
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 505–513,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

An Extensive Empirical Evaluation of
Character-Based Morphological Tagging for 14 Languages

Georg Heigold
DFKI & Saarland University

Saarbrücken, Germany
georg.heigold@dfki.de

Günter Neumann
DFKI

Saarbrücken, Germany
neumann@dfki.de

Josef van Genabith
DFKI & Saarland University

Saarbrücken, Germany
josef.van genabith@dfki.de

Abstract

This paper investigates neural character-
based morphological tagging for lan-
guages with complex morphology and
large tag sets. Character-based approaches
are attractive as they can handle rarely-
and unseen words gracefully. We eval-
uate on 14 languages and observe con-
sistent gains over a state-of-the-art mor-
phological tagger across all languages ex-
cept for English and French, where we
match the state-of-the-art. We compare
two architectures for computing character-
based word vectors using recurrent (RNN)
and convolutional (CNN) nets. We show
that the CNN based approach performs
slightly worse and less consistently than
the RNN based approach. Small but sys-
tematic gains are observed when combin-
ing the two architectures by ensembling.

1 Introduction

Character-based approaches have been studied
for many applications in natural language pro-
cessing, including part-of-speech (POS) tagging
(dos Santos and Zadrozny, 2014; Ling et al.,
2015; Gillick et al., 2016; Plank et al., 2016; Ma
and Hovy, 2016), morphological tagging (Labeau
et al., 2015), parsing (Ballesteros et al., 2015),
named entity recognition (Gillick et al., 2016),
language modeling (Ling et al., 2015; Kim et
al., 2016), and neural machine translation (Costa-
jussà and Fonollosa, 2016). Character-based rep-
resentations have the advantage of gracefully han-
dling rare or unseen words and tend to produce
more compact models as the number of atomic
units, i.e., characters, is smaller compared to the
number of words in word-level approaches. The
issue of rare or unseen words is particularly pro-

nounced when working on morphologically-rich
languages, small amounts of training data or noisy
user input.

Morphological tagging is the task of assigning
a morphological analysis to a token in context.
The morphological analysis for a word consists of
a sequence of feature:value pairs describing, for
example, case, gender, person and tense. A par-
ticular concatenation of such feature:value pairs
is referred to as a single tag (Oflazer and İlker
Kuroz, 1994; Hajic and Hladka, 1998; Mueller et
al., 2013).

Following (Müller and Schuetze, 2015), we also
add the part-of-speech to this morphological tag
and refer to it as POS-MORPH:

I see four words
|

POS=noun:CASE=acc:· · ·
· · · :NUMBER=plural

Given a word in context, we predict a POS-
MORPH tag as a complete unit, rather than as
the individual component parts. This approach al-
lows us to share large parts of the model but can
only produce POS-MORPH analyses attested in
the training data (cf. Table 2). This is still the stan-
dard approach to morphological tagging and dis-
ambiguation as, given sufficient amounts of train-
ing data, the number of POS-MORPH descrip-
tions that cannot be produced usually is small.

Character-based POS tagging (rather than full
POS-MORPH tagging) has been extensively eval-
uated in the literature (dos Santos and Zadrozny,
2014; Ling et al., 2015; Gillick et al., 2016; Plank
et al., 2016). The results are competitive but do
not systematically outperform the state of the art.
Only Plank et al. (2016) report consistent gains
by using shallow neural network architectures in
combination with multitask learning, multilingual
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learning, and pre-trained word embeddings.
State-of-the-art results for morphological tag-

ging (full POS-MORPH tagging) can be found in
(Mueller et al., 2013; Müller and Schuetze, 2015).
To the best of our knowledge, there has not been
much research on character-based morphological
tagging so far. Labeau et al. (2015) is an excep-
tion but report results for German only. Their
best results are on a par with state-of-the-art re-
sults. Heigold et al. (2016) show clear gains of
character-based over state-of-the-art morphologi-
cal taggers. However, the evaluation is limited to
German and Czech.

Research on character-based approaches in gen-
eral NLP clearly divides into papers that use CNN-
based architectures (dos Santos and Zadrozny,
2014; Kim et al., 2016; Costa-jussà and Fonol-
losa, 2016) and papers that use LSTM-based ar-
chitectures (Labeau et al., 2015; Ling et al., 2015;
Gillick et al., 2016; Ballesteros et al., 2015; Plank
et al., 2016; Ma and Hovy, 2016). There are a
number of examples where an LSTM paper re-
ports results of a CNN paper for comparison, such
as (Ling et al., 2015) (POS tagging for English)
and (Gillick et al., 2016) (named entity recognition
for English). However, there is no direct compari-
son between CNN and LSTM based architectures
in morphological tagging.

