Information Extraction and
Question-Answering Systems
Foundations and methods

Dr. Gunter Neumann
LT-Lab, DFKI
neumann@dfki.de

What the lecture will cover

Machine Leamning Lexical processing

for IE
Evaluati Basic Terms &
valuation Examples _
Methods Parsing of
Unrestricted Text
Generic NL

Domain Core system | Question/Answering
Modelling Core components

Advanced Topics

POS tagging

= Assigning morpho-syntactic categories
to words in context

The green trains run down that track.
Det Adj/NN NNS/VBZ NN/VB Prep/Adv/Adj SC/Pron NN/VB
Det Adj NNS VB Prep Pron NN

= Disambiguation: a combination of lexical
and local contextual constraints

22/02/2002

POS tagging

= Major goal is to assign/select correct POS
before syntactic analysis
» Shallow processing
» Handling of unknown words (robustness)
» Reducing search space for next processing
stages (parsing)
= Good enough for many applications
» Information retrieval/extraction
» Spelling correction
» Text to speech
» Terminology extraction/mining

22/02/2002

POS tagging

= Corpus approach

» NL text for which all correct POS are already
assigned

» Use it as a history for already made
disambiguation decisions
= Major goal:
» extract underlying rules/decisions so that new

untagged corpus can be automatically tagged
using the extracted rules

22/02/2002

POS tagging

= Simple method:
pick the most likely tag for each word

» The probabilities can be estimated from a
tagged corpus

» Assumes independence between tags
» Works pretty well (> 90% word tag accuracy)

» But not good enough for processing of small NL
text input: One in ten words wrong

22/02/2002

Simple tagger example

= Brown corpus, 1M tagged wrds, 40 tags

= Example:
» The representatives put the chairs on the table.

» Word put occurs 41191,
= 41145 times tagged as VBD
= 46 times as NN

» P(VBD |W=put) = 41145/ 41191 = 0.999
» P(NN|W=put) =46/41191 =0.001
= Unknown words:
» If w is capitalized then tag(w)=NE else tag(w)=NN

22/02/2002

POS problems

= Long distance dependencies (findet statt),
= Annotation errors,

= not enough features, e.g., case assighment
(Nom vs. Acc, Er sieht das Haus)

= |If more features then more data sparseness
problems

= Large corpora are needed

22/02/2002 8

POS corpus approaches

e Rule based

» Transformation-based error-driven
learning (Brill 95)

» Inductive logic programming (Cussens
97)

= Statistical based

»Markov models (TnT, Brants 00)
»Maximum entropy (Ratnaparkhi, 96)

Transformation-based error
driven learning (Brill, 95)

Unannotated
text Truth
annoted reference corpug
4 N
Initial
State
L i) learner }7
Annotated rules
text
F Ordered list of

transformation
10

Structure of a transformation

= Rewrite rule

» Change the tag from modal to noun
= Triggering environment

» The preceding word is a determiner
= Application example

» The/det can/modal rusted/verb.

» The/det can/noun rusted/verb.

22/02/2002 11

Generic learning method

= At each iteration of learning

> Determine transformation t whose application results in
the best score according to the objective function used

> Add t to list of ordered transformations

» Update training corpus by applying the learned
transformation

» Continue until no transformation can be found whose
application results in an improvement to the annoated
corpus

= Greedy search:

» h(n) = estimated cost of the cheapest path from the state
represented by the node n to a goal state

» best-first search with h as its "eval" function.

22/02/2002 12

Unannotate]
corpus

[@8

Initial state

annotator

Annotated
Corpus
Err=5100

22/02/2002

T4

Greedy search

Annotated corpu
Err=5100

l°2)

Annotated corpu
Err=3145

Annotated corpu
Err=3310

°A)

T3

2l Annotated corpu

Err=3910

T4

Annotated corpu
Err=6300

°2)

Annotated corpu
Err=2110

[v2)

Annotated corpu
Err=1231

UJ

Annotated corpu
Err=4224

°A)

13

Instances of TBL schema

= The initial state annotator

= Te space/structure of allowable
transformations (patterns)
= The objective function for comparing the
corpus to the truth
= Applications
» Pos tagging
» PP-attachment
» Parsing
» Word sense disambiguation

22/02/2002

14

TBL POS tagging

= Initial annotator (our simple method)
»Assign each word its most likely tag
» Tag unknown words as proper noun if

capitalized and common noun otherwise

= Error triple: <tag,tag,,number>
»Number of times tagger mistagged a

22/02/2002

word with tag, when it should have been
tagged with tag,

15

Transformation patterns

Change tag a to tag b when

1.
2
3.
4,
5

6.

