
Learning to Rank Effective Paraphrases from Query Logs for Community
Question Answering

Alejandro Figueroa
Yahoo! Research Latin America

Av. Blanco Encalada 2120
4th floor, Santiago, Chile
afiguero@yahoo-inc.com

Günter Neumann
DFKI GmbH

Stuhlsatzenhausweg 3
D-66123 Saarbrücken, Germany

neumann@dfki.de

Abstract

We present a novel method for ranking query para-
phrases for effective search in community question an-
swering (cQA). The method uses query logs from Ya-
hoo! Search and Yahoo! Answers for automatically ex-
tracting a corpus of paraphrases of queries and ques-
tions using the query-question click history. Elements of
this corpus are automatically ranked according to recall
and mean reciprocal rank, and then used for learning
two independent learning to rank models (SVMRank),
whereby a set of new query paraphrases can be scored
according to recall and MRR. We perform several auto-
matic evaluation procedures using cross-validation for
analyzing the behavior of various aspects of our learned
ranking functions, which show that our method is useful
and effective for search in cQA.

Introduction
Community Question Answering (cQA) services such as
Yahoo! Answers have become very popular for maintain-
ing and distributing human–made web content in form of
textual questions and their answers on a very large scale.
A huge crowd of millions of people exchange dynamically
and rapidly questions and answers basically about anything,
where the particular questions and answers may vary greatly
in complexity and relevance from a linguistic as well as con-
tent point of view. Today, the largest cQA services main-
tain over 100 million answered questions which in its own
represents a very huge and valuable knowledge base (Zhao
et al. 2011). Consequently, the topic of effective search in
cQA engines have recently attracted many researchers, e.g.,
(Zhao, Zhou, and Liu 2007), (Lin 2008), (Zhao, Wang, and
Liu 2010), (Suzuki, Nakayama, and Joho 2011), (Zhao et al.
2011), (Zheng et al. 2011).

A promising approach in this direction has been proposed
by (Lin 2008). The core idea is to use the user generated
questions of a cQA along with search engine query logs to
automatically formulate effective questions or paraphrases
in order to improve search in cQA. (Zhao et al. 2011) have
further elaborated this idea into the direction of generation
of new questions from queries. A major advantage of such a
query-to-question expansion approach for cQA is that it can

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

help to retrieve more related results from cQA archives and
hence, can improve the recall. Similarly (Zhao, Wang, and
Liu 2010) proposed an approach for extracting paraphrases
from search engine query logs and to use them for generat-
ing paraphrase patterns.

In this paper, we present a novel approach of using user
generated questions of cQA along with search engine query
logs, viz. to learn to rank generated paraphrases in order
to improve the search for answers in cQA. The motivation
behind this is as follows: The automatic generation of para-
phrases is a useful means to improve the search for find-
ing best answers in cQA. But the generated paraphrases (al-
though they might “mean” the same) do not necessarily lead
to the same answer set, and hence, it might be that they differ
in the expected retrieval quality of identifying and ranking
best answers high. Thus, it makes sense to rank the gener-
ated paraphrases, so as to provide evidence according to re-
call and the position of the best answer of a paraphrase, i.e.,
its mean reciprocal rank (MRR).

The core idea of our method is as follows (see Fig. 1).
Given a huge collection of query logs from a Yahoo! Search,
we extract all pairs consisting of a query and a title, where
at least one user click links the query with a title from Ya-
hoo! Answers. We further cluster these pairs into groups,
where each group consists of all query-title pairs with same
title. We interpret each group (including the title) as a set of
paraphrases of the same underlying question. Note that each
title is associated with an answer web page (actually, the
title is the user entered question of the answer web page),
and so also its paraphrases. This way we obtain a huge col-
lection of answer web pages and their associated question
paraphrases. In a next step we assign to each paraphrase a
recall and MRR value which are automatically computed by
querying each paraphrase to all answer web pages. We are
now able to automatically sort the paraphrases sets accord-
ing to recall and MRR independently, cf. table 1 for an ex-
ample. Furthermore, we can extract features and learn two
separate learning to rank (SVMRank) models, one for rank-
ing new paraphrases according to recall and one for ranking
them in congruence with MRR.