In this paper, we investigate character-based
morphological tagging in more depth. More
specifically, the contributions of this paper in-
clude:

• the evaluation of character-based morpholog-
ical tagging on 14 different languages of dif-
ferent morphological complexity;

• the empirical comparison of long-short term
memory (LSTM) and convolutional neural
network (CNN) based architectures;

• the demonstration of systematic gains of our
character-based, language-agnostic morpho-
logical tagger over a state-of-the-art morpho-
logical tagger across morphologically rich
languages; moreover, and perhaps as ex-
pected, we show that the relative gains are
clearly correlated with the amount of the
training data;

• the evaluation of the complementarity of
LSTM- and CNN-based architectures by en-
semble experiments.

The remainder of the paper is organized as fol-
lows. Section 2 summarizes the character-based
neural network approaches used in this paper. The
data sets and model configurations are described in
Section 3 and in Section 4, respectively. The em-
pirical evaluation is presented in Section 5. Sec-
tion 6 concludes the paper. The Appendix contains
a listing of all experimental results obtained in this
paper.

2 Character-based Tagging

We assume an input sentence wN1 with (complex
POS-MORPH morphological) output tags tN1 and
a zeroth-order Markov model

p(tN1 |wN1 ) =
N∏
n=1

p(tn|wN1 ) (1)

whose factors are modeled by a suitable neural
network. For character-based tagging, we use the
character representation of the word, w = cM1 .
This assumes that the segmentation of the sentence
into words is known, which is straightforward for
the languages under consideration.

At the top level, each input word maps to one
complex POS-MORPH morphological output tag.
Hence, we can model the position-wise probabili-
ties p(t|wN1 ) with recurrent neural networks, such
as long short-term memory recurrent neural net-
works (LSTMs) (Graves, 2012). Fig. 1 (a) shows
such a network architecture where the inputs are
the word vectors vN1 . At the lower level, we use
a CNN-based (Fig. 1 (b)) or an LSTM-based
(Fig. 1 (c)) architecture to compute the character-
based word vectors. As we are using bidirectional
LSTMs (BLSTMs) at the top level, we shall re-
fer to the complete architectures as CNNHighway-
BLSTM and LSTM-BLSTM. The two architec-
tures are fairly similar. In our opinion, however,
there is an important difference between the two.
CNNHighway is more constructive in the sense
that it explicitly specifies the possible character
context widths with a hard upper bound and de-
fines an embedding size for each context width.
LSTMs are more generic as they are claimed to
implicitly learn these details (Schmidhuber, 1992).

The weights of the network, θ, are jointly esti-
mated using conditional log-likelihood

F (θ) = −
N∑
n=1

log pθ(tn|wN1 ). (2)
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Figure 1: Character-based neural tagging architecture: (a) sub-network mapping word vectors vN1 to tags
tN1 , dashed arrows indicate optional skip connections, (b) CNNs with different filter widths followed
by fully-connected layers with highway connections (CNNHighway), and (c) deep LSTM using the last
output to map the character string to a word vector. The networks in (b) and (c) are cloned to produce
the input word vectors vN1 in (a). LUT stands for lookup table.

Learning in recurrent or very deep neural networks
is non-trivial and skip/shortcut connections have
been proposed to improve the learning of such net-
works (Pascanu et al., 2014; He et al., 2016). We
use such connections (dashed arrows in Fig. 1) for
LSTM-BLSTM to alleviate potential learning is-
sues.

At test time, the predicted tag sequence is the
tag sequence that maximizes the conditional prob-
ability p(tN1 |wN1 ). For the factorization in Eq. (1),
the search can be done position-wise. This signif-
icantly reduces the computational and implemen-
tation complexity compared to first-order Markov
models as used in (Collobert et al., 2011; dos San-
tos and Zadrozny, 2014; Labeau et al., 2015).

