algorithm shdga, however, has the disadvan-
tage that when shdga is called for revision this can only be performed in a kind of
generate-and-test mode. The problem is that shdga basically constructs a deriva-
tion tree in a bottom-up fashion. On the other side, revision means to choose an
alternative rule for a marked node, which is the root node of the subtree spanned
by the ambiguous substring. But then, shdga must first produce a candidate alter-
native string and an alternative subtree respectively, before it can check, whether
the root node of the new subtree is in fact an alternative. This means, that after
calling shdga an additional test is necessary which compares the rule name of the
marked node with that of the newly generated subtree. The following is the relevant
snapshot of the Prolog code presented in [Neumann and van Noord, 1992]:

mgen(sign(LF,Str,S,D),t(Name,Ds,y)):-
generate(sign(LF,Str,S,D)),
\+ D = t(Name,Ds,_).

Here, the term t(Name,Ds,y) represents the (local) derivation tree of a sign,
where the symbol y indicates that the root node of this derivation tree has been
marked for revision. First, the embedded generator is called, and only if the result-
ing (local) derivation is not the same the resulting string of revision is accepted.
Otherwise (by means of backtracking) another possibility is tried.

Using our uniform algorithm this computational overhead is easily avoided, be-
cause of its top/down and goal-directed behaviour. For the uniform algorithm to be
usable for the monitored generation strategy we only need to pass the rule name of a
marked node as an additional argument to the generation mode. The predictor rule
then uses this rule name as a requirement to ignore it. Furthermore, the selection
strategy used by the agenda should be depth-first or best-first, and when a string
has been found, the generator is forced to stop further computation. Instead of giv-
ing more details, we will directly embed the uniform algorithm in the incremental
monitored strategy. Before that, however, we will show in the next section how the
above described generation method can be used for the generation of paraphrases
during the understanding mode of a natural language system.

5.6 Generation of Paraphrases

When parsing of an utterance yields several readings, one way in order to deter-
mine the intended meaning is to start a clarification dialog. During such a special

153

dialog situation the multiple interpretations of the parsed utterance are contrasted
by restating them in different text forms. Now, the dialog partner who produced
the ambiguous utterance is requested to choose the appropriate paraphrase, e.g., by
asking her ‘Do you mean X or Y ?’.

This situation has already been exemplified in section 5.3 fig. 5.3. In this exam-
ple, parsing of S (‘Remove the folder with the system tools’) has lead to two readings
LF′ and LF′′. The multiple semantic forms are then paraphrased by means of the
utterances S′ and S′′ (‘Do you mean “Remove the folder by means of the systems
tools” or “Remove the folder that contains the system tools”?’).

5.6.1 A Naive Version

A first naive algorithm that performs generation of paraphrases using a reversible
grammar can be described as follows. Consider the situation in fig. 5.3. Suppose S
is the input for the parser then the set

{(S, LF′), (S, LF′′)}

is computed. Now LF′ and LF′′ are respectively given as input to the generator to
compute possible paraphrases. The sets

{(LF′, S′), (LF′, S)}

and

{(LF′′, S), (LF′′, S′′)}

result. By means of comparison of the elements of the sets obtained during gener-
ation with the set obtained during parsing one can easily determine the two para-
phrases S′ and S′′ because of the relationship between strings and logical forms
defined by the grammar. Note that if this relationship is effectively reversible (see
section 3.4) then this problem is effectively computable.

This ‘generate-and-test’ approach is naive because of the following reasons. Firstly,
it assumes that all possible paraphrases are generated at once. Although ‘all–parses’
algorithms are widely used during parsing in natural language systems a correspond-
ing ‘all–paraphrases’ strategy is not practical because in general the search space
during generation is much larger (which is a consequence of the modular design
discussed in section 5.2). Secondly, the algorithm only guarantees that an ambigu-
ous utterance is restated differently. It is possible that irrelevant paraphrases are
produced because the source of the ambiguity is not used directly.

5.6.2 A More Suitable Strategy

A more suitable strategy would be to generate only one paraphrase for each ambigu-
ous logical form. As long as parsing and generation are performed in an isolated

154

way the problem with this strategy is that there is no control over the choice of
paraphrases. In order to make clear this point I will look closer to the underlying
structure of the example’s utterances.

The problem why there are two readings is that the PP ‘with the system folder’
can be attached into modifier position of the NP ‘the folder’ (expressing the semantic
relation that ‘folder’ contains ‘system tools’) or of the verb ’remove’ (expressing
semantically that ‘system tools’ is the instrument of the described situation). The
example feature structures 13 and 14 (see section 5.2) show the internal grammatical
structure in a HPSG–style notation (omitting details that are not relevant in this
context).

As long as the source of the ambiguity is not known it is possible to generate in
both cases the utterance ‘Remove the folder with the system–tools’ as a paraphrase
of itself. Of course, it is possible to compare the resulting strings with the input
string S. But because the source of the ambiguity is not known the loop between
the isolated processes must be performed several times in general.

A better strategy would be to recognize relevant sources of ambiguities during
parsing and to use this information to guide the generation process. Meteer and
Shaked [1988] propose an approach where during the repeated parse of an ambiguous
utterance potential sources of ambiguity can be detected. For example when in the
case of lexical ambiguity a noun can be associated to two semantic classes a so called
‘lexical ambiguity specialist’ records the noun as the ambiguity source and the two
different classes. These two classes are then explicitly used in the generator input
and are realized, e.g., as modifiers for the ambiguous noun.

The only common knowledge source for the paraphraser is a high order inten-
sional logic language called World Model Language. It serves as the interface be-
tween parser and generator. The problem with this approach is that parsing and
generation are performed in an isolated way using two different grammars. If an
ambiguous utterance S need to be paraphrased S has to be parsed again. During
this repeated parse all potential ambiguities have to be recognized and recorded (i.e.
have to be monitored) by means of different ‘ambiguity specialists’. The problem
here is that also local ambiguities have to be considered that are not relevant for
the whole structure.

5.6.3 A Suitable Strategy

The crucial point during the process of generation of paraphrases is that one not only
has to guarantee that an ambiguous utterance is restated differently but also that
only relevant paraphrases are to be produced that appropriately resolve structural
ambiguities.

In order to be able to take into account the source of ambiguity obtained during
parsing the basic idea of the proposed approach is to generate paraphrases along
‘parsed’ structures. Suppose that parsing of an utterance has yielded two inter-

155

pretations LF′ and LF′′ with corresponding derivations trees d1 and d2. It is now
possible to generate a new utterance for each logical form LFi by means of the
monitored generation algorithm described in the previous section. In this case, the
corresponding derivation tree di of LFi is marked by means of the others. The so
marked tree is then used to ‘guide’ the generation step as already known.

Because most of the functions to use are already defined in section 5.5 we can
directly specify the top-level function interactive parsing as follows:

interactive_parsing(goal):
TreeSet := find_all_parses(string(goal))
if card(TreeSet) = 1
then return semantics(root_node(first(TreeSet)))
else
Paraphrases := generate_paraphrases(TreeSet);
ask_best_answer(TreeSet,Paraphrases).

generate_paraphrases(TreeSet):
for each Tree in TreeSet do
collect
generate_paraphrase(Tree, TreeSet/{Tree})
in Paraphrases
finally return Paraphrases.

generate_paraphrase(Tree,TreeSet):
Guide := mark(Tree,TreeSet);
revision(Guide).

The predicate find all parse computes all possible parses TreeSet of a given
string (note, that this function also deletes spurious ambiguities). If the parser
obtains multiple interpretations (i.e., the cardinality of TreeSet is greater than one)
then for each element of TreeSet a paraphrase has to be generated. This is done by
means of the predicate generate paraphrases, whose explanation will be given
below. All computed Paraphrases are then given to the user who has to choose
the appropriate paraphrase. The corresponding logical form of the chosen reading
determines the result of the paraphrasing process.

For each parsed sign of the form a paraphrase is generated in the following way:
First its derivation tree Tree is marked by means of the set of derivations trees
contained in TreeSet/Tree. The resulting marked derivation tree Guide is then
used in order to guide the generation of the sign’s logical form LF using the predicate
mgen. Note, that this directly reflects the definition of the predicate revision, which
definition was given in the previous section.

156

5.6.4 A Simple Example

In order to clarify how the strategy works we consider the attachment example of
section 5.5 again. Suppose that for the sentence

(29) Die Männer haben die Frau mit dem Fernglas gesehen.
The men have the woman with the telescope seen.

the parser has determined the derivation trees in figure 5.8 with corresponding (sim-
plified) semantic representations:

mit(fernglas, sehen(pl(mann), frau))

for the left and

sehen(pl(mann),mit(frau, fernglas))

for the right tree. For the first reading the paraphrase

(30) Die Männer haben mit dem Fernglas die Frau gesehen.

is generated in the same way described in section 5.5. In this case the left tree of
figure 5.8 is marked by means of the right one.

In order to yield a paraphrase for the second reading, the right derivation tree
of figure 5.8 is marked by means of the left one. In this case markers are placed in
the right tree at the nodes named ‘pp mod’ and ‘gesehen’. If the grammar allows to
realize ‘mit(frau, fernglas)’ using a relative clause then the paraphrase

(31) Die Männer haben die Frau, die das Fernglas hat, gesehen.
The men have the woman, who the telescope has, seen. The men have
seen the woman who has the telescope

is generated. Otherwise, the markers are pushed up successively to the root node
‘topic’ of that tree yielding the paraphrase:

(32) Die Frau mit dem Fernglas haben die Männer gesehen.

Now, the produced paraphrases are given to the user who has to choose the
appropriate one. In the current implementation this is simply done by entering the
corresponding number of the selected paraphrase.

157

5.6.5 Properties

In principle the same properties as those already discussed for the monitored gen-
erator are valid. This means, that only unambiguous paraphrases are generated.
Therefore it is guaranteed that the same paraphrase is not produced for different
interpretations. This is important because it could be the case that a paraphrase,
say S

′
is also ambiguous such that it has the same interpretations as S. Therefore it

could happen that the same utterance S
′

is generated as a paraphrase for both LF
′

and LF
′′
. For example in German the following sentence:

(33) Den Studenten hat der Professor benotet, der das Programm
entwickelte.
The-ACC student-ACC has the professor-NOM graded, who developed
the program.

is ambiguous because it is not clear who developed the program. If a paraphrase is
to be generated, which expresses that the student developed the program, then this
can be done by means of the utterance:

(34) Der Professor hat den Studenten benotet, der das Programm
entwickelte.
The professor-NOM has the-ACC student-ACC graded, who developed
the program.

But this utterance has still the same ambiguity. This means, that one has to check
also the ambiguity of the paraphrase. An unambiguous solution for the example is,
e.g., the utterance:

(35) Den Studenten, der das Programm entwickelte hat der Professor
benotet.
The-ACC student-ACC, who developed the program has the professor
marked.

The advantage of our approach is that only one paraphrase for each interpretation
is produced and that the source of the ambiguity is used directly. Therefore, the
generation of irrelevant paraphrases is avoided.

Furthermore, we do not need special predefined ‘ambiguity specialists’, as pro-
posed by [1988], but rather use the parser to detect possible ambiguities. Hence our
approach is much more independent of the underlying grammar.

158

5.7 Incremental Interleaving of Parsing and Generation

A fundamental assumption of the non-incremental version described so far is that it
is often possible to change an ambiguous utterance locally to obtain an unambiguous
utterance with the same meaning. Based on this local view it seems plausible to in-
tegrate parsing and generation more tightly in the following way: During generation
already produced partial strings are parsed to determine the degree of ambiguity. If
necessary an ambiguous partial string is revised in order to produce an unambigu-
ous paraphrase of that ambiguous partial string. The successive application of this
incremental generate, parse and revise technique will end up in an utterance which
is unambiguously as possible.

Such a strategy works for an example like:

(36) Removing the folder with the system tools can be very dangerous.

Here, the relevant ambiguity of the whole utterance is forced by the partial
string ‘Removing the folder with the system tools’. This ambiguity can be solved
by restating the partial string, e.g., as ‘Removing the folder by means of the system
tools’ independently from the rest of the string.