Preceding (following) word is tagged z

The word two before (after) is tagged z

One of the two preceeding (following) words is tagged z
One of the three preceeding (following) words is tagged z
The preceeding word is tagged z and the following word is
tagged w

The preceeding (following) word is tagged z and the word
two before (after) is tagged w

Learning task

>
>
>

22/02/2002

apply every possible transformation t
count the number of tagging errors caused by t
choose the transformation with the highest error reduction

16

Examples of learned
transformation from PennWSJ

|From | To Condition

1 | NN VB Previous tag is TO To/TO conflict/NN/VB

2 |VBP |VB One of the prev. 3 tags is MD | might/MD vanish/VBP/VB
3 [NN |VB One of the prev. 2 tags is MD | might/MD not reply/NN/VB
4 |VB NN One of the prev. 2 tags is DT

5 |VBD |VBN | One of the prev. 3 tags is VBZ

6 |VBN |VBD Prev. tag is PRP

7 |VBN |VBD Prev. tag is NNS

16 | IN WDT Next tag is VBZ

17 | IN DT Next tag is NN

22/02/2002 17

Lexicalized transformations

= Change tag a to b when
» The preceding (following) word is w

» The word before (after) isw
> ...

= Example (WSJ): w;. word at position i
» From IN to RB if w;,, = as
» From VBP to VB is (w;, or w;;) = n't

22/02/2002 18

Tagging Performance

Method Tagging # rules or Acc.
corpus size contex. (%)
(words) Probs
Stochastic 64K 6,170 96.3
Stochastic 1M 10,000 96,7
TBL 64 215 96,7
With Lex. rules
TBL 600K 447 97.2
With Lex. rules
TBL 600K 378 97
W/o Lex. rules

22/02/2002

Closed vocabulary
assumption:

All possible tags
for all words in the
test set are known

19

Handling unkown words

= Change the tag of an unknown word (from X)

toY if

» Deleting prefix (suffix) x, |x|< 4, resultsin a
(known) word

» The first (last) 1,2,3,4 characters of the word are x
» Adding character string x as prefix (suffix) results

in a word

» Word W ever appears immediately to the left
(right) of the word

» Character Z appears in the word

22/02/2002

20

10

Some example transformations

|From | To Condition

1 |NN NNS Has suffix -s

2 |NN CD Has character .

3 |NN VBN Has suffix -ed

4 |7 RB Has suffix -ly

5 |NNS |VvBz Word it appears to the left

Tagging performance:

Unknown word accuracy on WSJ test corpus:
82.2%

Overall accuracy:
96.6%

22/02/2002 21

Unsupervised TBL

= Goal: automatically train a rule-based POS
tagger without using a manually tagged
corpus

= Source: a dictionary listing the allowable
parts of speech for each word

= Challenge: define an objective function for
training that does not need a manually
tagged corpus as truth

22/02/2002 22

11

Core idea

= Note that for ambiguous words we can only
randomly choose between the possible tags
» The can will be crushed

= Using an unannotated corpus and a
dictionary, we could discover, that of the
words that appear after The that have only
one possible tag, nouns are most common

» Change tag of a wrd from (MD|NN]VB) to NN if
the previous word is The

22/02/2002 23

Transformation Templates

e Change the tag of a word from x to Y in
context C if:
1. The previoustagisT
2. The previous word is W
3. ThenexttagisT
4. The next word is W
» Different use of transformation: reduce
uncertainty instead of changing one tag to
a another = Y [0 x

22/02/2002

12

Examples of transformations

= Change the tag:

»From NN |VB|VBP to VBP if the
previous tag is NSS

»From NN | VB to VB if the previous tag is
MD

»From JJ|NNP to JJ if the following tag
IS NNS

Scoring criterion

= Learner has no gold standard training corpus
with which accuracy can be measured