Through a number of experiments, we will demonstrate
that these ranking functions are effective for search in cQA.
Furthermore, our experimental results shed light on possible
new architectures for cQA engines: On the one hand, ques-



tion answering systems need to fetch as much query-related
content as possible, but on the other hand, context bearing
answers must be ranked at the top. Our outcomes actually
suggest that a two-step retrieval approach is a better option
than a one step straightforward approach. In the first step,
the cQA system might benefit from a purpose-built ranking
function that boosts recall, and in the second step, it might
capitalize on a ranking function focused on MRR that oper-
ates on the pre-fetched elements determined in the first step.

Note that we conceive paraphrases in a broad sense, that is
we do not explicitly only consider well-formulated questions
(e.g., “does lack of iron cause headaches?”), but also implicit
requests (“headache iron”), grammatically incorrect queries
(“and headach low iron”) and other semantic alternatives
(“migraine headaches low iron” or “can low hemoglobin
cause headaches?”). Note further, that all information stored
in a web answer page is retained, which in general not only
contains relevant answers, but any comment made by the
community for that selected question. We think, that both
aspects together are very important to define realistic test
cases and to achieve robustness on real cQA data.

Related Work
Query Search Log Analysis in cQA (Zhao et al. 2011)
present a method for automatically generating questions
from queries for cQA. Their method includes two main
steps, i.e., template acquisition and question generation.
They collect query-to-question pairs from search engine
query logs on which basis the template acquisition extracts
question generation templates. For a new query, the most
similar templates are selected and a list of questions are
created and sorted. Our approach differs from this work in
that we rank paraphrases according to their possible search
quality using recall and MRR as major sources, where they
rank questions according to the quality of being a well-
formulated question. Furthermore, they restrict the gener-
ated questions to be formulated very similar to user en-
tered questions, where we do not have this restriction. They
perform tests on a small-scale corpus of 1000 randomly
sampled queries from Baidu query logs, where we perform
large-scale experiments on our complete collection using
cross-validation.

(Zheng et al. 2011) also propose a method for generat-
ing questions from keywords. They present a keywords to
question system (called K2Q) that considers both query his-
tory and user feedback. They employ an adaptive language
model to describe the process of forming questions, and also
use automatically induced question templates to create un-
seen questions. Candidate questions are also sorted by their
fluency, i.e., the probability of being seen in a cQA system.

Like (Zhao et al. 2011), their sorting approach is also tai-
lored to prefer candidate questions which bear a higher qual-
ity of being a well-formulated human-like question rather
than sorting them according to their quality of improving
search which is the focus of our research. They also compare
the generated questions according to their similarity with
user entered questions from a cQA not taking into account
the answers. So, it seems that both approaches are suited for
“cleaned” cQA archives, but it is unclear whether they can

be simply adapted to work with realistic cQA archives con-
taining a lot of trash or unvalidated answers and other posted
information, as we do.

Paraphrase Extraction We extract paraphrases from
query logs, that is we do not exploit any statistical model
to generate them, which gave us a broader sampling of po-
tential candidates. The core motivation is based on the idea
that, if some queries result in similar clicks, then the mean-
ings of these queries should be similar, cf. (Wen, Nie, and
Zhang 2002).

(Zhao, Wang, and Liu 2010) were the first to propose
the extraction of paraphrases from general search engine
query logs and to use them for generating paraphrase pat-
terns. They found that when several queries hit the same ti-
tle, the queries are likely to be paraphrases of each other,
as well as, when a query hits several titles, paraphrases can
also be found among the titles. They extract three kinds of
paraphrases from search logs and combine them into one
model: query-title, query-query and title-title paraphrases.
Validation of candidate paraphrase pairs is defined as a bi-
nary classification problem and performed by a SVM classi-
fier. Human evaluation results on a manually annotated cor-
pus of 5000 query-title pairs from a search log showed that
the method is able to yield high qualitative paraphrases. Ma-
jor differences to our work are that we evaluate the effec-
tiveness of paraphrases, where they focus on validation, and
that we explicitly extract query-title pairs, where the title is
the question of a corresponding Yahoo! Answers page, and
as such our approach is specifically tailored to cQA.