However, consider the ambiguous string ‘visiting relatives’ which can mean ‘rel-
atives who are visiting someone’ or ‘someone is visiting relatives’. If this string is
part of the utterance

(37) Visiting relatives can be boring.

then a local disambiguation of ‘visiting relatives’ is helpful in order to express
the meaning of the whole utterance clearly. But if this string is part of the utterance

(38) Visiting relatives are boring.

then it is not necessary to disambiguate ‘visiting relatives’ because the specific
form of the auxiliary forces the first reading ‘relatives who are visiting someone’.

This phenomenon is not only restricted on the phrasal level but occurs also on
lexical level. For example, ‘ball’ has at least two meanings, namely ‘social assembly
for dancing’ and ‘sphere used in games’. If this word occurs in the utterance

(39) During the ball I danced with a lot of people.

then the preposition ‘during’ forces the first meaning of ‘ball’. Therefore it is

159

not necessary to disambiguate ‘ball’ locally. But, for the utterance

(40) I know of no better ball.

‘ball’ cannot be disambiguated by means of grammatical relations of the utterance.

5.7.1 Basic Problems of Incremental Monitoring

The problem is that the monitor must be dynamically configured during incremental
processing time of single utterances in order to decide

• when the test of ambiguity should take place and

• which partial strings should be revised?

Technically it is possible to check and revise each partial result of the generator.
But, without any control, the monitor would try to disambiguate each local ambi-
guity; it is hard to imagine that the resulting generator would produce anything at
all.

Clearly, an utterance can only be said to be (un)ambiguous with respect to a
certain context. The assumption is that usually an utterance which is not ambiguous
w.r.t. its context will remain unambiguous if it is part of a larger utterance.

It may be possible to restrict the context during the production of a partial
utterance to grammatical properties, e.g. to the information associated with the
head which selects the phrase dominating this partial utterance. Such an approach
can be integrated in head-driven generators of the type described in [Shieber et al.,
1990].

For example, assume that for each recursive call to the generator the revised
monitor is called with an extra argument Head which is to be used as contextual
information when the embedded parser is called to test whether the string in question
is ambiguous. Thus, suppose we are to generate from the logical form

during′(ball′)

A head-driven generator first produces the word during as the head. Next an
np with logical form ball′ has to be generated. For this logical form the generator
chooses the word ball which is however ambiguous. For this partial utterance the
monitor is called, using the head information of during. However, being an argument
of the head during, only one of the readings of ball is possible. Therefore, the
monitor simply ‘confirms’ the choice of the generator. Thus, the assumption here is
that this ambiguity will be disambiguated later on by combining this string with its
head.

Beside the fact, that this method depends on grammar theories which comes
with a notion of head, the main problem of this approach is that

160

• either each ambiguous partial string has to be revised immediately or

• revision is delayed until the previous recursive call of the generator has been
finished.

In the first case the monitor would also revise irrelevant ambiguities. The latter
point would mean that revision can only be performed after the whole utterance has
been produced. But then the incremental method just simulates the non-incremental
method.

5.7.2 A Look-Back Strategy

It seems to be more plausible to test the ambiguity of a partial string with respect to
already produced partial strings. Based on this idea the notation of context is con-
sidered as follows: The context of a partial string α with constituent A is the string
β of the adjacent constituent B of A. Parsing is then performed on the “extended”
string βα, to test whether this string leads to some ambiguity. If the “extended
string” is either not parse-able or is not ambiguous we conclude that the newly
produced string α does not force ambiguities in the current state of computation of
generating the final string.

For example suppose that an utterance with meaning ‘Remove the folder by
means of the system tools.’ has to be produced. Furthermore, suppose that the
partial string ‘Remove the folder’ has been generated using a rule ‘vp → v, np, pp’.
Now, the result of generating the pp is ‘with the system tools’. In order to check
whether this string is ambiguous ‘the folder’ is used as context and the string ‘the
folder with the systems tools’ is parsed. This string is parse-able if a rule e.g., ‘np
→ np, pp’ exists. If it is parse-able then a source of ambiguity has been found, so
that pp should be revised. If revision is not possible, then revision of the previous
chosen vp should take place. However, if the rule ‘vp→ v, pp, np’ had been chosen,
and the currently produced string is “the folder”, then the extended string to parse
would be “with the system tools the folder”. In this case, however, the string would
not be parse-able. For the monitoring strategy this means, that at this point of
computation, no statement of a possible ambiguity can be made, so the revision
should not take place. In other words, the newly produced string “the folder” does
not cause a relevant ambiguity in the current domain of locality spanned by the vp
rule.

The proposed approach realizes a kind of look-back strategy, in the sense, that the
monitor look backs to already produced substrings, in order to test whether a new
string together with previous produced substrings causes ambiguity. For the method
described so far, we actually have made a look-back of one adjacent constituent. In
principle, however, it is possibly also to take into account the adjacent element of an
adjacent element, leading to a look-back(n) strategy. The degree of look-back used,
directly influences the degree of ambiguity we are going to consider. For example

161

suppose we have the following grammar (s, np, vp are non-terminals, the other
symbols are terminal elements):

1. s → np vp
2. vp → a b c d
3. vp → a np
4. np → x y
5. np → b c d

Assume that we have first chosen the vp rule 2., and the newly generated element
is d (we assume a left-to-right scheduling). If we are following a look-back(1) strat-
egy, then we have to parse the string ‘cd’. This string, however, is not parse-able, so
we do not try to revise it at that point. However, if we would use look-back(2), the
string to parse would be ‘bcd’. This string is parse-able, so there is the possibility
of an ambiguity.

We are now going to describe how the look-back strategy informally described
above can be integrated into the uniform algorithm developed in chapter 4 in order
to perform the desired incremental monitoring strategy. Basically, we have to discuss
the following questions:

1. How is the context determined and used for locating potential ambiguities?

2. How do we realize revision within the uniform algorithm?

The first question is concerned with the problem of determining context. This
implies that we have to consider the possible different granulations the shape a
context can have. For example, does it make sense to consider only one word as
context or should it be better the string of complex constituents. This question
will be considered after having introduced how revision should take place, because
activation of revision is triggered after having determined a context, but it is possible
to discuss revision by just assuming that context has already been determined.

Thus, the first question we want to consider, is the question how revision is
realized within the uniform algorithm.

5.7.3 Performing Revision Within the Uniform Algorithm

It turns out that performing revision during generation of an utterance using the
uniform algorithm is not that difficult as it might be at a first glance.

Recall that the uniform algorithm keeps track of partial (complete or incomplete)
results using an agenda and a chart. The agenda is used to maintain all newly created
items before they are added to the chart. The selection strategy used by the agenda
determines in which order the items are added to the chart. Following a depth-
first strategy, for instance, then only those items are considered that eventually can
contribute to the complete generation of the first possible utterance. All remaining

162

alternative items are only added to the chart in the case that additional paraphrases
are requested, e.g., when all possible strings of a given semantic expression shall be
computed.

If an item has been added to the chart, the different inference rules are applied
which eventually creates new items which are then added to the agenda. But note
that only those created items which have been added to the agenda will be considered
during further computation. By means of this “built-in” mechanism revision can be
performed as follows: Suppose that we have deduced a new passive item p. This
means that we have computed a new partial string. If p is added to the chart, by
means of passive completion it is checked whether p can reduce an active item a.
Then, before a is actually be reduced using p it is checked whether p causes an
ambiguity using an appropriate context.

Only if no ambiguity can be determined, the reduction of a is performed and
the resulting new item is added to the agenda. On the other side, if an ambiguity
is recognized, then reduction will not be performed, and as a consequence no new
item is created. This implies for a, that reduction of its selected element will only
be performed if there is another alternative for p available on the agenda (or items
which lead to the computation of the alternative). However, this alternative item
will automatically be added to the chart by the agenda at some later point. In
some sense, this kind of processing means that the selected element has implicitly
been marked, and the agenda will choose an alternative item which corresponds to
a selection of an alternative rule.

If no alternative for p can be deduced (i.e., either no further alternative exists, or
no unambiguous alternatives exist), then a will never be completed. However, this
means that the agenda automatically will add an alternative item of a (if present) to
the chart, which then might be combined with p. Note that this reduction would be
performed by active-completion, and hence, would reuse results of previously made
computations. If this is the case, the marker of p implicitly has been pushed one
level up. Since, the whole process is performed recursively, it might be the case that
markers are pushed implicitly up to the initial root node. However, in all cases, we
can benefit from the results of previously made computations.

We will use our pp-attachment example at that place to clarify the strategy. We
are assuming the following simple grammar:

1. s → np vp
2. vp → v np pp
3. vp → v pp np
4. np → det n
5. np → np pp
6. pp → prep np

We assume that these rules are added to the agenda according to the order in

163

which they are specified in the grammar. Using a depth-first selection strategy for
the agenda, rule 2. is processed before 3. At some point the pp is produced, and will
be used by passive completion to reduce an instance of rule 2. However, before the
pp of vp is reduced, the string of the np is used as context for checking whether the
pp causes ambiguity. Therefore, we parse the string of np-pp, and actually detect
an ambiguity. For the pp, however, we have no further alternatives available on
the agenda, so rule 2. cannot be reduced completely, i.e, for that rule the inference
rules cannot create items to put on the agenda. However, the agenda mechanism
guarantees that rule 3. will be selected. Reducing rule 3. by means of active-
completion will first use the pp for reduction, assumed without ambiguity problems.
Next the np should be used for reduction. Before that, however, the string of pp-np
is monitored, which however cannot be parsed, and hence no revision is necessary.
Thus, rule 3. will be reduced by the np to give a completely reduced vp, which then
is used for reduction of rule 1.

Based on the observations made above, we can adapt the uniform algorithm for
performing revision in the following way, assuming that we already know how to de-
tect ambiguities in the incremental mode (how this is actually be performed is given
in the next section): Revision should only take place if there exists a passive item
which can be used for reducing an active one. Thus, we only have to consider revision
for the inference rules active-completion, scanning, and passive-completion,
whose indexed versions can be found in section 4.10 of chapter 4.

In all three cases we add a further conditional statement around the body of
the for all loop, namely that the body should only be evaluated if revision is not
requested. For example, the passive-completion rule is changed as follows (only
the relevant parts are expressed explicitly):

(1) proc passive-completion (in: PL; out: Candidates?):
(2) “as it is”
(3) ∀ AL ∈ Sfrom(PL); Φ = unify(sel(AL),head(PL)) and Φ 6= ⊥
(4) do if not(and(Monitor?,revision p(Φ[AL],PL)))
(5) then do Red := Φ[AL-sel(AL)];

“and so on, as above”
od fi

od;

In the relevant part of the new code we have added a new line (4), which says
that the next operations (i.e., putting a just reduced active item on the agenda)
will only be performed if the monitor mode is switched on (which is done by using a
global variable Monitor?, whose boolean value indicates whether processing should

164

be performed with or without incremental monitoring) and if no revision has taken
place, which is determine by the predicate revision p.10

In the same manner active-completion and scanning are modified. The
definition of revision p is as follows:

revision_p(AL,PL):
extended-string := get_context(AL,PL,n);
if extended-string
then
parsed_result := parse(extended-string)
if and(parsed_result,ambiguous(AL,parsed_result))
then TRUE
else FALSE
fi

else FALSE
fi.

The contextual information is determined by means of the function get context.
If so, the parser is called with the extended-string, built inside get context, using
a look-back of n, which value is set globally. To be more precise, first a new string
is computed on the basis of the context and the passive item’s string, and then the
parser is called. Only if the parser successfully obtained one or more readings and
if the result is ambiguous should revision take place.

Note that the way the uniform algorithm maintains the agenda and the chart,
the incremental method “simulates” marking and revision of generated derivation
trees as is done explicitly by the non-incremental method. However, marking is done
implicitly — it is just a side effect of the uniform algorithm by not creating items
which could cause ambiguity problems. Furthermore, because monitoring is applied
on intermediate results, it is actually performed incrementally.

5.7.4 Performing Ambiguity Checks within the Uniform Algorithm

We now turn our attention to the problem of testing whether a new partial produced
string causes ambiguity or not. To solve this problem, we have to specify how an
appropriate context is determined, how this context is used for parsing, and how the
result of parsing is analysed with respect to its ambiguity.