« |nstead: use information from the distribution
of unambiguous words

= |Initially, each word in the training corpus is
tagged with all tags allowed for that word

= In later learning iterations, training set is
transformed as a result of applying previously
learned transformations

13

Computation of the score of a
tranformation

= For each tag Z O x, Z2Y, compute freq(Y)/freq(Z)*incontext(Z,C)
» freq(Y) = # occurences of words unambiguously tagged with Y;
» the same for freq(2)
» incontext(Z,C) = # times a word unambig. tagged as Z occurs in C
= Let: R=argmax,freq(Y)/freq(Z)*incontext(Z,C)
= Then Change the tag of a word from yto Y in context C is:
» Incontext(Y,C)-freq(y)/freq(R)*incontext(R,C)

= Computing the difference between the number of unambiguous
instances of tag Y in context C and the number of unambiguous

instances of the most likely tag R in context C, where RO X, R2Y.

Choose the transformation which maximizes this function.

22/02/2002 27

Evaluation results

= When tagset of a word not fully
disambiguated, choose randomly a
single tag

e Results (Training/Test)

»PennTB (120K wrds/200T wrds):
95.1%, 1,151 rules learned

»BrownTB (350T wrds /200T wrds):
96.0%, ~1,729 rules learned

22/02/2002 28

14

Final remarks

= Weakly supervised rule learning:
»Best score: 96.8% using 88,200 corpus
(better than supervised on same corpus)
e Further issues

»Rules can be converted into deterministic
FST: O(n), independent of # rules (cf.
Roche&Schabes, 1995)

» Get the source code for free

22/02/2002 29

Main Information Sources for
statistical POS Tagging

= Paradigmatic information - the distribution of tags
for the word in isolation: P(t|w)

> P(VBD |W=put) = 41145/ 41191 = 0.999
>P(NN|W=put) =46/41191 =0.001

= Syntagmatic information - look at the tags of other
words in the context of the word we are interestd
in
» anew play: AT JJ NN versus AT JJ VBP

22/02/2002 30

15

Statistical POS tagging

= \We would like to have a statistical
model that would be able to take into
account both types of information in a
principled way
» Learn that information from some

annotated corpus (i.e., from examples,
observations)

»Keep the syntagmatic context as local as
possible

Brief excursion:
probability theory (1)

-0 <P(A) <1

- P(A+B): P(A) + P(B), if A & B are independent
- P(A+ —,A) :P(A) + P(—r A), - A is the negation of A

«P(A) +P(-A)=1

16

Brief excursion:
probability theory (2)

e |_et P(A)=k/N, P(B)=I/N,P(AB)=m/N
e Then P(B|A) = P(AB)/P(A) = m/k

= Chain rule: pa |A..A) = PA-AA)

P(A-.An)

= Bayes rule: pg|a) = P(B?:F(),(Ql B)

Brief excursion:
probability theory (3)

 Maximum Likelihood Estimates

P ;) = “C=0h)

COWL. W)

R W..W,)=
e (W, WL W) CONL W)

17

N-Gram Model of Language

Predict a word or properties of a word on the basis
of already observed sequences of words

Morgen gehe ich ins ... (Kino/Theater/...)
P(W, IWy,..., Wy)
Question:
» How many words should we look back?
Markov assumption:
» Only a few is enough
N-gram: consider a context of length (N-1)
» unigram (no context),
» bigram (previous word),
» trigram (last previous words)

22/02/2002 35

Markov Models

= A system

» which may be described at any time as being in one of N
distinct states

» At each discrete time step, the system undergoes a change
of state according to a set of probabilities associated with
the state

e Let Q =(qy, -..,07) be a sequence of random
variables taking values in some finite set
S={s,,....sn}. Markov properties:

» Limited horizont: a word’s tag only depends on the

previous word’s tag (order 1 Markov Model)

P(Aw1=Skl 15 ---,0)= P(dea=Si | dp)

» Time invariant: tag probabilities don’t change over time

Ot,k:P(0, =5 16, =5;) = P(Guy =S [0 =8)