Learning to Rank (Surdeanu, Ciaramita, and Zaragoza
2011) present an approach for ranking “How to”–answers
extracted from Yahoo! Answers. They build a positive and
negative training collection of question-answer pairs, where
a positive pair consists of a user question and the correct
answer selected manually by the user. All other answers to
that question are considered as negative. In a similar spirit
as we do, they define many different feature extractors and
use them for training a function used for ranking answers.
The major differences to our approach are: they only con-
sider a restricted set of question types (actually only “how
to” questions, where we consider all questions); they focus
on ranking answers, where we focus on ranking query para-
phrases; and they do not explore search engine query logs.

User clicks have shown to provide valuable relevance
feedback for a variety of tasks, cf. (Radlinski, Szummer, and
Craswell 2010). For instance, (Ji et al. 2009) extracted rele-
vance information from clicked and non-clicked documents
within aggregated search sessions. They modeled sequences
of clicks as a means of learning to globally rank the relative
relevance of all documents with respect to a given query.
(Xu et al. 2010) improved the quality of training material
for learning to rank approaches via predicting labels using
click-through data.

Proposed Method
Fig. 1 displays the major components and control flow of
our new method. Central to our approach is the automatic
acquisition of the paraphrases corpus. Its major steps are de-
scribed in sequential order in more detail below, followed by



Search Queries
linked to Yahoo! 

Answers

Yahoo! Answers
Community

Lucene

Indexed by

Paraphrase
Tagger

Search queries
connected with the
page ID

Search query
& Page ID

Search query
tagged with
MRR & Recall

Ranked search
queries
(MRR & Recall)

Page ID

Page ID

MRR
Collection

Recall
Collection

Figure 1: Major components and control flow for both, the
training and application phase.

a description of the different features that are used to con-
struct the input for the learner which in our case is SVM-
Rank (Joachims 2006).

Query-question collection We first compile a collection
of queries submitted to the Yahoo! search engine during the
period of January 2011 to March 2012.1 Since, we are only
interested in user queries that can be used to find answers
in a cQA (in our case Yahoo! Answers), we only retain
those queries which have at least one user click that links
the search query with any question in this cQA. Here, we
made allowances only for questions posted to this commu-
nity from June 2006 to December 2011. The question is typ-
ically given in the title of the answer page, and it sets the
discussion topic of the page. Overall, this step collects 155
million search engine queries corresponding to about 26 mil-
lion Yahoo! Answers pages.

We interpret a question title and their linked search en-
gine queries as a set of paraphrases of the same underlying
question. More specifically, we conceive the title question as
the source paraphrase whereas the respective search engine
queries as its variations. The source paraphrase is entered by
the user when setting the topic of the answer page.

Corpus cleaning Since we noticed that many answers are
expressed in languages different from English, we checked
every answer and title contained in our collection of 26 mil-
lion pages. Sometimes the search query is in English, but
the related (clicked) Yahoo! Answers web page is, to large
extent, in another language. For this purpose, we use a lan-
guage detector2, and accordingly, we discarded all content
that this tool did not indicate English as a potential language.

Furthermore, given the fact that some questions were du-
plicated in the community, we merged these instances via
title string matching. We also removed all pages connected
with more than fifty and less than five paraphrases. Pages
linked with high number of paraphrases are not reliable

1We only consider English queries, but the whole approach only
uses very few language specific resources, so that an adaptation to
queries from other language is perfectly possible.

2http://code.google.com/p/language-detection/.

and make the next step too computational demanding, while
pages connected with few queries are not likely to provide
good and bad reformulations. Note that due to merging,
some questions might now have multiple best answers. Here
we additionally discarded pages (and their related search
queries) that did not have a best answer.

Altogether, this yields a final corpus of about 32 million
answers embodied in 6 million pages corresponding to 81
million search engine queries.

Corpus indexing We indexed this pool of 32 million
answers with Lucene3. When indexing, we removed stop
words by means of a list of traditional stop terms extended
with some tokens that we identified as community stop
words (e.g., “yummy”, “coz”, “lol”, and “y!”). All terms
were lowercased. Subsequently, each paraphrase was auto-
matically assessed by sending it to Lucene and checking its
recall and the MRR of the highest ranked best answer. The
recall was computed by accounting for the number of an-
swers fetched from the related Yahoo! Answers page, or in
the event of merged pages, from all the related combined
pages. In all these computations, we only considered the top
1,000 hits returned by Lucene.