10Using a globally set flag to trigger incremental monitoring can also be useful if the flag can be
switched off in a kind of any-time mode. For example, if the overall system receives important time
constraints and if it is possible to change the value of monitor? from true to false interactively,
the remaining semantic expression would be generated without monitoring.

165

Determination of Context The basic assumption behind the use of contextual
information during the incremental monitoring strategy is that it only makes sense
to test whether a partial string, say α, is ambiguous with respect to a larger string
which entails α. Such a larger string will be built by means of concatenation of α
and some other already produced string, which we will call the contextual string of
α.

Since revision will be performed before a passive item PL is used for reduction
of an active item AL, this active item defines the domain of locality from which
contextual information can be determined. Completion will be performed if PL
and the selected element of AL can be unified. Therefore, only those elements of
the body will be considered as possible contextual strings, that have already been
deduced as subgoals of the active item.

Completion causes the removal of the completed elements from the body of a
clause, so the elements of the body cannot be used directly. However, using the
modified representation of derivation trees as already used in the non-incremental
method, we are able to extract the corresponding strings of completed elements of an
active lemma from the mother node of AL. Thus, we will determine the contextual
string of PL on the basis of the derivation tree represented as part of the constraints
of the head of the lemma of AL.

Note that the call of the incremental monitoring mechanism, i.e., the call of re-
vision p is performed in a completion rule before the new reduced item is computed
but after unification of the passive item with the selected element of the active item
has been done. This guarantees that monitoring is only performed on consistent
structures. As a side effect of unification, the derivation tree of the passive item is
unified into the derivation tree of the head of the lemma of the active item.

For example, assume that we have reduced the grammar rule vp←v, np, pp up to
the point where we only need to complete the pp in order to complete the vp. The
corresponding active item would be of form

〈vp←pp, 0, ea(0), ea(i)〉

At that point the derivation tree represented as part of the constraints of vp is
(making use of useful abbreviations):

rn vp3
string 〈remove, the, folder〉-P
sem . . .

dtrs

〈
rn v5
string 〈remove〉-P1
sem dots
dtrs 〈 〉

,

rn np3
string 〈the, folder〉-P2
sem dots
dtrs “its tree”

, T ree
〉

where the variable Tree is a pointer to the derivation tree of the selected element
pp, which is still un-instantiated.

166

After successful unification of a passive item pp with the selected element, the
derivation tree looks as follows:

rn vp3
string 〈remove, the, folder, with, the, tools〉-P
sem . . .

dtrs

〈rn v5
string 〈remove〉-P1
sem dots
dtrs 〈 〉

,
rn np3
string 〈the, folder〉-P2
sem dots
dtrs “its tree”

,
rn pp1
string 〈with, the, tools〉-P
sem dots
dtrs “its tree”

〉

Now, we take this representation as the basis for determination of the contextual
string of the pp’s string “with the tools” making use of a look-back strategy as already
informally described above.

Recall that the value of the dtrs feature is a sequence of the derivations trees
of the corresponding elements of the body. In this context, we will call the value
of the dtrs feature the sequence of sisters of the node represented by the clause’s
head element.11

Since we consider the sister nodes as totally ordered in a sequence, a look-back
one strategy (written as look-back (1)) of the selected element, is just the choice
of its left or right sister node. Thus, for the example above, we choose the node
labelled np3. From this derivation tree we choose the value of the string feature as
contextual string. Since, we assume that strings are represented as difference lists, it
will be the case, that the string of the root node of the derivation tree of np already
entails the string of pp. Thus, we can directly start parsing of this string, to test
whether this string is ambiguous.

Note that in the above example we have implicitly assumed, that the elements
of the body are processed in a left-to-right manner. Of course, in the case of gen-
eration this is not the general case. It might be possible, that for example, the pp
is completed before the np is. In this case, we would have no (left) sister to be
use-able as contextual string for the pp, because the derivation tree of the np still
needs to be constructed, which means that the position of this derivation tree within
the sequence of sisters is still occupied by an un-instantiated variable. If this is the
case, we conclude that for the pp no statement about ambiguity can be made, and
therefore, no revision should take place. After the np has been completed, monitor-
ing for the np will eventually take place. But now, there is a choice point for the
np either to choose its left or right sister as the base of contextual information, or
both.

We can directly generalize the informal description of a look-back(1) strategy
to a look-back(n) strategy, if we not only consider the left or right sister node of

11The notion sister can be defined on the basis of dominance as follows (see [Partee et al., 1990]):
A node x dominates a node y if there is a connected sequence of branches in the tree extending
from x to y. If x and y are distinct, x dominates y, and there is no distinct node between x and y,
x immediately dominates y. A node is said to be the daughter of the node immediately dominating
it, and distinct nodes immediately dominated by the same node are called sisters.

167

the selected element as context but the sequence of the n left or right sisters of the
selected element. In order to do this we have to consider the following cases:

• one of the n sisters is un-instantiated, and

• there are less then n possible sister nodes to the left or right of the selected
element.

The first case means that there is a sister which derivation tree has still not
been computed. This means that we cannot determine the whole contextual string
corresponding to the n sisters, and we conclude that no contextual string exists. The
second case means that the whole set of left or right sisters of the selected element
can be used as contextual information by actually performing a look-back of less
than n. In that case we use the corresponding contextual string spanned by the
sisters and use it for the ambiguity check.

For a more readable definition of the look-back(n) strategy, we make use of the
notation subseq(i, j), which is a subsequence of elements ranging form i to j. For ex-
ample, subseq(3, 5) denotes the subsequence 〈c, d, e〉 of the sequence 〈a, b, c, d, e, f, g〉.
Empty production will be handled so that if the sequence contains the name of an
empty production we just skip this element. For example, if a and b are empty
productions, then the sequences 〈a, c, a, b, d, e〉 and 〈c, d, e〉 are considered as being
equal. The notation “the string of subseq(i, j)” means the string built by a left to
right concatenation of the strings of the elements of the subsequence (modulo empty
productions). We will say that a “subseq(i, j)” is instantiated if for each element of
the subsequence its derivation tree is instantiated.

Thus, the look-back(n) strategy can be expressed as follows: Let 〈d1, . . . , dm〉 be
the sequence of sisters of the derivation tree of a rule and let di be the derivation
tree of the “unified” selected element of the rule, and α its string. Let ll be the
length of subseq(1, i− 1) and rl be the length of subseq(i+ 1,m). If n > ll then let
n be ll, and analogously let n be rl, if n > rl. Then,

• if subseq(i− n, i− 1) is instantiated but not subseq(i+ 1, i+ n) then let β be
the string of subseq(i− n, i− 1); let βα be the extended string;

• if subseq(i+ 1, i+ n) is instantiated but not subseq(i− n, i− 1) then let β be
the string of subseq(i+ 1, i+ n); let αβ be the extended string;

• if subseq(i − n, i − 1) and subseq(i + 1, i + n) are instantiated with strings β
and γ respectively then let βαγ be the extended string;

• otherwise, no contextual string exists, which is indicated by the boolean value
false.

168

This definition is used inside the function get context (which is called inside
revision p, see above) which receives as input an active and a passive item and
returns either an extended string or false. To be more precise, we have:

get_context(AL,PL,n):
dtrs := get_dtrs(AL);
lsisters := get_left_sisters(AL,label(PL));
rsisters := get_right_sisters(AL,label(PL));

‘‘apply look-back(n) on lsisters and rsisters;’’

if extended-string then
return extended-string
else
return false.

We first extract the sisters of the derivation tree of the active item AL, i.e., the
value of the path 〈deriv, dtrs〉 of the constraints of the active item’s lemma’s head.
We then split this list into a left and right subsequence, where the passive item
(which corresponds to the unified selected element of AL) serves as the splitting
point. Next, we apply the look-back(n) strategy, and either return an extended
string or false, if no such exists.

Check ambiguity Next we call the parser (i.e., we run our uniform algorithm
in the parsing mode), whose task is to parse the extended string. If the extended
string cannot be parsed, we conclude that no revision is necessary, and the call
of revision p terminates with false. However, if the parser returns one or more
results (which corresponds to semantic readings of the extended string), we apply
the ambiguity check performed inside the function ambiguous (see below). Only if
a parsed result exists and the result is ambiguous, revision p returns true which
will cause revision of the new string spanned by the passive item.

The ambiguity check is performed as follows. First we delete all spurious ambigu-
ities in the same way as in the non-incremental method, i.e., for a pair of derivation
trees which have the same semantics we only retain one. After this operation we
may have either only one reading or a set of readings. The latter case means that
there are different possibilities to assign a meaning to the extended string, therefore
revision for the new string should take place.

The former case is a bit more complicated. Although this case means that the
extended string has been analysed as unambiguous (since we have obtained only one
result), it might be the case that this reading is the same as that of the semantic

169

expression of the active item’s lemma. In this case, we have just detected a spurious
ambiguity, and therefore revision should not take place. If on the other side, the
semantic expression is not equal to that of the active item, we have found an possible
ambiguity, and hence, revision should take place.

The following description of the function ambiguous summarizes the different
cases:

ambiguous(ParsedResult,AL):
ReducedResult := ‘‘delete spurious ambiguities

in the same way as known from the non-incremental
version’’;

if card(ReducedResult) > 1
then return true
else
if sem(ReducedResult) = sem(AL)
then return false
else true.

5.7.5 Using Shared Items during Incremental Monitoring

The main advantage of the incremental method using the uniform algorithm de-
scribed so far is that we benefit from the use of the chart during the monitored
generation strategy, because also in that case we can reuse previously made compu-
tations. Since revision is automatically performed by the agenda mechanism of the
uniform algorithm (by not creating items for those structures where an ambiguity
as been detected), the main effort we have to spend to realize monitoring is the
parsing operation performed on extended strings. (The determination of the con-
textual string is not a time critical operation.) We now show how the incremental
monitoring method can be made more efficient by making use of the item sharing
approach described in 4.15.

Recall that in the item sharing approach passive items that have been computed
in one direction can directly be used in the other. Following the method described in
4.15 the uniform tabular algorithm maintains different agendas, item sets and active
items for the parsing and generation mode, but passive items are shared during both
directions. The object-oriented realization of the item sharing approach allows the
parser (i.e. the parsing mode of the uniform algorithm) to be chart-based even when
it is called inside the generator. Thus, if the parser is called via monitoring it can
reuse previously self-made results at any stage.

By use of the item sharing approach partial results (i.e., passive items) are con-
tinually made available for the other direction. However, this means that for both
directions it is the case that one direction can reuse results from the other directions.

170

For example, for the interleaved parsing mode this means that it can reuse results
computed through generation when making the ambiguity check. During this job,
however, it can provide results for the generator of which the generator can make
use. This means, that parsing results are used through generation and generation
results are used through parsing in an interleaved mode.

5.7.6 Implementation

The incremental monitoring mechanism has fully been implemented on top of the
item sharing approach and tested with several smallish grammars. Although we
currently do not make use of preferences-based strategies (see also the final chapter)
we have paid attention to be as flexible as possible with respect to this future
extension. For example, if the Prolog-like interactive mode is activated also during
parsing a user can choose which of the results computed during parsing should be
ignored for the ambiguity check. Furthermore, it is possible to stop the parser after
a first result accepted as most suitable for the user has been computed. Thus a user
can interactively specify which reading she prefers.

Furthermore, it is possible to switch off the monitor interactively by just chang-
ing the Boolean value of the global variable monitor? which is used to trigger
monitoring. Currently, this can be done in combination with the interactive mode.
If the flag is switched off further generation is automatically continued without
monitoring. Using this mechanism it is possible to simulate some kind of any-time
behaviour of the incremental method.

5.7.7 Properties of the Incremental Method

The incremental monitoring method can be seen as an additional restriction to the
uniform algorithm to keep track only those computed partial results which do not
force ambiguities. Note that monitoring is only triggered by the completion rules
and will only be performed on consistent structures. The effect of monitoring is
that the uniform algorithm will only consider a subset of possible answers, namely
those which are un-ambiguous. If no un-ambiguous string can be produced then the
resulting set of answers is empty. However, if the algorithm finds an answer then it
is correct. In this sense the monitor just further constraints the set of computable
answers for a given semantic expression.