3 Data

Most of the data sets are taken from the UD tree-
banks1. We also use a number of older data sets
in order to compare our results with existing re-
sults in the literature, including Czech/PDT2, Ger-
man/TIGER3, and Korean/SPMRL4. The corpus
statistics for the different languages can be found
in Table 1. The chosen languages are from dif-
ferent language families: Balto-Slavic (Bulgar-

1http://dependencies.org/
2https://ufal.mff.cuni.cz/pdt3.0
3http://www.ims.uni-stuttgart.de/

forschung/ressourcen/korpora/tiger.html
4http://dokufarm.phil.hhu.de/

spmrl2013/?animal=spmrl2013

ian, Czech, Russian), Finnic (Estonian, Finnish),
Finno-Ugric (Hungarian), Germanic (German),
Indo-Iranian (Hindi), Koreanic (Korean), Ro-
mance (Romanian, Semitic (Arabic), and Turkic
(Turkish). They include several examples for
both agglutinative and fusional languages. The
amount of training data ranges from 33k training
tokens (Hungarian/UD) to 1,174k training tokens
(Czech/UD).

Table 2 summarizes the tag statistics for the dif-
ferent languages. The number of tags is the num-
ber of POS-MORPH tags occurring in the training
data. We give the test entropy based on a unigram
tag model estimated on the training data as a sim-
ple measure for the difficulty of the associated se-
quence classification problem. The type/token ra-
tio (TTR), also known as vocabulary size divided
by text length, is computed on 1M words from ran-
domly selected sentences from a different data set5

and is a simple measure to quantify the morpho-
logical complexity of a language (Bane, 2008). A
higher TTR value indicates higher morphological
complexity.

5The sentences are all taken from the Wiki dumps
on http://linguatools.org/tools/corpora/
wikipedia-monolingual-corpora/ and https:
//archive.org/details/wikipediadumps?
&sort=-downloads&page=2.
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Table 1: Corpus statistics, OOV≥5 denotes the percentage of test word tokens with five or more occur-
rences in the training data

Language Train sentences (k) Train tokens (k) Test tokens (k) OOV≥5 (%)
Arabic/UD 6 256 32 20.7
Bulgarian/UD 9 124 16 27.3
Czech/PDT 39 691 93 17.5

UD 68 1174 174 15.7
English/UD 13 205 25 16.7
Estonian/UD 15 188 24 32.2
Finnish/UD 12 163 9 38.9
French/UD 15 367 7 12.7
German/TIGER 40 760 92 17.2
Hindi/UD 13 281 35 10.1
Hungarian/UD 1 33 4 48.0
Korean/SPMRL 23 296 28 42.7
Romanian/UD 5 109 18 27.6
Russian/UD 47 815 108 19.5
Turkish/UD 4 42 9 46.5

Table 2: Tag statistics, TTR stands for Type/Token
Ratio

Language #Tags Entropy TTR (%)
Arabic/UD 320 32.5 12
Bulgarian/UD 448 49.5 12
Czech/PDT 878 77.7 11

UD 1418 97.7 11
English/UD 119 27.9 7
Estonian/UD 787 57.3 13
Finnish/UD 1593 76.1 17
French/UD 197 34.1 8
German/TIGER 681 97.7 13
Hindi/UD 922 56.9 7
Hungarian/UD 652 64.5 14
Korean/SPMRL 1976 119.4 20
Romanian/UD 444 65.8 7
Russian/UD 434 54.6 16
Turkish/UD 987 73.0 10

4 Setups

We use the same model setups for LSTM-BLSTM
and CNNHighway-BLSTM as in (Heigold et al.,
2016). The hyper-parameters are set to

• CNNHighway: the large setup from (Kim et
al., 2016), i.e., character vector size = 15, fil-
ter widths ranging from one to seven, num-
ber of filters as a function of the filter width
min{200, 50 ·filter width}, two highway lay-
ers

• LSTM: character vector size = 128, two lay-
ers with 1024 and 256 nodes

The BLSTM modeling the context of words in a
sentence (Fig. 1 (a)) consists of two hidden layers,
each with 256 hidden nodes.

These hyper-parameters were tuned on the Ger-
man TIGER development data and are optimal on
a ”best effort basis.” German is good for the hyper-
parameter tuning as it is a relatively hard task (see
Table 2) and shows morphological effects both
within and across words. Furthermore, the TIGER
corpus is relatively large, which reduces statisti-
cal fluctuations in training and testing. Apart from
these considerations, the choice was random. Fur-
thermore, we tested language-specific tuning for a
few languages, but it does not seem to give further
gains. Moreover, the network hyper-parameters
were tuned to give best accuracy rather than most
compact models or even comparable numbers of
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parameters as our application is not constrained by
memory or runtime. The hyper-parameters were
then used for all languages. We ran the external
tools MarMoT6 and JNN7 (see Appendix) with the
suggested default values.