Recall and MRR collections Now that each paraphrase
is automatically annotated with both metrics, we construct a
recall and MRR collection as follows:

The Recall collection comprises all pages for which we
find more than three distinct values for recall across the re-
lated paraphrases. Since this rule produced few rankings,
we aggregated this set with small rankings (six paraphrases)
containing three different ranking values. Eventually, this
brought about an increase from 36,803 to 51,148 rankings.
The final amount of paraphrases is 814,816.

The MRR collection encompasses all pages for which we
find more than six distinct values for MRR across the re-
lated paraphrases (see example in table 1). This rule selected
54,848 rankings containing 1,195,974 paraphrases.

Note that we now interpret a page as a ranking of para-
phrases, more precisely, the search engine queries in con-
junction with the title of the respective page. For the re-
minder of this paper, answers are not longer utilized, and
both collections are used separately during feature extrac-
tion, training and testing.

Features In our experiments, we took into account the
following array of attributes distilled from paraphrases.

Bag of Words (BoW) adds a property to the feature vec-
tor representing each term and its frequency within the
paraphrase, only considering terms with a global frequency
higher than an empirical threshold (see experimental sec-
tion). Similarly, bi- and tri-gram features are computed.

POS tagging generates features in agreement with their
part-of-speech categories.4 This attribute adds to the feature
vector “number-of” attributes: tokens in the paraphrase, to-
kens tagged as NN, JJ, VB, etc. The “number-of” frequency
counts are associated with each paraphrase.

We exploit semantic relations provided by WordNet
such as hypernyms (e.g., “hardware →store”), hyponyms

3http://lucene.apache.org/
4Using http://web.media.mit.edu/∼hugo/montylingua/



MRR pQ Paraphrase
0.0 F how manu disc does diablo2 lod come with
0.0 F how many discs does d2 come with?
0.0018 F how many disc come with diablo battle chest
0.0018 F how many disk does diablo battle chest
0.0022 T How many discs are supposed to be in Diablo II?
0.0124 F how many discs come with diablo 2 battle chest
0.0130 F how many disc comes in the diablo 2 box
0.0133 F how many disk does diablo 2 come with
0.0141 F how many discs does diablo 2 have?
0.0149 F diablo 2 number of discs
0.0154 F how many discs did diablo 2 have
0.5 F how many disks are in diablo 2 pc?
1.0 F diablo 2 disks
1.0 F how many disks does diablo 2 come with

Table 1: An example taken from the MRR collection. pQ
stands for posted question. The entries show a ranking con-
sisting of 14 paraphrases and 12 distinct ranking values. The
title of the corresponding Yahoo! Answers page is signaled
by T, others as F.

(“credit→payment”), meronyms (“navy→fleet”), attributes
(“high→level”), and regions (“Toronto→Canada”). Simi-
larly to the “number-of” attributes, an element representing
the frequency count of the respective type of relation at the
paraphrase level is added to the feature vector.

Analogously, we considered collocations provided by
the Oxford Dictionary: following (e.g., “meat→rot”)
and preceding verbs (“consume→meat”), quantifiers
(“slab→meat”), adverbs (“steadily→increase”), adjec-
tives (“souvenir→mug”), verbs (“fill→mug”), preposition
(“increase→by”), and related noun (“meat→products”).

We used eight string distances5: jaro, jaccard, jaro-
winkler, fellegi-sunter, levenstein, smith-waterman, monge-
elkan and scaled-levenstein. For each metric, an additional
attribute represents the maximum value between two differ-
ent tokens in the paraphrase.

Word Lemma is a boolean property indicating whether or
not both, a word and its lemma are contained in the para-
phrase, e.g. “book” and “books”. We used Montylingua for
the morphological analysis.