There are two parameters which influence the behaviour of the incremental mon-
itoring strategy: the concrete value of n for the look-back strategy and the degree
of the nodes of a derivation tree, which corresponds with the length of the right
hand side of the rules. We will call this the branching factor of the grammar. The
maximal possible degree of a node will be denoted as maximal branching factor, and
corresponds to the rule with the largest number of right-hand side elements defined
in a grammar.

171

Recall, that the variable n refers to the number of sisters of a selected element
of an active item which have to be considered as context. Now, suppose we have
chosen 1 as the value of n, i.e., we are following a look-back(1) strategy. Furthermore,
assume we have two grammars G1 and G2 which are weakly equivalent, and where
the maximal branching factor of G1 is 2 and that of G2 is some integer m greater
than 2. Thus, G1 defines binary structures and G2 flat structures (compared wrt.
G1).

For G1 a look-back(1) strategy means, that in each case where the incremen-
tal monitor mechanism is activated the extended string determined on the basis of
the contextual string of some active item is identical with the whole string of the
constituent defined by the active item. The reason is that when using a grammar
defining binary structures, each rule has maximally two right hand side elements,
say s1 and s2. Only when both have been deduced, monitoring will take place, be-
cause otherwise no contextual information would be available. Suppose, that s1 is
completed before s2, then the string of s1 will serve as the contextual string of s2.
The extended string is then the concatenation of both strings, but this means that
it is just the string spanned by the whole item. This implies, that all possible ambi-
guities will be detected and that if the incremental monitor generates an utterance,
then this utterance is unambiguous.

For G2 a look-back(1) strategy means in general, that only a substring of the
string defined by a constituent will be taken into account when building an extended
string. But then, as we already showed in in section 5.7.2, it is possible, that
not all possible ambiguities will be detected. As a consequence, this means that
if the incremental monitor generates a string, this string need not necessarily be
unambiguous.

Putting both together, we obtain a different result (wrt. the degree of ambiguity
of a “monitored generated string”) using the same value of n, but on grammars
which only differ with respect to their maximal branching factor. Of course, if we
want to make sure that our algorithm behaves in the same way for grammars with
different maximal branching factor, i.e., if it is to guarantee that only unambiguous
strings are generated, then we have to choose the maximal branching factor of the
grammar as the value for n when performing the look-back strategy.

On the other side, if we have a grammar with a maximal branching factor greater
than 2, say m, then following a look-back(n) strategy, with n < m, would mean that
the incremental monitoring strategy would only consider those ambiguities which
can be detected with the chosen look-back strategy. However, in that case, there
is no guarantee that the resulting string is unambiguous. But note that the value
chosen for n directly influences the size of the extended string. This means, that in
general, a small value for n would mean less effort for the parser.

The discussion made above directly reveals the problem of determining the ap-
propriate value for the look-back strategy. If we choose the maximal branching
factor, then we obtain unambiguous strings (if they actually exist), for the price of

172

high computational effort. On the other side, if we choose a small value for n we re-
duce the effort but will eventually not obtain an unambiguous string. Furthermore,
it cannot be guaranteed that we actually have considered relevant ambiguities.

In order to compromise between computational effort and the degree of resolved
ambiguities, we have to consider some additional criteria, which are used to decide
whether an ambiguity check should be applied to a newly generated string.

Assumed we have such criterions they can easily be used during monitoring,
such that during the call of get context this information is used firstly to check
whether for the passive item ambiguity should take place, and second on each sister
“consumed” by the look-back strategy the test are applied. Only if the passive item
and its sisters fulfill the conditions expressed by these criterions an extended string
will eventually be delivered.

This provides the possibility to restrict the application of the monitoring strategy,
for instance, on grammar specific information. For example, it would be possible
to restrict monitoring only for maximal projections or only for those structures
which are known to cause ambiguities (e.g., pp-modifiers, coordinations). In our
implementation we have already build in mechanisms that can take into account
such additional grammar specific information. However it is a matter of future
investigation (primarily on the linguistic side) to achieve meaningful and realistic
criterions.

5.8 Conclusion

In this chapter we have presented basic strategies for performing self-monitoring
and revision. We presented a non-incremental and an incremental version. The
non-incremental version and the paraphrasing algorithm is a generalization of [Neu-
mann and van Noord, 1992] and [Neumann and van Noord, 1994]. The incremental
monitoring algorithm is novel. This is not surprisingly, because the incremental
monitoring method to be practical must be built on top of a uniform method that
supports efficient integration of parsing and generation. The item sharing approach
and the uniform tabular algorithm are in particular suited to obtain this behaviour.
Indeed, one of the motivations behind the development of the uniform tabular algo-
rithm has been for interleaving parsing and generation, i.e, it has been practically
motivated (which is not that bad; good ideas often come from practical needs).

Limitations It should be clear that monitoring and revision involves more than
the avoidance of ambiguities. [Levelt, 1989] discusses also monitoring on the concep-
tual level and monitoring with respect to social standards, lexical errors, loudness,
precision and others. Obviously, our approach is restricted in the sense that no
changes to the input logical form are made. If no alternative string can be gener-
ated then the planner has to decide whether to utter the ambiguous structure or to

173

provide an alternative logical form.
During the process of generation of paraphrases it can happen that for some in-

terpretations no unambiguous paraphrases can be produced. Of course, it is possible
to provide the user only with the produced paraphrases. This is reasonable in the
case that she can find a good candidate. But if she says e.g., ‘none of these’ then
the paraphrasing algorithm is of no help in this particular situation.

Meteer [1990] makes a strict distinction between processes that can change de-
cisions that operate on intermediate levels of representation (optimisations) and
others that operate on produced text (revisions). Our strategy is an example of
revision. Optimisations are useful when changes have to be done during the initial
generation process. For example, in [Finkler and Neumann, 1989; Neumann and
Finkler, 1990] an incremental and parallel grammatical component is described that
is able to handle under-specified input such that it detects and requests missing but
necessary grammatical information.

174

Chapter 6

Summary and Future Directions

6.1 Summary

We have developed a uniform computational model for natural language parsing
and generation. It is based on a novel uniform tabular algorithm for parsing and
generation from constraint-based grammars, and a new method of grammatical pro-
cessing called item sharing. On the basis of these methods we have shown how an
elegant but practical interleaving of parsing and generation is achieved by a novel
incremental monitoring algorithm that is used during natural language production.
Implementations of these methods exist and we have given details about the tech-
nical realization.

The new uniform tabular algorithm is a generalization of the Earley deduction
method introduced by [Pereira and Warren, 1983]. Although uniformly defined the
algorithm is fully driven by the structure of the actual input – a string for parsing
and a semantic expression for generation. This task-oriented behaviour is obtained
by means of a data-driven selection function (the element to process next is deter-
mined on the basis of the current portion of the input) and a data-driven uniform
indexing technique. It is uniform in the sense that the same basic mechanism is used
for parsing and generation, although parameterized with respect to the information
used for indexing lemmas. More precisely, in the case of parsing, lemmas are indexed
using string information and in the case of generation semantic information is used to
access lemmas. The kind of index causes completed information to be placed in dif-
ferent state sets. Using this mechanism we can benefit from table-driven generation,
similar to that of parsing. For example, using a semantics-oriented indexing mecha-
nism during generation massive redundancies are avoided, because once a phrase is
generated, we are able to use it in any position within the sentence.

Since the only relevant parameter our algorithm has with respect to parsing
and generation is the difference in input structures, the basic differences between
parsing and generation are simply the different input structures. This seems to be

175

176

trivial; however, our approach is the first uniform algorithm that is able to adapt
its behaviour dynamically to the data, achieving a maximal degree of uniformity
of parsing and generation. None of the current uniform approaches exhibit such a
degree of uniformity. Moreover – in some sense as a side-effect – we have shown that
it is superior to the semantic-head driven generation algorithm developed by [Shieber
et al., 1990] which is currently the most prominent algorithm used for grammatical
generation.

There is evidence that comprehension and generation are not just inverses, but
that they are related to each other also at the processing level. For example, the
human mechanism also involves some monitoring of the output and it is widely
accepted that this is performed by making use of the comprehension mechanism.
However, it has been an open question as to how such a behaviour can practically be
realized in computer systems. We have paid serious attention to that problem, and
we obtained as an answer that systematic pursuit of uniformity in natural language
processing – as followed in this thesis – achieves the necessary preconditions for a
practical interleaving of parsing and generation.

The specific results we have obtained are twofold. First, we have shown that
the uniform tabular algorithm can straightforwardly be extended in order to share
partial results in both directions. We have called this property item sharing, be-
cause items (i.e., the internal representation of partial results) computed in one
direction are automatically made accessible for the other direction as well, results
computed during parsing are usable during generation and vice versa. Second, we
have specified an incremental monitoring mechanism in order to demonstrate how
an interleaved approach can contribute to the solution of complex problems. The
underlying mechanism used during monitoring can be denoted as an incremental
generate-parse-revise strategy: substrings produced during generation are parsed to
test whether they lead to ambiguities, detected ambiguities are handled by means
of revision. This mechanism has been integrated into the uniform algorithm in an
elegant and practical way.

In this thesis we have only considered self-monitoring and revision in depth at the
grammatical level. However, by showing in detail how the uniform model contributes
to the solution of this problem, we were able to demonstrate that uniformity is in
fact of important practical relevance for natural language systems. By considering
uniformity and interleaving of natural language parsing and generation under a
strictly computational view we have broken new ground. In the next section we will
discuss further important research directions for uniform processing.

6.2 Future Directions

In this section we discuss some important extensions of the uniform approach intro-
duced in this thesis. We start by describing how Explanation-based Learning can be

177

integrated with the uniform tabular algorithm to speed up processing. In [Neumann,
1994] we already reported on an implementation of such approach, however, only
for the case of parsing. In the next section, we outline how this method can also be
applied during generation.

In the section that follows we discuss the integration of preferences, processing
of elliptical utterances, and fully incremental text processing. Finally, we discuss
the relevance of the new uniform computational model under the perspective of
cognitive processing.

6.2.1 Application of Explanation-Based Learning for Efficient Pro-
cessing of Constraint-based Grammars

Explanation-based learning (EBL) is a technique through which an intelligent system
can learn by observing examples. An EBL system derives justified generalizations
from training instances on the basis of declarative background knowledge. As a
method, EBL performs four different learning tasks: generalization, chunking, oper-
ationalization and justified analogy [Ellman, 1989]. Typically, the purpose of EBL
is to produce a description of a concept that enables instances of that concept to be
recognized efficiently [Minton et al., 1989]. More fundamentally, EBL is a method
for improving problem solving performance through experience. From this perspec-
tive, EBL is also of cognitive relevance, since it can be used to explain why humans
tend to phrase ideas in the same way most of the time by adapting to a collection
of idioms or prototypical constructions.

In [Neumann, 1994] I have described the application of EBL to efficient parsing
of constraint-based grammars. The idea is to generalize the derivations of train-
ing instances created by normal parsing automatically and to use these generalized
derivations (also called templates) during the run-time mode of the system. In the
case that a template can be instantiated for a new input, no further grammatical
analysis is necessary. The approach1 is not restricted to the sentential level but
can also be applied to arbitrary sub-sentential phrases, i.e., it is possible to handle
substrings of an input by templates. Therefore, the EBL method can be interleaved
straightforwardly with normal processing to get back flexibility that otherwise would
be lost. In the paper mentioned above we have shown how this interleaving is ob-
tained by using an agenda-based Earley style parser.

For those strings which can be completely processed using EBL we have achieved
a speed up of factor thirty to fifty compared with the time required for full parsing

1The application of EBL for natural language processing just described is closely related to the
method of Derivational Analogy (DA), developed by Carbonell to investigate analogical reasoning
in the context of problem solving [Carbonell, 1983]. The DA technique solves a new problem by
making use of a solution derivation that was generated while solving a previous problem. Solving
new problems is performed by modifying previously obtained derivations. Because the derivations
are justified, DA can be seen as a type of justified analogical reasoning.

178

with the large German hpsg grammar of the disco system [Uszkoreit et al., 1994],
to which the method has been integrated. However, because the parser can also
be “initialized” with templates instantiated for substrings of an input, the speed is
also enormously increased for input that cannot completely be covered by the EBL
method.

