

	Example
Mr. Jo	nes eats
Mr. <e< td=""><td>NAMEX TYPE=PERSON> Jones eats</td></e<>	NAMEX TYPE=PERSON> Jones eats
Possibl	e (and hopefully most likely word-NC sequence):
P(Not-	A-Name SOS, <i>+end+</i>) * P(<i>Mr.</i> Not-A-Name, SOS) *
P(+end	d+ Mr., Not-A-Name) * P(Person Not-A-Name, Mr.) *
P(Jone	es Person, Not-A-Name) * P(+end+ Jones, Person) *
P(Not-	A-Name Person, <i>Jones</i>) * P(<i>eats</i> Not-A-Name, Person) *
P(. eats	s,Not-A-Name) * P(<i>+end+</i> .,Not-A-Name) *
P(EOS	Not-A-Name,.)
P(Not-A P(. eats P(EOS	A-Name Person, <i>Jones</i>) * P(<i>eats</i> Not-A-Name, Person) * ;,Not-A-Name) * P(<i>+end+</i> .,Not-A-Name) * Not-A-Name,.)
22/02/2002	9

Word features <w,f> are the only language dependent part • Easily determinable token properties: Feature Example Intuition fourDigitNum 1990 four digit year containsDigitAndAlpha A123-456 product code containsCommaAndPeriod 1.00 monetary amount, percentage otherNum 34567 other number allCaps BBN Organisation Person name initial capPeriod Μ. firstWord first word of sentence ignore capitalization initCap Sally capitalized word lowerCase can uncapitalized word other punctuation, all other words . $P(\langle anderson, initCap \rangle \langle arthur, initCap \rangle_1, organization-name) \rangle$ P(<anderson,initCap> <arthur, initCap>_1, person-name) 22/02/2002 10

Results of Evaluation

• English (MUC-6, WSJ) and Spanish (MET-1): F-measure score

	Language	Best Result	IdentiFinder
Mixed Case	English	96.4	94.9
Upper Case	English	89	93.6
Speech form	English	74	90.7
Mixed Case	Spanish	93	90

17

On MUC-6 overall recall and precision: 96% R, 93% P

<section-header><section-header><section-header><section-header><text><text>

	Int	IE-rela roducto	ted M ory E	IEM xamp.	le
• Ex >I	ample Predicti 211cl2P	Event (ion = FN, (gmbh)cr1	1): Contex cr2	t:	
		-			
SEM	FN	FN	Pred.	FN	FN
SEM TC	FN Other Symbol	FN First capital	Pred. Mixed word, First capital	FN Other Symbol	FN Lowercase word
S EM T C POS	FN Other Symbol	FN First capital	Pred. Mixed word, First capital NOUN	FN Other Symbol	FN Lowercase word
SEM TC POS STEM	FN Other Symbol	FN First capital	Pred. Mixed word, First capital NOUN gmbh	FN Other Symbol	FN Lowercase word

IE-related MEM Introductory Example

Example Event (2): Prediction = GR, Context:

S EM	*N*	GR		ΤZ	ВТ
тс	Separator	First	First	Lowercase	Lowercase
	symbol	capital	capital	word	word
POS	INTP	DEF	NOUN	VERB	PREP
STEM	•	d-det	umsatz	steig	auf
ТОКЕ	÷	<u>der</u>	<u>umsatz</u>	<u>stieg</u>	<u>auf</u>
Ν					
22/02/2002					37

IE-related MEM Model Training

• There are two widely used algorithms for training maxent models:

- ➢ GIS (Generalized Iterative Scaling)
 - Good: Not Numerically fragile
 - Bad: Needs the existence of a correction feature
- ≻ IIS (Improved Iterative Scaling)
 - Good: No correction feature necessary
 - Good: Faster
 - Bad: Numerically fragile

22/02/2002

IE-related MEM Model Training • Whatever algorithm is used, in each case model training means computing feature weights α j. The first iteration starts with every α j=1.0. Subsequencing iterations will change this value: either to a value greater than 1.0 (if the corresponding feature is considered as *good*) or to a value less than 1.0 (but greater than 0.0) (if the corresponding feature is considered as *bad*).

<text><list-item><list-item><list-item><list-item>

The basic ideas behind ID3

- In the decision tree each node corresponds to a noncategorical attribute and each arc to a possible value of that attribute. A leaf of the tree specifies the expected value of the categorical attribute for the records described by the path from the root to that leaf. [This defines what is a Decision Tree.]
- In the decision tree at each node should be associated the non-categorical attribute which is most informative among the attributes not yet considered in the path from the root. [This establishes what is a "Good" decision tree.]
- Entropy is used to measure how informative is a node. [This defines what we mean by "Good". By the way, we already used this notion when introducing MEM.]

53

Information gain

• Gain(X,T) = Info(T) - Info(X,T): The difference between the information needed to identify an element of T and the information needed to identify an element of T after the value of attribute X has been obtained, that is, this is the gain in information due to attribute X.

- Example, gain of
 - Outlook attribute: Gain(O,T) = Info(T) - Info(O,T) = 0.94 - 0.694 = 0.246
 - Windy attribute:
 - Info(W,T)=0.892 and Gain(W,T)=0.048.
 - Thus Outlook offers a greater informational gain than Windy.

57

• Use gain for ranking attributes and to build decision trees where at each node is located the attribute with greatest gain among the attributes not yet considered in the path from the root.

- Delimitation is the determination of the boundaries of the NE, while classification serves to provide a more specific category
 - Orginal: JohnSmith, chairman of Safetek, announced his resignation yesterday.
 - Delimit: <NE>JohnSmith </NE>, chairman of <NE> Safetek </NE>, announced his resignation yesterday.
 - Cassify: <PN>JohnSmith </PN>, chairman of <CN> Safetek </CN>, announced his resignation yesterday.

Decision trees for learning classification knowledge

- Starting point: each word is tagged with all of its associated features
- Features are obtained through automated and manual techniques

22/02/2002

• Decision tree is then constructed from the initial feature set using a recursive partitioning algorithm (ID3)

Features			
Туре	Feature	Example	
POS	Proper Noun Common Noun	Aristotle philosophy	
Disgnator	Company Person Location Date	Corp.,Ltd Mr. President Country, State, City Month,Day of weel	
Morphology	Capitalization Company suffix Word length	A-, B- -corp, -tee WL>8,WL<3	
List	Companies Persons Keywords	IBM, AT&T Smith, Michael Based in, said he	
Template	Company Person Location Date Proper Name	NNP CN_descr P_desig NNP NNP L_desig MM Num, Num NNP NNP	
Special purpose	LCS Duplicated PNs	VW <- Volkswagen DUP_2+	