Experiments
The ranking functions are computed using SVMRank,
which implements a fast pairwise learning to rank approach
(Joachims 2006). In all our experiments, we use five-fold
cross validation. In order to maintain consistency across our
experiments, we use the same five data random splits. Note
our evaluations were carried out on both collections inde-
pendently: All experiments assessing MRR are conducted
on the MRR collection, whereas all experiments evaluating
Recall are carried out on the Recall collection.6

A key advantage of having all paraphrases annotated in
terms of Recall and MRR is that we can compute the upper
bound for the performance by picking the highest scored

5Using http://secondstring.sourceforge.net/
6From now on, all MRR and Recall values refer to the average

values obtained when carrying out the cross-validation.

element in each ranking. In other words, we can imagine a
system or an oracle that always picks one of the best options
(see table 1). Hence, the upper bounds for MRR and Recall
are 0.41744 and 0.30874, respectively. Obviously, this is the
best performance any configuration or system can achieve
operating on our two collections. The lower bound for the
performance is determined by choosing the lowest rated item
in each ranking. For our corpus, the lower bounds for MRR
is 0.00039, while for Recall it is 0.0073.

Additionally, our collections offer an additional reference
for the performance. The title question (source paraphrase)
provides a rough approximation of what a human user would
enter to a QA system (cf. table 1). Notice that the title sets
the topic of an answer web page, which is the reference
clicked by the users of the search engine. By checking the
performance achieved by these titles, we obtain for our cor-
pus: MRR=0.12601 and Recall=0.17979.

We used two baseline methods for comparison. The first
method, also called BoW(G), uses the BoW approach. We
tuned its performance for different thresholds (word fre-
quency counts from 0 to 19). In both cases (MRR and Re-
call), the optimal threshold was 2, obtaining a performance
of MRR=0.1 and Recall=0.1568. Normally, the BoW model
yields good performance in many text mining tasks. In our
task, it only reached 23.96% of the achievable MRR and
50.79% of the achievable Recall, which is also below the
potential human performance.

For the second baseline, we used a centroid vector
trained/tested via five-fold cross-validation. We used the
same splits of our MRR/Recall collections as our SVM-
Rank models. The vector is composed of terms that appear
in at least three paraphrases, where each term is represented
by the average MRR/Recall values determined from the re-
trieved paraphrases. The MRR and Recall values for this
baseline are 0.0939 and 0.1543, respectively.

We use a greedy algorithm for performing feature extrac-
tion, which starts with an empty bag of features and after
each iteration adds the one that performs the best. In order to
determine this feature, the algorithm tests each non-selected
property in conjunction with all the features in the bag. The
procedure halts when there is no non-selected feature that
enhances the performance. We refer to the system utiliz-
ing the best set of properties discovered by this algorithm
as SVMRanker(G).

Table 2 highlights the overall results of the greedy method
for both metrics together with the impact of the selected
features. Compared to our baseline, our features assisted
in enhancing the performance by 8.90% (MRR) and by
4.69% (Recall). This means that these systems finished with
26.08% and 53.17% of the achievable MRR and Recall, re-
spectively.

Our experiments show that most of the Recall and MRR
is gained by a combination of two key attributes: ‘BoW’
and ‘Number of NNP’ (tokens tagged as singular proper
nouns (NNP)), which brings about a growth in performance
of 7.92% (MRR) and by 3.97% (Recall). In light of that,
we conclude that this configuration leads to a cost-efficient
solution. Actually, we examine the data-set and found that
the average MRR and Recall of a paraphrase systematically



Recall MRR
BoW 0.156816 BoW 0.099971
Number of NNP 0.163043 Number of NNP 0.107887
Bigrams 0.163280 Trigrams 0.108160
Number of JJR 0.163433 felligi-sunter 0.108378
Word Lemma 0.163564 Attributes+ 0.108497
Number of SYM 0.163659 Similars+ 0.108607
felligi-sunter 0.163742 Number of RB 0.108649
Ins. Hypernyms+ 0.163824 Number of RP 0.108682
adverb− 0.163894 Ins. Hypernyms+ 0.108715
Number of NNPS 0.163973 Sub. Meronyms+ 0.108742
Similars+ 0.164010 Verb Groups+ 0.108770
Sub. Meronyms+ 0.164056 Outcomes+ 0.108787
Topics+ 0.164084 Regions Members+0.108804
Member Holonyms+0.164107 Related+ 0.108810
Entailments+ 0.164129 Ins. Hyponyms+ 0.108815
Topics Members+ 0.164140 Number of NNPS 0.108819
Number of RBS 0.164147 quantifier− 0.108824
Number of RBR 0.164153 Number of RBS 0.108854
Number of RP 0.164157 Adjective+ 0.108865
Attributes+ 0.164161 Topics+ 0.108871
Sub. Holonyms+ 0.164163

Table 2: Impact of selected features on the performance for
the two collections. In the Recall column, e.g., ’BoW’ is the
first feature selected and added to the bag, then ’Number of
NNP’ is selected and added aso. Common features are in
bold and final results in italics. The plus and the minus signs
denote WordNet and collocation relations, respectively.

increases in tandem with the number of tokens labelled as
NNP it contains. The Pearson’s r is 0.76 (MRR) and 0.89
(Recall), which in both cases signal a strong correlation.