Since we assume that the training phase is driven by a representative corpus the
EBL method can also be used as the basis for sub-language approaches, for example,
in order to train a system to use only those constructions which are most predictable
in a specific domain. Thus, for this domain the system would have less coverage but
would be able to process the sub-language very efficiently.

The basic idea of applying EBL in the context of constraint-based natural lan-
guage grammars is due to [Rayner, 1988] and [Samuelsson and Rayner, 1991].
Samuelsson [1994] has further improved these methods by showing how EBL can
be applied to a competence grammar and a representative training set of input sen-
tences by extracting a learned grammar. The learned grammar is complied into LR
parsing tables and a special LR parser enables very much faster parsing than the
original one does. The important point of Samuelsson’s approach is, that he replaces
the competence grammar with the performance grammar. Thus, his approach could
be seen as a kind of corpus-based grammar compilation. Hence, integration with
normal processing is not supported.

Although our method shares some commonalities with that of [Samuelsson,
1994], there are substantial differences, most notably the interleaving with normal
processing and its potential of “reversibility”.

Up to now, we have only applied EBL to parsing. However, with our uniform
tabular algorithm it is now also possible to apply the same method to generation,
and to interleave EBL and normal generation in the same way as we do it for pars-
ing. Note that after the generalization of a derivation tree, the resulting template
is stored in a discrimination net using the generalized sequence of morphological
analyses of the training instance as path expression. Therefore, templates can eco-
nomically be stored and efficiently be retrieved. For generation, we would use a
generalized description of the input semantics as index expression for the retrieval
of the templates, which would have been computed in the same manner as during
parsing.

Moreover, since we are using a reversible grammar, using the uniform algorithm
with EBL means that the same set of templates could be accessed either from mor-
phological or semantic information. This means that we also could extend the item
sharing approach to yield a kind of template sharing approach.

At the DFKI we have begun to extend the EBL method described in [Neumann,
1994] exactly in that direction. The most basic problem for generation is to find a
meaningful way of “generalizing semantic information”. In the current implementa-
tion, for instance, we are abstracting away from some morphological features of each

179

word, e.g., stem, number, tense.2 However, it is yet an open question, which seman-
tic information should best be generalized in order to obtain a similar behaviour.

A further important line of research will be to incorporate statistical methods in
order to control the size and retrieval of the discrimination tree. A possible strategy
is to attach preference values to the edges of the discrimination tree. These prefer-
ence values can be determined automatically based on the frequency of successful
retrieval and in dependence of the point of time of the last successful retrieval. The
discrimination tree then can be seen as a self-organizing data-structure. In a sim-
ilar way alternative templates can be organized to implement a kind of “preferred
template first” strategy.

6.2.2 Further Important Directions

Using Preference-based Strategies. The integration of preference-based strate-
gies into the new uniform model will be one of the main research direction in the
near future.

We have mentioned several times the importance of preferences for natural lan-
guage processing in the main chapters of this thesis (as well as for the EBL method)
and we have been careful to avoid obstacles to this important future direction. The
agenda mechanism of the uniform algorithm, for example, is already an important
prerequisition for the incorporation of such strategies, since it allows processing of
new items in any order. Also the architecture of the item sharing approach has been
designed to support preference-based control.

The strategies described in [Uszkoreit, 1991] and [Barnett, 1994] seem to be suit-
able candidates for the new uniform environment. The work described in [Uszkoreit,
1991] is of importance since it focusses on the integration of preferences with the
feature system of a constraint-based grammar as an appropriate means for obtaining
plausible performance models. In [Barnett, 1994] a model is described that is able to
handle specific preferences for parsing and generation, as well as shared preferences.

It is reasonable to assume that both strategies (even together) can be integrated
into the new uniform model. If so, it would also be possible to realize a sort of
preference-based monitoring strategy. We assume that the nls in which the uniform
model is integrated maintains different preference spaces for parsing and generation.
Preference-based monitoring would then mean that the derivation of a produced
utterance is directed so that it is consistent with respect to the assumed preferences
of the interlocutor which have been used to direct parsing (clearly, this presumes that
the nls has as its disposal a user and discourse model). For example, if both prefer
minimal–attachment of pp-modifiers then an utterance like “Remove the folder with

2Actually we can parameterize the method with respect to the information that should be
generalized using a method similar to that of a restrictor. It has been shown that the amount of
information generalized has a direct reflection on the space and time behaviour of the system.

180

the system tools” (with meaning “Remove the folder by means of the system tools”)
would cause no revision.

Processing of Elliptical Utterances. We will now outline how the processing
of elliptical utterances can be performed using the item sharing approach.

For example, consider the following dialog between person A and the nls B:

A: ‘Peter is coming to the party tonight.’

B: ‘Mary, too.’

Generation of the elliptical utterance ‘Mary,too’ can be performed by means of
the item sharing method as follows. We assume that the structure of an item has
an additional slot :producer which indicates whether an item has been constructed
during parsing or generation.3 If A’s utterance has been analyzed we assume that
a passive item for the VP ‘is coming to the party tonight’ is constructed. This
item is now also available for generation. However, the value of the slot :producer
is something like :parsing, since the parser has constructed this item. When the
generator is going to use this item to complete its process, it can use this information
through the elliptic generation process, for example, as a statement for suppressing
uttering of this “re-used” string.

Clearly, this is a straightforward but naive approach. In general the process is
more complicated e.g., if B’s utterance were be ‘Mary and John, too’. However, in
combination with the EBL approach mentioned above it might be possible to handle
these cases also.

In a similar way it would also be possible to use integrated generation in order to
complete elliptic constructions during parsing, by making use of previously analayzed
or produced constructions. Of course, this implies that the nls has at its disposal a
discourse and dialog model.

Note that this kind of processing can only take into account grammatical in-
formation. Thus it cannot be verified by the system that generated ellipses are
not so brief as to be ambiguous or misleading. In order to solve these cases, it is
an interesting issue to investigate whether and how this grammar-oriented method
can be combined with knowledge-based methods, for instance, the one described in
[Jameson and Wahlster, 1982] (see also section 5.3).

Fully Incremental Text Processing. Fully incremental text processing means
that the input to an nls is given in piecemeal fashion and that arbitrary changes to
the input are handled, e.g., deletion or modification of the input. For example, in
[Wirén and Rönnquist, 1993] a method for fully incremental parsing is proposed that
is based on the Earley algorithm and the modification for its use in an incremental

3In our current implementation we have already built in this mechanism.

181

environment reported in [Wirén, 1992]. Clearly, if such modifications to the text are
allowed, the overall process is non-monotonic.

In [Neumann and Finkler, 1990; Reithinger, 1991; Harbusch et al., 1991] incre-
mental generation systems are described that allow changes of the generated string,
e.g., if an adjective modifier is to be inserted into an already produced nominal
phrase this can be handled by means of some sort of repairing.4

The basic motivation behind fully incremental text processing is that it can be
used to support highly interactive text-processing tasks, e.g., checking of grammar,
spelling and style immediately and in real-time within a text-editing environment.

Most important from our uniform perspective is that [Wirén and Rönnquist,
1993] motivate a combination of incremental parsing and incremental generation
based on a reversible grammar in order to explore highly interactive text-processing
facilities, like structure-editing operations, propagation of grammatical changes, or
on-line translation, in which the target-language text is generated in parallel with
the source-language. However, they only mention this kind of integrated incremental
parsing and generation approach as a further important research direction.

The incremental monitoring mechanism developed in this thesis already performs
a kind of incremental parse-and-generate approach using a reversible grammar. By
means of the item sharing approach we have demonstrated how such an interleaving
of parsing and generation can be done efficiently. However, the incrementality is re-
stricted since it does not allow for input given in a piecemeal fashion, and changes to
the input are forbidden, too. The first restriction is not that problematic because our
algorithm processes a given input on-line, i.e. it does not require an initialization of
the chart. For the second case, it might be possible to adapt the update-mechanisms
described in [Wirén, 1992] and [Wirén and Rönnquist, 1993] for the case of genera-
tion as well. Thus, the integrated approach to parsing and generation developed in
this thesis seems also to be an important contribution for the investigation of fully
incremental text processing.

6.2.3 Cognitive Processing

In cognitive linguistics an important aspect of developing processing strategies is that
these strategies should be capable of modelling the humans behaviour in processing
natural language. Therefore, an important task is to validate a proposed model by
means of psychological experiments. However, this task – so far has I know – has
only be done either for cognitive parsing or cognitive generation, but not under the
assumption of uniform processing. Nevertheless, it is interesting enough to compare
our approach with those approaches that model grammatical processing under a
cognitive perspective. We first consider cognitive parsing. We will use the new work

4In [Finkler and Schauder, 1992] a more general discussion of the effects of incremental output
on incremental generation can be found. In [Levelt, 1989] a detailed discussion of possible repairing
strategies is given.

182

presented in [Hemforth, 1993] as our primarily basis for the discussion. We then
discuss important aspects of cognitive generation.

It is important to emphasize at this point, that we do not claim cognitive plau-
sibility of our uniform computational model, because we have not made psycholin-
guistic experiments that would support such a claim. Nevertheless, we have found
out some interesting similarities with currently developed cognitive models so that
it is legitimate to discuss the uniform model under a cognitive perspective.

Aspects of Cognitive Parsing

With respect to grammatical processing, it seems to be evident that humans do
not compute in advance all possible readings of an utterance before some sort of
disambiguation is performed in order to determine the “best” reading. Rather it
seems to be the case that humans prefer a reading as most appropriate in a given
situation. Therefore, most of the cognitive processing strategies follow some kind
of deterministic strategy. These approaches can further be classified into those
which are strongly deterministic and those which are quasi-deterministic. In quasi-
deterministic models, a first reading of a sentence (or phrase) is constructed. If at
a later point this preferred first reading is rejected because of syntactic, semantic
or pragmatic reasons a second analysis is computed by means of re-analysis. In
strongly deterministic models, no re-analysis is done.

In [Hemforth, 1993] several prominent cognitive models are discussed and em-
pirically evaluated with respect to the following questions (under particular consid-
eration of the German language):

• How do the models deal with structural ambiguities?

• How are word order preferences explained?

• When is lexical information taken into account?

Based on the empirical analysis presented in Hemforth’s work, she deduces the
following conditions for a cognitive plausible model of language processing:

• The human language process is competence-based; i.e., grammatical knowledge
is fundamentally used for the analysis of language. Processing of grammatical
knowledge is performed automatically and efficiently.

• Humans seem to process the grammatical structure of an utterance incremen-
tally from left to right, i.e., words are integrated into the existing structure as
fast as possible.

• Based on the experimental results presented in [Marslen-Wilson, 1976] , there
is evidence that during the processing of a single utterance syntactic and se-
mantic knowledge is already used in common to handle local disambiguations.

183

Together with the incremental nature of the parsing process Hemforth con-
cludes that sign-based approaches seem to be most appropriate, especially
hpsg ([Hemforth, 1993], page 180).

• In the case of structural ambiguities only one alternative is considered during
further processing using preferences. If the chosen alternative has to be re-
jected the process of re-analysis is activated. Furthermore, the re-analysis is
purposive and efficient.

Hemforth concludes that the only strategy that is consistent with the empirical
evidence she had obtained through her experiments is the mixed bottom-up/top-
down left-corner strategy of the Earley algorithm (see [Hemforth, 1993], page 176).5

Purely data-driven (bottom-up) and goal-directed (top-down) strategies are not
consistent with the empirical results provided in Hemforth’s work. For bottom-up
strategies there is no prediction possible about items of the next input structure,
although experiments have shown that humans actually use such predictions for
disambiguation. Next, for right-branching structures no incremental processing is
possible, because a new constituent can only be built if all parts are completely
determined. Therefore the necessary amount of memory of keeping partial results
is very high.

A top-down strategy allows the integration of new items into the sentence struc-
ture immediately, and each lexical item can be predicted on the basis of knowledge
constructed so far. Therefore, disambiguation of lexical ambiguities as well the
processing of right-branching structures can be made efficiently. However, simple
top-down backtracking strategies have the well-known left-recursive problems and
the use of backtracking would not explain why the re-analysis process is so efficient.