The networks are optimized as described in
(Heigold et al., 2016). In particular, the optimiza-
tion is done with RMSProp (Tieleman and Hin-
ton, 2012), with a fixed initial learning rate and a
learning rate decay of two every tenth epoch for
German, TIGER, and is adjusted for the other lan-
guages according to the amount of training data.
The batch size is always 16. Furthermore, we use
dropout. The dropout probability is empirically set
to 0.4 for Hungarian and Turkish, which only have
a very limited amount of training data (Table 1),
and to 0.2 for all other languages.

5 Empirical Evaluation

We empirically evaluate an LSTM-based and a
CNN-based architecture for character-based mor-
phological tagging (Section 2) and compare them
against MarMoT, a state-of-the-art morphological
tagger (Mueller et al., 2013). For the evalua-
tion we use twelve different morphologically-rich
languages with different characteristics, plus two
morphologically-poor languages for contrastive
results (Section 3). The configurations are de-
scribed in Section 4.

Fig. 2 plots the relative gain over MarMoT (see
Appendix A for more details) against the amount
of training data. The horizontal dotted line at 0%
indicates the MarMoT baseline. The blue squares
are for LSTM-BLSTM results. Connecting them
for the morphologically-rich languages shows a
clear, nearly-linear dependency of the relative gain
on the amount of training data. Only the data
point for Turkish at 40% is an outlier (should be
around 20%). This result suggests that compared
to MarMoT, LSTM-BLSTM is very data efficient.
Even for very small amounts of training data (e.g.,
33k tokens for Hungarian), the relative gain is still
15%. On the other hand, more data helps. In case
of Czech, increasing the amount of training data
from 691k (Czech/PDT) to 1174k (Czech/UD) to-
kens leads to some additional gain and yields al-
most a 50% relative gain. It should be noted, how-
ever, that the two data sets use different tag sets,
with the Czech/UD one being more complex than

6http://cistern.cis.lmu.de/marmot/
7https://github.com/wlin12/JNN

the Czech/PDT (Table 2).
We use an LSTM-BLSTM of the same size for

all languages, although the amount of training data
varies by roughly two orders of magnitude. There-
fore, it is a valid question if a larger model specifi-
cally designed for Czech/UD or a smaller model
for Turkish/UD would improve the results. We
have developed locally tuned and tested larger and
smaller models in terms of number of nodes or lay-
ers but with similar or worse performance: -0.1%
with more nodes (Czech) or approx. -1% with
fewer nodes or fewer layers (Turkish). This obser-
vation suggests that the configuration optimized
for German is fairly robust across many different
languages, which is an attractive property from a
practical perspective.

In contrast, we do not observe a gain of LSTM-
BLSTM over MarMoT for English and French.
Both languages are considered to be morpholog-
ically poor, as supported by the tag statistics in
Table 2. This may be because of the low mor-
phological complexity, i.e., a character represen-
tation does not add much information to a word
representation. Another explanation might be that
the linguistic experts have focused on English and
French in the last decades and found a good set
of features, which however does not well general-
ize to other, morphologically more complex lan-
guages.

It is tempting to analyze these results in more
detail by splitting languages into sub-categories.
Here, we refrain from doing so as it is delicate to
draw conclusions from very small sample sizes (3-
4 languages, say).

The green circles (in Fig. 2) are for
CNNHighway-BLSTM results, a neural net-
work architecture that has been developed
for character-based language modeling (Kim
et al., 2016). Overall, LSTM-BLSTM and
CNNHighway-BLSTM perform similarly, see
Fig. 2. Looking at the details, however,
CNNHighway-BLSTM tends to perform slightly
worse and less consistently than LSTM-BLSTM.

While LSTM-BLSTM and CNNHighway-
BLSTM perform similarly they may capture com-
plementary effects. To measure the complemen-
tarity of the two architectures, we build an en-
semble consisting of the LSTM-BLSTM and the
CNNHighway-BLSTM by taking the geometric
mean of the scores. The accuracies are shown
in Fig. 2 as LSTM+CNNHighway-BLSTM. Ex-
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Figure 2: Relative gains (%) over MarMoT
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cept maybe for English and French, we observe
marginal but consistent gains over LSTM-BLSTM
or CNNHighway-BLSTM.