In some sense, our experiments supports the intuition that
proper nouns or other named entities in user queries help in
finding good answers and ranking them high: A larger num-
ber of NNPs cooperates on narrowing the semantic range
of a query, because it signals that a query bearing a spe-
cific relation. A more specific semantic relation also seems
to boost the similarity with a specific answer passage, thus
enhancing its MRR score. On the other hand, a more spe-
cific relation between entities within the query helps to fetch
a larger set of answer passages, since the chances of match-
ing a query entity token increases. In case of search engine
queries, the fact that users do not capitalize entities is detri-
mental as many entities (sequences of NNPs) are unnoticed
by an out-of-the-box POS tagger. In our collections, between
2-4% of the paraphrases contain a NNP-labelled token. This
sheds some light on the obstacles to reach the upper bound
of performance.

Additionally, the greedy algorithm enhanced the perfor-
mance by augmenting the attribute sets with 19 (Recall) and
18 (MRR) elements (see table 2), which yields 0.69% bet-
ter Recall and 0.92% better MRR. Nine of this extra features
are contained in both lists. Especially, the maximum value of
the fellegi-sunter string distance helped to identify effective
paraphrases that aimed at juxtaposing or establishing rela-
tions among objects, where these objects bear some similar-
ities in their names (Cohen, Ravikumar, and Fienberg 2003).

Ranker 1 (best performance) Ranker 2 (worst performance)
BOW BOW
Number of NNP Bigrams
Number of JJR Number of NNP
felligi-sunter Number of VBG
Bigrams preposition−

Word Lemma Number of VBZ
Instance Hypernyms+ Number of VBP
Similars+ adverb−

adverb− followingVerb−

Number of SYM Number of SYM
Number of NNPS Similars+

Topics+ Number of NNPS
Substance Meronyms+ Number of FW
Number of RBS Verb Groups+
Number of UH Usages+

Number of RBR Substance Holonyms+

Attributes+ Member Meronyms+

Adjective+ Number of UH
Substance Holonyms+ Attributes+

Entailment+s Adjective+

Number of RP Number of RP
Related+

Regions Members+

Trigrams

Table 3: Features acquired for each ranker (Recall). Verb-
related features are in boldface.

Thus, the answer is highly likely to contain the same aliases
as the query, since the similar part (normally a portion of a
stem) is contained in all objects and each suffix indicates an
attribute that differentiates each object. The linguistic prop-
erty of these names seems more beneficially for search than
the usage of other longer and more descriptive aliases like
full names, e.g.: “how do i transfer files from my ps1 mem
card to my ps2 mem card?”, “how to tell a jeep 4.0 from
a jeep 4.2” and “combining pc3000 and pc400 memory in
motherboard”.

Similarly, we check the Recall collection and discovered
that the average Recall of a paraphrase systematically in-
creases in when the number of terms labelled as comparative
adjectives (JJR) contained in the paraphrases also increases.
The Pearson’s r = 0.65 signals a strong correlation. Over-
all, 15 fine-grained semantic relations provided by WordNet
were useful, but with limited impact.

Error Analysis For a more in-depth error analysis, we
split each collection into two data-sets using the error ob-
tained by SVMRanker(G): the first split contains the half
of the rankings, for which SVMRanker(G) obtained the
best performance, and the second split includes the half,
for which SVMRanker(G) achieved the worst performance.
Error is defined here as the difference between the best
and the achieved MRR/Recall. Then, two rankers, one for
each metric, were trained by utilizing the same attributes
and learning to rank approach (SVMRank), five-fold cross-
validation, and the same feature selection algorithm than
SVMRanker(G).