Hemforth’s results support the uniform architecture as follows. First, we also
follow the Earley strategy. Processing is performed left-to-right if the grammar
defines string concatenation in that way. The algorithm is performed as an on-line
strategy, which means that words of a string are consumed next by next. However,
the incremental behaviour is restricted, because we do not pass the words of a string
one by one as input to the uniform tabular algorithm (see also the notes about fully
incremental text processing made in the previous section).

The uniform algorithm is directed by an agenda, and we have shown that this
allows for depth-first and even preference-based strategies, although the latter has
not yet been used. The underlying grammars used are sign-based. Lexical access
is done as early as possible by taking into account a huge number of top-down
predictions. In summary, our uniform algorithm reflects the requirements worked
out in Hemforth’s thesis and actually can be used as a basis for cognitive models –
at least for parsing.

5[Johnson-Laird, 1983] has also advocated Early’s parsing algorithm as the most plausible cog-
nitive one, but he has considered less empirical data ([Hemforth, 1993], page 176).

184

Aspects of Cognitive Generation

For the case of cognitive generation the picture is unfortunately not that clear, be-
cause cognitive generation strategies have only recently been given significant con-
sideration. However, from the work presented in [Kempen and Hoenkamp, 1987],
[DeSmedt and Kempen, 1987], [Levelt, 1989], and [Pechmann, 1989], it seems to be
evident that generation is also performed incrementally. Furthermore, all these ap-
proaches also assume that grammatical generation is competence-based, i.e., gram-
matical knowledge is used for the production of sentences. Moreover, there is psy-
chological evidence that the same grammar is used for performing parsing and gen-
eration – as we have already outlined in the first chapter of this thesis.

In all of the work cited above it is assumed that the input is of semantic nature
given as a functor/argument tree [Levelt, 1989]. However, it is assumed that the
parts of the meaning of an utterance are passed in a piecemeal fashion. Since it
is now possible that arguments can arrive before their functors or vice versa it is
assumed that the grammatical structure is built up in a mixed bottom-up/top-down
way (see [Kempen and Hoenkamp, 1987] and [DeSmedt and Kempen, 1987]).

Furthermore, for reasons of parsimony it is assumed that generation is also per-
formed in a deterministic way [Kempen and Hoenkamp, 1987], i.e., not all gram-
matical possibilities for an utterance to be produced are explored simultaneously.
However, because of the fact that humans are able to monitor what they have heard
or said, it is assumed that in some situations some sort of re-synthesis (or revi-
sion) will take place [Levelt, 1989]. However, how these mechanisms are actually
be performed has not been specified computationally. Thus, it seems to be an open
question whether in the case of cognitive generation chart-based or backtracking
strategies should be considered when performing the revision process.

We have shown in this thesis that methods for performing self-monitoring and
revision during generation are suitably realized by means of a tight integration of
parsing and generation. As we have made clear, such an approach can be made
efficiently using the uniform tabular algorithm in combination with the item sharing
approach. On the top of these methods we have developed a chart-based incremental
monitoring strategy. The results of this thesis suggest that revision too benefits
from the use of a tabular based strategy, since it can be performed purposively and
efficiently.

In summary, there seem to be some evidence that our uniform computational
model conveys some cognitive plausibility, and it would be of great interest whether
there actually exists some empirical data that could support this assumption. In this
thesis we have laid out important theoretical and practical foundations for achieving
competence-based performance language models. We are strongly convinced that
our work will help to realize “natural” natural language systems and we have outlined
how our approach can valuable contribute to important new lines of future research
directions.

Appendix A

A Sample Grammar

In this appendix we define the grammar that we are going to use to demonstrate the
uniform tabular algorithm. It is basically the same grammar (with minor changes)
as the one introduced in [VanNoord, 1993] to demonstrate his head-driven bottom-
up algorithms. In the rules we already make use of the more readable notation
introduced in chapter 3. The rules will be enumerated using the index (ri). In the
text, we basically refer to the individual rules using this index.

First, the grammar rules.

(r1) sign

cat: vp
sc: Tail
sem: Sem
lex: no
v2: V
phon: P0 -P

deriv

[
rulename vp-sc
dtrs 〈D1, D2〉

]

←−

sign

Arg

v2: no
phon: P0 -P1

deriv D1

 , sign

cat: vp
sc: 〈Arg|Tail〉
sem: Sem
v2: V
phon: P1 -P
deriv D2

185

186

(r2) sign

cat: root
sem: Sem
phon: P0 -P

deriv

[
rulename root
dtrs 〈D1, D2〉

]

←−

sign

cat: adv
sc: 〈Q〉
sem: Sem
phon: P0 -P1

deriv D1

 , sign

Q

cat: q
phon: P1 -P
deriv D2

(r3) sign

cat: q
sem: Sem
phon: P0 -P

deriv

[
rulename q
dtrs 〈D1, D2〉

]

←−

sign

V

cat: vp
lex: yes
phon: P0 -P1

deriv D1

 , sign

cat: vp
sc: 〈 〉
sem: Sem
v2: V
phon: P1 -P
deriv D2

(r4) sign

cat: comp
sem: Sem
sc: 〈 〉
phon: P0 -P

deriv

[
rulename comp
dtrs 〈D1, D2〉

]

←−

sign

cat: comp
sem: Sem
sc: 〈Arg〉
phon: P0 -P1

deriv D1

 , sign

(
Arg

[
phon: P1 -P
deriv D2

])

187

(r5) sign

cat: vp
sc: Sc
sem: Sem
lex: no
v2: V
phon: P0 -P

deriv

[
rulename vp-adv
dtrs 〈D1, D2〉

]

←−

sign

cat: adv
sem: Sem
sc: 〈V p〉
phon: P0 -P1

deriv D1

 , sign

Vp

cat: vp
sc: Sc
v2: V
phon: P1 -P
deriv D2

(r6) sign

cat: vp
sc: Sc
sem: Sem
lex: no

v2:

cat: vp
sc: Sc
sem: Sem

phon: P -P

deriv

[
rulename vp-empty
dtrs 〈 〉

]

Next, the lexical entries.

(r7) sign

cat: comp

sem:

type: unary
pred: weil
arg: Sem

sc:

〈
cat: vp
sem: Sem
sc: 〈 〉
v2: no − v2

〉

phon: 〈weil|T 〉-T

deriv

[
rulename weil
dtrs 〈 〉

]

188

(r8) sign

cat: adv

sem:

type: unary
mod: heute
arg: Sem

sc:

〈[
sem: Sem

]〉
phon: 〈heute|T 〉-T

deriv

[
rulename heute
dtrs 〈 〉

]

(r9) sign

cat: np

sem:

[
type: nullary
pred: Peter

]
phon: 〈Peter|T 〉-T

deriv

[
rulename peter
dtrs 〈 〉

]

(r10) sign

cat: np

sem:

[
type: nullary
pred: lügen

]
phon: 〈Lügen|T 〉-T

deriv

[
rulename luegen
dtrs 〈 〉

]

(r11) sign

cat: vp

sem:

type: unary
pred: schlafen
arg: Sem

sc:

〈[
cat: np
sem: Sem

]〉
lex: yes
v2: no − v2
phon: 〈schläft|T 〉-T

deriv

[
rulename schlafen
dtrs 〈 〉

]

189

(r12) sign

cat: vp

sem:

type: binary
pred: erzählen
arg1: Ag
arg2: Th

sc:

〈[
cat: np
sem: Th

]
,

[
cat: np
sem: Ag

]〉
lex: yes
v2: no − v2
phon: 〈erzählt|T 〉-T

deriv

[
rulename erzaehlen
dtrs 〈 〉

]

(r13) sign

cat: vp

sem:

type: unary
pred: nickerchenmachen
arg: Exp

sc:

〈[
cat: np
sem: Exp

]
,

[
cat: np
sem:

[
pred: nickerchen

]]〉
lex: yes
v2: no − v2
phon: 〈macht|T 〉-T

deriv

[
rulename idiom1
dtrs 〈 〉

]

(r14) sign

cat: np

sem:

[
type: nullary
pred: nickerchen

]
phon: 〈ein, nickerchen|T 〉-T

deriv

[
rulename nickerchen
dtrs 〈 〉

]

(r15) sign

cat: adv

sem:

type: unary
mod: gerne
arg: Sem

sc:

〈[
sem: Sem

]〉
phon: 〈gerne|T 〉-T

deriv

[
rulename gerne
dtrs 〈 〉

]

190

Bibliography

[Aı̈t-Kaci et al., 1994] Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka. A
feature-based constraint system for logic programming with entailment. Theoret-
ical Computer Science, 122(1–2):263–283, January 1994.

[Allgayer et al., 1989] J. Allgayer, K. Harbusch, A. Kobsa, C. Reddig, N. Reithinger,
and D. Schmauks. Xtra: A natural–language access system to expert systems.
Int. J. Man–Machine Studies, 31:161–195, 1989.

[Alshawi and Pulman, 1992] H. Alshawi and S. G. Pulman. Ellipsis, comparatives,
and generation. In H. Alshawi, editor, The Core Language Engine, pages 251–276.
MIT Press, Cambridge, MA, 1992.

[Alshawi, 1992] H. Alshawi, editor. The Core Language Engine. ACL-MIT Press
Series in Natural Language Processing. MIT Press, Cambridge MA., 1992.

[Appelt, 1985] D. E. Appelt. Planning English Sentences. Cambridge University
Press, Cambridge, 1985.

[Appelt, 1987] D. E. Appelt. Bidirectional grammars and the design of natural
language generation systems. In Y. Wilks, editor, Theoretical Issues in Natural
Language Processing-3, pages 185–191. Hillsdale, N.J.: Erlbaum, 1987.

[Backofen and Smolka, 1993] Rolf Backofen and Gert Smolka. A complete and re-
cursive feature theory. In Proc. of the 31 th ACL, pages 193–200, Columbus,
Ohio, 1993. acl. Full version has appeared as Research Report RR-92-30, DFKI,
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany, and will appear in Theoret-
ical Computer Science.

[Backofen and Weyers, 1993] R. Backofen and C. Weyers. UDiNe—A Feature Con-
straint Solver with Distributed Disjunction and Classical Negation. Technical
report, DFKI, Saarbrücken, Germany, 1993. Forthcoming.

[Barnett, 1994] J. Barnett. Bi-directional preferences. In Tomek Strzalkowski, edi-
tor, Reversible Grammar in Natural Language Processing, pages 201–234. Kluwer,
1994.

191

192

[Bateman et al., 1992] J. A. Bateman, M. Emele, and S. Momma. The nondirec-
tional representation of systemic functional grammar and semantics as typed fea-
ture structure. In Proceedings of the 14th International Conference on Computa-
tional Linguistics (COLING), Nantes, 1992.

[Berg, 1986] T. Berg. The problems of language control: Editing, monitoring and
feedback. Psychological Research, 48:133–144, 1986.

[Block, 1991] H. U. Block. Compiling trace & unification grammar for parsing and
generation. In Proceedings of the ACL Workshop Reversible Grammar in Natural
Language Processing, Berkeley, 1991.

[Block, 1994] Hans-Ulrich Block. Compiling Trace & Unification Grammar. In
T. Strzalkowski, editor, Reversible Grammar in Natural language Processing,
pages 155–174. Kluwer Academic Press, London, 1994.

[Bresnan, 1982] J. Bresnan, editor. The Mental Representation of Grammatical Re-
lations. MIT Press, 1982.

[Busemann, 1990] S. Busemann. Generierung natürlicher Sprache mit Gener-
alisierten Phrasenstruktur–Grammatiken. PhD thesis, University of Saarland
(Saarbrücken), 1990.

[Calder et al., 1989] J. Calder, M. Reape, and H. Zeevat. An algorithm for gener-
ation in unification categorial grammar. In Fourth Conference of the European
Chapter of the Association for Computational Linguistics, pages 233–240, Manch-
ester, 1989.

[Carbonell, 1983] J. G. Carbonell. Derivational analogy and its role in problem
solving. In AAAI-83, pages 64–69, Washington, DC, 1983.

[Carpenter, 1992] B. Carpenter. The logic of typed feature structures with application
to unification grammars, logic programms and constraint resolution. Cambridge
University Press, Cambridge, 1992.

[Chomsky, 1986] N. Chomsky. Knowledge of Language: Its Nature, Origin and Use.
New York, Praeger, 1986.