For additional comparison, we add a few addi-
tional points in the plot. The red cross indicates
the result from (Labeau et al., 2015), which is a
combination of a CNN, a bidirectional RNN, and a
Markov model. The purple triangles are generated
with the external tool JNN8, which implements a
shallow BLSTM-BLSTM (i.e., only one bidirec-
tional LSTM layer in each BLSTM). One might
expect that this model performs better on smaller
data sets. But actually, it is clearly worse both for
large (Czech/PDT and German/TIGER) and small
data sets (Romanian/UD).

6 Summary & Future Work

In this paper, we demonstrated that a character-
based neural approach can achieve consistent im-
provements over a state-of-the-art morphologi-
cal tagger (MarMoT). The evaluation included
a dozen of languages of different morphological
complexity and with different characteristics. The
relative gains for the morphologically-rich lan-
guages range from 15% to almost 50%, with a
clear dependency on the amount of training data.
Several aspects are remarkable about this result.

First, these results use the same model architec-
ture with the same number of layers and nodes,
without any language-specific modifications. Fur-
ther local language and training data setting spe-
cific tuning does not seem to help much.

Second, the neural approach seems to be more
data efficient than the baseline tagger with manu-
ally designed features, also when only 30k training
tokens are available.

Third, a fairly generic deep and hierarchical re-
current neural network architecture seems to per-
form as well or better than a more specialized con-
volutional neural network based architecture.

Fourth, to keep the setup as simple as possi-
ble, we have not used advanced techniques which
are reported to lead to improvements, including
a non-trivial structured prediction model (e.g., a
first-order Markov model) (Collobert et al., 2011;
dos Santos and Zadrozny, 2014; Labeau et al.,
2015; Ma and Hovy, 2016), additional unsu-
pervised data (e.g., via word2vec) (Müller and
Schuetze, 2015; Ling et al., 2015; Plank et al.,
2016; Ma and Hovy, 2016), combination of dif-

8https://github.com/wlin12/JNN

ferent word representations (Labeau et al., 2015;
Ma and Hovy, 2016; Plank et al., 2016), multi-
lingual learning (Gillick et al., 2016; Plank et al.,
2016), and auxiliary tasks (Plank et al., 2016). Fu-
ture work will include the investigation of these
more advanced techniques. From this perspective,
our paper provides a baseline for future research
in multilingual character-based neural morpholog-
ical tagging.

Last but not least, we do not observe any gains
for English and French (except when using en-
sembles). This may be due to the low morpho-
logical complexity of these languages or because
manual feature engineering has focused on these
languages over the last decades with good results.
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A Raw Results

This appendix contains Table 3 with the raw re-
sults used in this paper. When available, the best
comparable error rates from the literature are used.
Otherwise, we produced the error rates with the
publicly available tools and the suggested default
values. More specifically, we used the state-of-
the-art tagger MarMoT9 for the baselines and the
LSTM-based POS tagger JNN10 for some con-
trastive results.

9http://cistern.cis.lmu.de/marmot/
10https://github.com/wlin12/JNN
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Table 3: Tag error rates (%) on test sets, some of which are taken from the literature: (a) (Mueller et al.,
2013), (b) (Labeau et al., 2015)

Language MarMoT9 CNN BLSTM LSTM CNNHighway
-biRNN-CRF -BLSTM10 -BLSTM -BLSTM

Arabic/UD 9.13 6.46 6.22
Bulgarian/UD 5.73 4.86 5.12
Czech/PDT 7.46a 6.30 4.36 4.87

UD 6.97 3.68
English/UD 7.00 6.83 6.68
Estonian/UD 8.11 5.75 6.32
Finnish/UD 7.79 6.48 7.61
French/UD 5.08 5.09 5.19
German/TIGER 11.42a 10.97b 10.04 6.77 7.37
Hindi/UD 11.44 9.16 9.21
Hungarian/UD 26.49 22.41 23.40
Korean/SPMRL 18.60 13.49 14.43
Romanian/UD 7.64 9.02 5.88 5.97
Russian/UD 6.08 3.55 4.21
Turkish/UD 17.28 10.88 12.41
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