Table 3 compares the attributes acquired for each Ranker
when dealing with the Recall collection. Interestingly



Question Number of Upper Titles Lower BoW SVM Ranker BoW SVM Ranker
Type Samples Bound Bound (G) (G) (QS) (QS)

MRR
Why 6853 0.393 0.110 0.0002 0.0828 0.0914 0.0775 0.0923
Who 1953 0.437 0.126 0.0003 0.1020 0.1161 0.0949 0.1195

Where-info 2142 0.467 0.121 0.0008 0.1055 0.1180 0.1018 0.1293
Where-general 5903 0.431 0.125 0.0003 0.1026 0.1127 0.1004 0.1123

When 4668 0.402 0.111 0.0003 0.0847 0.0933 0.0797 0.0963
What-misc 9967 0.410 0.113 0.0002 0.0881 0.0960 0.0844 0.0948
What-do 5648 0.414 0.121 0.0003 0.0972 0.1059 0.0938 0.1045

How-extent 8003 0.427 0.120 0.0003 0.0939 0.1016 0.0915 0.1030
How-proc 22055 0.406 0.114 0.0003 0.0909 0.0971 0.0899 0.0981

Recall
Why 8640 0.2372 0.143 0.0039 0.1130 0.1208 0.1126 0.1212
Who 3061 0.365 0.211 0.0135 0.1852 0.1992 0.1889 0.2038

Where-general 2977 0.331 0.174 0.0038 0.1501 0.1600 0.1490 0.1633
When 4673 0.259 0.146 0.0035 0.1249 0.1300 0.1221 0.1278

What-misc 9775 0.301 0.156 0.0039 0.1405 0.1443 0.1386 0.1443
What-do 5482 0.272 0.144 0.0033 0.1360 0.1376 0.1313 0.1382

How-extent 6101 0.3045 0.169 0.0038 0.1406 0.1490 0.1410 0.1495
How-proc 14237 0.293 0.165 0.0032 0.1423 0.1479 0.1411 0.1474

Table 4: Summary of performance per question-type. Only prominent kinds for each data-set are considered.

enough, we can notice that a) Verb-related features are dom-
inant in Ranker 2 (e.g., the following verb and the number of
VBG), and they do not appear neither in Ranker 1 nor SVM-
Ranker(G) (cf. table 2); b) Only half of the features selected
for Ranker 2 are also included in the set of Ranker 1; c) 19
out of the 21 attributes acquired by Ranker 1 are also on the
list obtained by SVMRanker(G) (cf. table 2); and d) 10 out
of the 24 features in Ranker 2 are also in SVMRanker(G)
(cf. table 2). All things considered, we can conclude that
SVMRanker(G) fails to correctly rate paraphrases when the
discriminative information is mainly verb-related.

Models Based on Question Types Table 4 shows the re-
sults obtained for traditional classes of questions. We iden-
tified each kind of question by checking whether any of
the paraphrases of each ranking starts with any of the pat-
terns provided by an external taxonomy, cf. (Hovy et al.
2000). For each subset, we recompute the bounds and the
performance reaped by the question titles, and the perfor-
mance of the general models. The figures indicate that the
improvements achieved by SVMRanker(G) wrt. our base-
line BoW(G) are quite consistent in all types of questions
in terms of MRR and Recall, attributing in both cases the
greatest growth to Who-questions (ca. 13.8% and 7.5%).

The upper bounds obtained for Recall indicate that rank-
ings aimed at Who-questions contain a substantially more
effective top-scored paraphrase than When-questions. It
seems to be harder to generate/find efficient paraphrases (in
terms of Recall) for When-questions. We interpret this as
a consequence of the few context that these answers might
bear. More specifically, for this sort of questions, some an-
swers only provide the date without context, thus making
it difficult to fetch all answer strings, and to accomplish a
high Recall. We also trained two question specific learn-
ing to rank models for each data-set: one taking into ac-
count the BoW property only, and the other by running
our feature selection algorithm. These two new question-

type specific models are denoted by BoW(QS) and SVM-
Ranker(QS), respectively. All the figures were obtained by
performing five-fold cross validation. Results indicate that
our features yielded an improvement in performance for all
types and questions and data-sets. The greater improvements
in Recall and MRR were due to where-general (9.6%) and
where-info (27%) types of questions, respectively. Only in
five out of seventeen cases the performance was detrimental
wrt. the general models. Hence, we conclude that question-
type models are a more effective alternative to general all
data-encompassing ranking models.