[Dale et al., 1990] R. Dale, C. Mellish, and M. Zock. Current Research in Natural
Language Generation. Academic Press, London, 1990.

[Dale, 1990] R. Dale. Generating receipes: An overview of epicure. In Robert Dale,
Chris Mellish, and Michael Zock, editors, Current Research in Natural Language
Generation, pages 229–255. Academic Press, London, 1990.

[Danlos, 1987] L. Danlos. The Linguistic Basis of Text Generation. Cambridge
University Press, Cambridge, MA, 1987.

193

[DeSmedt and Kempen, 1987] K. DeSmedt and G. Kempen. Incremental sentence
production, self–correction and coordination. In G. Kempen, editor, Natural Lan-
guage Generation, pages 365–376. Martinus Nijhoff, Dordrecht, 1987.

[Dörre, 1993] J. Dörre. Feature-Logik und Semiunifikation. PhD thesis, Universität
Stuttgart, Stuttgart, Germany, 1993.

[Dymetman and Isabelle, 1988] M. Dymetman and P. Isabelle. Reversible logic
grammars for machine translation. In Proceedings of the Second International
Conference on Theoretical and Methodological issues in Machine Translation of
Natural Languages, Pittsburgh, 1988.

[Dymetman et al., 1990] M. Dymetman, P. Isabelle, and F. Perrault. A symmetrical
approach to parsing and generation. In Proceedings of the 13th International
Conference on Computational Linguistics (COLING), pages 90–96, Helsinki, 1990.

[Dymetman, 1991] M. Dymetman. Inherently reversible grammars, logic program-
ming and computability. In Proceedings of the ACL Workshop Reversible Gram-
mar in Natural Language Processing, Berkeley, 1991.

[Dymetman, 1994] M. Dymetman. Inherently reversible grammars. In Tomek Strza-
lkowski, editor, Reversible Grammar in Natural Language Processing, pages 33–57.
Kluwer, 1994.

[Earley, 1970] J. Earley. An efficient context-free parsing algorithm. Communica-
tions of the ACM, 13(2):94–102, 1970.

[Ellman, 1989] T. Ellman. Explanation-based learning: A survey of programs and
perspectives. ACM Computing Surveys, 21(2):163–221, 1989.

[Emele and Zajac, 1990] M. C. Emele and R. Zajac. Typed unification grammars.
In Proceedings of the 13th International Conference on Computational Linguistics
(COLING), pages 293–298, Helsinki, 1990.

[Erbach, 1991] G. Erbach. An environment for experimentation with parsing strate-
gies. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, pages 931–936, Sydney, Australia, 1991.

[Fedder, 1991] L. Fedder. Syntactic choice in language generation. In Proceedings
of the ACL Workshop on Reversible Grammar in Natural Language Processing,
pages 45–52, Berkeley, 1991.

[Fenstad et al., 1987] J. E. Fenstad, P. K. Halvorsen, T. Langholm, and J. van Ben-
them. Situations, Language and Logic. Reidel, Dordrecht, 1987.

194

[Finkler and Neumann, 1989] W. Finkler and G. Neumann. Popel-how: A dis-
tributed parallel model for incremental natural language production with feed-
back. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 1518–1523, Detroit, 1989.

[Finkler and Schauder, 1992] W. Finkler and A. Schauder. Effects of incremental
output on incremental natural language generation. In Proceedings of the Tenth
European Conference on Artifical Intelligence, pages 505–507, Vienna, Austria,
1992.

[Fodor and Frazier, 1980] J. D. Fodor and L. Frazier. Is the human sentence parsing
mechanism an atn? Cognition, 1980.

[Fodor, 1983] J. A. Fodor. The Modularity of Mind: An Essay on Faculty Psychol-
ogy. A Bradford Book, MIT Press, Cambridge, Massachusetts, 1983.

[Frazier, 1982] L. Frazier. Shared components of production and perception. In
M. A. Arbib et al., editor, Neural Models of Language Processes, pages 225–236.
Academic Press, New York, 1982.

[Garrett, 1982] M. F. Garrett. Remarks on the relation between language produc-
tion and language comprehension systems. In M. A. Arbib et al., editor, Neural
Models of Language Processes, pages 209–224. Academic Press, New York, 1982.

[Genesereth and Nilsson, 1987] M. R. Genesereth and N. J. Nilsson. Logical Foun-
dations of Artificial Intelligence. Kaufmann, Los Altos, CA, 1987.

[Gerdemann, 1991] D. D. Gerdemann. Parsing and Generation of Unification
Grammars. PhD thesis, University of Illinois, Cognitive Science, Technical Report
CS-91-06, 1991.

[Görz, 1988] G. Görz. Strukturanalyse natürlicher Sprache. Ein Verarbeitungsmodell
zum maschinellen Verstehen gesprochener und geschriebener Sprache. Addison-
Wesley, Bonn - Reading, Massachusetts - Menlo Park, California, 1988.

[Haas, 1989] A. Haas. A parsing algorithm for unification grammars. Computational
Linguistics, 15(4):219–232, 1989.

[Harbusch et al., 1991] K. Harbusch, W. Finkler, and A. Schauder. Incremen-
tal syntax generation with tree adjoining grammars. Technical report, DFKI
Saarbrücken, 1991. RR-91-25.

[Hemforth, 1993] B. Hemforth. Kognitives Parsing: Repräsentation und Verar-
beitung sprachlichen Wissens. Infix, Sankt Augustin, 1993.

195

[Hoeppner et al., 1983] W. Hoeppner, T. Christaller, H. Marburger, K. Morik,
B. Nebel, M. ’Leary, and W. Wahlster. Beyond domain-independence: Expe-
rience with the development of a german language access system to higly diverse
background systems. In Proceedings of the 8th International Joint Conference on
Artificial Intelligence, pages 643–649, Karlsruhe, 1983.

[Höhfeld and Smolka, 1988] M. Höhfeld and G. Smolka. Definite relations over
constraint languages. Technical Report Technical Report No. 53,LILOG IBM,
Stuttgart, 1988.

[Horacek, 1990] H. Horacek. The architecture of a generation component in a com-
plete natural language dialogue system. In Robert Dale, Chris Mellish, and
Michael Zock, editors, Current Research in Natural Language Generation, pages
193–227. Academic Press, 1990.

[Hovy, 1987] E. H. Hovy. Generating Natural Language under Pragmatic Con-
straints. PhD thesis, Yale University, 1987.

[ICSLP, 1992] International Conference on Spoken Language Processing, Al-
berta,Canada, 1992.

[Jacobs, 1988] P. S. Jacobs. Achieving bidirectionality. In Proceedings of the 12th
International Conference on Computational Linguistics (COLING), pages 267–
274, Budapest, 1988.

[Jaffar and Lassez, 1987] Joxan Jaffar and Jean-Louis Lassez. Constraint logic pro-
gramming. In Proceedings of the 14th ACM Symposium on Principles of Program-
ming Languages, Munich, Germany, pages 111–119. ACM, January 1987.

[Jameson and Wahlster, 1982] A. Jameson and W. Wahlster. User modelling in
anaphora generation: Ellipsis and definite description. In Proceedings of teh 1982
European Conference on Artificial Intelligence, pages 222–227, Orsay, France,
1982.

[Johnson-Laird, 1983] P. N. Johnson-Laird. Mental Models. Harvard University
Press, Cambridge, MA, 1983.

[Johnson, 1993] M. Johnson. Memoization in constraint logic programming. De-
partment of Cognitive Science, Brown University, 1993. manuscript.

[Joshi, 1987] A. K. Joshi. Generation – a new frontier of natural language process-
ing? In Y. Wilks, editor, Theoretical Issues in Natural Language Processing-3,
pages 181–184. Hillsdale, N.J.: Erlbaum, 1987.

[Kay, 1986] M. Kay. Algorithm schemata and data structures in syntactic process-
ing. In B. J. Grosz, K. Sparck Jones, and B. L. Webber, editors, Natural Language
Processing, pages 35–70. Kaufmann, Los Altos, CA, 1986.

196

[Kay, 1989] M. Kay. Head-driven parsing. In Proceedings of Workshop on Parsing
Technologies, pages 52–62, Pittsburgh, 1989.

[Keene, 1989] S. E. Keene. Object-Oriented Programming in COMMON LISP: A
Programmer’s Guide to CLOS. Addison-Wesley, Reading, MA, 1989.

[Kempen and Hoenkamp, 1987] G. Kempen and E. Hoenkamp. An incremental pro-
cedural grammar for sentence formulation. Cognitive Science, 11:201–258, 1987.

[Kempen, 1989] G. Kempen. Language generation systems. In I. S. Batori,
W. Lenders, and W. Putschke, editors, Computational Linguistics - Computerlin-
guistik, pages 471–480. de Gruyter, Berlin, 1989.

[Kiefer and Fettig, 1994] B. Kiefer and T. Fettig. Fegramed an interactive graphics
editor for feature structure. DFKI Document D-94-XX, DFKI GmbH, Kaiser-
slautern und Saarbrücken, Germany, 1994.

[Koskenniemi, 1984] K. Koskenniemi. A general computational model for word-form
recognition and production. In Proceedings of the 10th International Conference
on Computational Linguistics and the 22nd Annual Meeting of the Association
for Computational Linguistics (COLING), pages 178–181, Standford, 1984.

[Levelt, 1989] W. J. M. Levelt. Speaking: From Intention to Articulation. MIT
Press, Cambridge, Massachusetts, 1989.

[Lloyd, 1987] J. .W. Lloyd. Foundations of Logic Programming. Symbol Computa-
tion, Springer, Berlin, New York, 1987.

[Mann, 1987] W. C. Mann. What is special about natural language generation
research? In Y. Wilks, editor, Theoretical Issues in Natural Language Processing-
3, pages 206–210. Hillsdale, N.J.: Erlbaum, 1987.

[Marslen-Wilson, 1976] W. D. Marslen-Wilson. Linguistic descriptions and psycho-
logical assumptions in the study of sentence perception. In R. .J.Wales and E. C.
T.Walker, editors, New Approaches to Language Mechanisms. Amsterdam: North
Holland, 1976.

[Martinovic and Strzalkowski, 1992] M. Martinovic and T. Strzalkowski. Compar-
ing Two Grammar-Based Generation-Algorithms: A Case Study. In 30th Annual
Meeting of the Association for Computational Linguistics, pages 81–88, 1992.

[Matsumoto et al., 1983] Y. Matsumoto, H. Tanaka, H. Hirakawa, H. Miyoshi, and
H. Yasukawa. Bup: A bottom-up parser embedded in prolog. New Generation
Computing, 1:145–158, 1983.

197

[McDonald et al., 1987] D. D. McDonald, M. W. Meteer, and J. D. Pustejovsky.
Factors contributing to efficiency in natural language generation. In K. Kem-
pen, editor, Natural Language Generation: New Results in Artificial Intelligence,
Psychology and Linguistics, pages 159–182. Martinus Nijhoff, Dordrecht, 1987.

[McDonald, 1983] D. D. McDonald. Natural language generation as a computational
problem: An introduction. In M. Brady and C. Berwick, editors, Computational
Models of Discourse. MIT Press, Cambridge, Massachusetts, 1983.

[McDonald, 1986] D. D. McDonald. Description directed control: Its implications
for natural language generation. In B. J. Grosz, K. Sparck Jones, and B. L.
Webber, editors, Natural Language Processing, pages 519–537. Kaufmann, Los
Altos, CA, 1986.

[McDonald, 1987] D. D. McDonald. No better, but no worse, than people. In
Y. Wilks, editor, Theoretical Issues in Natural Language Processing-3, pages 200–
205. Hillsdale, N.J.: Erlbaum, 1987.

[McKeown et al., 1990] K. R. McKeown, M. Elhadad, Y. Fukomoto, J. Lim,
C. Lombardi, J. Robin, and F. Smadja. Natural language generation in comet.
In Robert Dale, Chris Mellish, and Michael Zock, editors, Current Research in
Natural Language Generation, pages 103 – 139. Academic Press, London, 1990.

[McKeown, 1985] K. R. McKeown. Text Generation: Using Discourse Strategies
and Focus Constraints to Generate Natural Language Text. Cambridge University
Press, Cambridge, 1985.

[Meteer and Shaked, 1988] M. M. Meteer and V. Shaked. Strategies for effective
paraphrasing. In Proceedings of the 12th International Conference on Computa-
tional Linguistics (COLING), Budapest, 1988.

[Meteer, 1990] M. M. Meteer. The Generation Gap – the problem of expressibility
in text planning. PhD thesis, University of Massachusetts, 1990.

[Minton et al., 1989] S. Minton, J. G. Carbonell, C. A. Knoblock, D. R.Kuokka,
O. Etzioni, and Y.Gil. Explanation-based learning: A problem solving perspec-
tive. Artifical Intelligence, 40:63–118, 1989.

[Nerbonne, 1992] J. Nerbonne. Constraint-based semantics. Research Report RR-
92-18, DFKI GmbH, Kaiserslautern und Saarbrücken, BR Deutschland, 1992.

[Netter, 1992] K. Netter. On non-head non-movement. In G. Görz, editor, Konvens
92: 1. Konferenz “Verarbeitung natürlicher Sprache”, pages 218–227. Springer,
Berlin, Heidelberg, 1992.

198

[Neumann and Finkler, 1990] G. Neumann and W. Finkler. A head-driven approach
to incremental and parallel generation of syntactic structures. In Proceedings
of the 13th International Conference on Computational Linguistics (COLING),
pages 288–293, Helsinki, 1990.

[Neumann and van Noord, 1992] G. Neumann and G. van Noord. Self-monitoring
with reversible grammars. In Proceedings of the 14th International Conference on
Computational Linguistics (COLING), pages 700–706, Nantes, 1992.

[Neumann and van Noord, 1994] G. Neumann and G. van Noord. Reversibility and
self-monitoring in natural language generation. In Tomek Strzalkowski, editor,
Reversible Grammar in Natural Language Processing, pages 59–96. Kluwer, 1994.

[Neumann, 1991a] G. Neumann. A bidirectional model for natural language pro-
cessing. In Fifth Conference of the European Chapter of the Association for Com-
putational Linguistics, pages 245–250, Berlin, 1991.

[Neumann, 1991b] G. Neumann. Reversibility and modularity in natural language
generation. In Proceedings of the ACL Workshop on Reversible Grammar in
Natural Language Processing, pages 31–39, Berkeley, 1991.

[Neumann, 1993] G. Neumann. Design principles of the disco system. In Proceedings
of the TWLT 5, Twente, Netherlands, 1993.

[Neumann, 1994] G. Neumann. Application of explanation-based learning for effi-
cient processing of constraint-based grammars. In Proceedings of the Tenth IEEE
Conference on Artifical Intelligence for Applications, pages 208–215, San Antonio,
Texas, March 1994.

[Norvig, 1992] P. Norvig. Paradigms of Artificial Intelligence Programming: Case
Studies in Common Lisp. Kaufmann, San Mateo, CA, 1992.

[Paris et al., 1991] C. L. Paris, W. R. Swartout, and W. C. Mann. Natural Language
Generation in Artificial Intelligence and Computational Linguistics. Kluwer Aca-
demic Press, 1991.

[Partee et al., 1990] B. H. Partee, A. ter Meulen, and R. E. Wall. Mathematical
Methods in Linguistics. Kluwer, Dordrecht, 1990.

[Pechmann, 1989] T. Pechmann. Incremental speech production and referential
overspecification. Linguistics, 27(1):89–110, 1989.

[Pereira and Shieber, 1987] F. C. N. Pereira and S. M. Shieber. Prolog and Natural
Language Analysis. Center for the Study of Language and Information Stanford,
1987.

199

[Pereira and Warren, 1983] F. C. N. Pereira and D. Warren. Parsing as deduction.
In 21st Annual Meeting of the Association for Computational Linguistics, Cam-
bridge Massachusetts, 1983.

[Pollard and Sag, 1987] C. Pollard and I. A. Sag. Information Based Syntax and
Semantics, Volume 1. Center for the Study of Language and Information Stanford,
1987.

[Pollard and Sag, to appear] C. Pollard and I. M. Sag. Information Based Syntax
and Semantics, Volume 2. Center for the Study of Language and Information
Stanford, to appear.

[Rayner, 1988] M. Rayner. Applying explanation-based generalization to natural
language processing. In Proceedings of the International Conference on Fifth
Generation Computer Systems, Tokyo, 1988.

[Reithinger, 1991] N. Reithinger. Popel: A parallel and incremental natural lan-
guage generation system. In C. L. Paris et al., editor, Natural Language Gen-
eration in Artificial Intelligence and Computational Linguistics, pages 179–199.
Kluwer, 1991.

[Rubinoff, 1988] R. Rubinoff. A cooperative model of strategy and tactics in gen-
eration. In Paper presented at the Fourth International Workshop on Natural
Language Generation, Santa Catalina Island, 1988.

[Russell et al., 1990] G. Russell, S. Warwick, and J. Carroll. Asymmetry in pars-
ing and generating with unification grammars: Case studies from ELU. In 28th
Annual Meeting of the Association for Computational Linguistics, University of
Pittsburgh, 1990.

[Samuelsson and Rayner, 1991] C. Samuelsson and M. Rayner. Quantitative evalua-
tion of explanation-based learning as an optimization tool for a large-scale natural
language system. In IJCAI-91, pages 609–615, Sydney, Australia, 1991.

[Samuelsson, 1994] C. Samuelsson. Fast Natural-Language Parsing Using
Explanation-Based Learning. PhD thesis, Swedish Institute of Computer Science,
Kista, Sweden, 1994.

[Schabes, 1990] Y. Schabes. Mathematical and Computational Aspects of Lexicalized
Grammars. PhD thesis, University of Pennsylvania, Philadelphia, USA, 1990.

[Schwarz, 1992] M. Schwarz. Einführung in die Kognitive Linguistik. UTB 1636,
Franke Verlag Tübingen, 1992.

[Shieber and Schabes, 1990] S. M. Shieber and Y. Schabes. Synchronous tree–
adjoining grammars. In Proceedings of the 13th International Conference on Com-
putational Linguistics (COLING), Helsinki, 1990.

200

[Shieber et al., 1983] S. M. Shieber, H. Uszkoreit, F. C. N. Pereira, J. Robinson, and
M. Tyson. The formalism and implementation of PATR-II. In B. J. Grosz and
M. E. Stickel, editors, Research on Interactive Acquisition and Use of Knowledge.
SRI report, 1983.

[Shieber et al., 1989] S. M. Shieber, F. C. N. Pereira, G. van Noord, and R. C.
Moore. A semantic-head-driven generation algorithm for unification based for-
malisms. In 27th Annual Meeting of the Association for Computational Linguis-
tics, Vancouver, 1989.

[Shieber et al., 1990] S. M. Shieber, F. C. N. Pereira, G. van Noord, and R. C.
Moore. Semantic-head-driven generation. Computational Linguistics, 16(1), 1990.

[Shieber, 1985] S. M. Shieber. Using restriction to extend parsing algorithms for
complex-feature-based formalisms. In 23th Annual Meeting of the Association for
Computational Linguistics, Chicago, 1985.

[Shieber, 1988] S. M. Shieber. A uniform architecture for parsing and generation.
In Proceedings of the 12th International Conference on Computational Linguistics
(COLING), Budapest, 1988.

[Shieber, 1989] S. M. Shieber. Parsing and Type Inference for Natural and Computer
Languages. PhD thesis, Standford University, SRI International Technical note
460, 1989.

[Smolka, 1988] G. Smolka. A feature logic with subsorts. Technical report, IBM
Deutschland GmbH, Germany, 1988. Lilog-Report 33.

[Smolka, 1992] G. Smolka. Feature constraint logics for unification grammars. The
Journal of Logic Programming, 12:51–87, 1992.

[Steele, 1990] G. L. Steele. Common LISP: The Language (Second Edition). Digital
Press, Burlington, MA, 1990.

[Strzalkowski, 1989] T. Strzalkowski. Automated inversion of a unification parser
into a unification generator. Technical report, Courant Institute of Mathematical
Sciences, New York University, 1989. No 465.

[Uszkoreit et al., 1994] H. Uszkoreit, R. Backofen, S. Busemann, A.K. Diagne,
E. Hinkelman, W. Kasper, B. Kiefer, U. Krieger, K. Netter, G. Neumann,
S. Oepen, and S. Spackman. disco — an hpsg-based nlp system
and its application for appointment scheduling. In Proceedings of the 15th In-
ternational Conference on Computational Linguistics (COLING), Kyoto, Japan,
1994.

201

[Uszkoreit, 1986a] H. Uszkoreit. Categorial unification grammar. In Proceedings
of the 11th International Conference on Computational Linguistics (COLING),
Bonn, 1986.

[Uszkoreit, 1986b] H. Uszkoreit. Syntaktische und semantische generalisierungen im
strukturierten lexikon. In C.-R. Rollinger and W. Horn, editors, GWAI-86 und 2.
Österreichische Artificial-Intelligence-Tagung, Ottenstein/Niederösterreich, Sept.
1986, pages 87–100. Springer, Berlin, Heidelberg, 1986.

[Uszkoreit, 1991] H. Uszkoreit. Strategies for adding control information to declar-
ative grammars. In 29th Annual Meeting of the Association for Computational
Linguistics, Berkeley, 1991.

[VanNoord, 1993] G. J. M. VanNoord. Reversibility in Natural Language Processing.
PhD thesis, University of Utrecht, The Netherlands, 1993.

[Vaughan and McDonald, 1986] M. M. Vaughan and D. D. McDonald. A model of
revision in natural language generation. In 24th Annual Meeting of the Association
for Computational Linguistics, pages 90–96, 1986.

[Wahlster and Kobsa, 1986] W. Wahlster and A. Kobsa. Dialog-based user models.
Technical Report 3, Project XTRA, Department of Computer Science, University
Saarbrücken, Germany, 1986.

[Wahlster et al., 1991] W. Wahlster, E. André, W. Graf, and T. Rist. Designing
illustrated texts: How language production is influenced by graphics generation.
In Fifth Conference of the European Chapter of the Association for Computational
Linguistics, pages 8–14, Berlin, 1991.

[Wahlster, 1986] W. Wahlster. The role of natural language in knowledge-based
systems. In H. Winter, editor, Artificial Intelligence and Man-Machine Systems,
pages 62–83. 1986.

[Wahlster, 1991] W. Wahlster. User and discourse models for multimodal commun-
ciation. In Intelligent user interfaces, chapter 3, pages 45–67. ACM Press, 1991.

[Wedekind, 1988] J. Wedekind. Generation as structure driven derivation. In
Proceedings of the 12th International Conference on Computational Linguistics
(COLING), Budapest, 1988.

[Wilensky et al., 1984] R. Wilensky, Y. Arens, and D. Chin. Talking to unix in
english: An overview of uc. Communications of the ACM, pages 574 – 593, 1984.

[Wilks, 1991] Y. Wilks. Where i coming from: The reversibility of analysis and
generation in natural language processing. Computing Research Laboratory,New
Mexico State University, 1991.

202

[Winston and Horn, 1989] P. H. Winston and B. K. P. Horn. LISP: Third Edition.
Addison-Wesley, Reading, MA, 1989.

[Wirén and Rönnquist, 1993] Mats Wirén and Ralph Rönnquist. Fully Incremental
Parsing. In Proc. Third International Workshop on Parsing Technologies, Tilburg,
the Netherlands and Durbuy, Belgium, 1993.

[Wirén, 1992] Mats Wirén. Studies in Incremental Natural-Language Analysis. Lin-
köping Studies in Science and Technology, Dissertation 292, Department of Com-
puter and Information Science, Linköping University, Linköping, Sweden, 1992.

[Woods, 1986] W. A. Woods. Transition network grammars for natural language
analysis. In B. J. Grosz, K. Sparck Jones, and B. L. Webber, editors, Natural
Language Processing, pages 71–87. Kaufmann, Los Altos, CA, 1986.

[Zeevat et al., 1987] H. Zeevat, E. Klein, and J. Calder. Unification categorial gram-
mar. In Nicholas Haddock, Ewan Klein, and Glyn Morrill, editors, Categorial
Grammar, Unification Grammar and Parsing. Centre for Cognitive Science, Uni-
versity of Edinburgh, 1987. Volume 1 of Working Papers in Cognitive Science.