Conclusions and Future Directions
We presented a novel method for rating query paraphrases
for effective search in cQA. It exploits query logs from a
commercial search engine and Yahoo! Answers for collect-
ing a corpus of paraphrases. These paraphrases are automat-
ically annotated in terms of recall and MRR, and thus used
for building several learning to rank models, i.e. general and
specific to question-types, and according to both metrics.

In a nutshell, our results indicate that question-type mod-
els are more effective than general ranking models. They
also point out to the need for good-performing NLP toolkits
for queries. Research into this area is still incipient. Our er-
ror analysis suggests that the idea of ensembling rankers of
different nature sounds promising as it can provide a comit-
tee of leading experts, each focused on a particular class of
ranking. Here, we envisage the use of clustering algorithms
to find these (not yet defined) number of experts, and the
devise of a specialised ensembler that chooses the expert in
agreement with the characteristics of the problem.

Acknowledgements
This work was partially funded by the project FONDEF-
IdeA (CA12I10081) funded by the Chilean Government.



References
Cohen, W. W.; Ravikumar, P.; and Fienberg, S. E. 2003. A
Comparison of String Distance Metrics for Name-Matching
Tasks. In International Joint Conference on Artificial Intel-
ligence, 73–78.
Hovy, E. H.; Gerber, L.; Hermjakob, U.; Junk, M.; and Lin,
C.-Y. 2000. Question answering in webclopedia. In TREC.
Ji, S.; Zhou, K.; Liao, C.; Zheng, Z.; Xue, G.-R.; Chapelle,
O.; Sun, G.; and Zha, H. 2009. Global ranking by exploiting
user clicks. In Proceedings of the 32nd Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 35–42.
Joachims, T. 2006. Training Linear SVMs in Linear Time.
In Proceedings of the ACM Conference on Knowledge Dis-
covery and Data Mining (KDD).
Lin, C.-Y. 2008. Automatic question generation from
queries. In Proceedings of Workshop on the Question Gen-
eration Shared Task and Evaluation Challenge, 929–937.
Radlinski, F.; Szummer, M.; and Craswell, N. 2010. Infer-
ring query intent from reformulations and clicks. In WWW
2010, Proceedings of the 19th Annual International World
Wide Web Conference.
Surdeanu, M.; Ciaramita, M.; and Zaragoza, H. 2011.
Learning to rank answers to non-factoid questions from web
collections. Computational Linguistics 37(2):351–383.
Suzuki, S.; Nakayama, S.; and Joho, H. 2011. Formulating
effective questions for community-based question answer-
ing. In Proceeding of the 34th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, SIGIR, 1261–1262.
Wen, J.-R.; Nie, J.-Y.; and Zhang, H. 2002. Query clustering
using user logs. ACM Trans. Inf. Syst. 20(1):59–81.
Xu, J.; Chen, C.; Xu, G.; Li, H.; and Abib, E. R. T. 2010.
Improving quality of training data for learning to rank using
click-through data. In WSDM’10 , Proceedings of the Third
International Conference on Web Search and Web Data Min-
ing, 171–180.
Zhao, S.; Wang, H.; Li, C.; Liu, T.; and Guan, Y. 2011. Auto-
matically generating questions from queries for community-
based question answering. In Proceedings of 5th Interna-
tional Joint Conference on Natural Language Processing,
929–937.
Zhao, S.; Wang, H.; and Liu, T. 2010. Paraphrasing with
search engine query logs. In COLING 2010, 23rd Interna-
tional Conference on Computational Linguistics, Proceed-
ings of the Conference, 1317–1325.
Zhao, S.; Zhou, M.; and Liu, T. 2007. Learning question
paraphrases for qa from encarta logs. In IJCAI 2007, Pro-
ceedings of the 20th International Joint Conference on Arti-
ficial Intelligence, 1795–1801.
Zheng, Z.; Si, X.; Chang, E.; and Zhu, X. 2011. K2q: Gen-
erating natural language questions from keywords with user
refinements. In Proceedings of 5th International Joint Con-
ference on Natural Language Processing, 947–955.