22/02/2002 36

18

Markov Model

Stochastic transition matrix: Markov model as

= =s|q,= babilistic FSA:
aj _P(qtﬂ__sj |qt —S)’ a probabillistic

g 200,], 025 0.25

&4 o1 N (W
= 0.50 ﬂ’ 1

Probs for initial states:

N
T =P(q,=5), Y 7% =1
i=1

22/02/2002 37

Hidden Markov Model

e Observation/Output is a probabilistic function; doubly
embedded stochastic process

1. Probability of observation (output sequence)

2. Probability of internal process (internal state
sequence), which are not observable (hidden);
Indirectly observable only through 1.

e Thus a HMM A is characterized by a tripple
(A,B, 1), with
1. A, a matrix of transition probabilities
2. B, a matrix of observation (emission) probabilities
3. 1 a vector of initial probabilities

22/02/2002 38

19

Example HMM

In an HMM, any sequence of states can
generate any sequence of observations with
a given probability.

03 05 02 1 0 %6
A= 0 03 Q7| B=05 05| =4
0 0 1 0 1 0

Hidden Markov Models

= Prototypical tasks to which HMMs are
applied include the following. Given a
sequence of signals O = {o,, ..., 0.}:
» Determine the most probable state sequence

that can give rise to this signal sequence.
(Viterbi algorithm)

» Determine the set of model parameters A = (AB,

M, maximizing the probability of this signal
sequence. (Baum-Welch algorithm)
= Part-of-speech tagging is an example of the
first task and training an HMM is an
example of the second.

20

HMM (cont.)

= Ergodic model: every state of an HMM is
connected with all other states
e HMM and POS
» Observable sequence: words
» Hidden sequence: part-of-speech
= Thus seen it is assumed that a string a was
generated from some hidden POS sequence;
therefore, the major goal is to determine
the most probable POS sequence which
could have generated a.

Markov Models for POS
Tagging

= Given a string of words w, ., find a
sequence of tags t, , that maximizes
I:)(tl,n IWl,n)

= Using Bayes Rule:

P(W, [t,)* P(t,n)
P(Wl,n)
= We need to find t, , that maximizes the
numerator

P, [w,) =

21

Ea

Example

AT \

i
\ @
{—

Pr(art| O) . Pr(adj]|art, O) . Pr(noun|adj, art) . Pr(%]|art) . Pr(gros|adj) . Pr(chat| noun)
Pr(pro|0) . Prladj| pro, O) . Pr(noun|adj, pro) . Pr(lk| pro) . Pr(gros| adj) . Pr(chat| noun)
Pr(art|O) . Pr(noun|art, U) . Pr(noun | noun, art) . Pr(/| art) . Pr(gres| noun) . Pr(chat| noun)
Pr(pro|0) . Pr(noun|pro, O) . Pr(noun |noun, pro) . Pr(/e| pro) . Pr(gres| noun) .

Pr(chat| noun)

e

22/02/2002 43

Two main independence
assumptions

= Words are independent of each other

I:)(\N_Ln |th) = P(\N_L |th)* P(WZ |th)* '"* P(Wn |t1,n)

= The probability of a word depends only
on its tag (bigram tagging)

P(w; [t,,) = P(w |t;)

22/02/2002

22

Probability model for P(t,,....,t,)

= Breakdown of joint probability:
P(ty,...,.t)=
P, 1t,,....t)* Pt Ity 6™ " P(t)
= First order Markov Model:
Pt 1ty th1)= Pt 1ty)
e Thus we get:
P(ty,....t0)= P(t, 1 t.1)* P(t, 1 1t,2)*..* P(ty)
= With a simple Markov model we need to find
the POS sequence P(t,,...,t,) that maximizes

n
[P (w;|t;))* P(t;|ti_q)

Two main questions

= How do we obtain (train) these probabilities?

» Calculate estimated probabilities based on
frequency counts from a corpus

» Smooth the estimated probabilities to avoid
anomalies due to data sparseness
= How do we efficiently find the sequence of the
tags that maximizes the joint product?
» Viterbi algorithm

23

Maximum Likelihood Estimation

Back to our simple example: Thepresentative put. . .
AT NN VBD/NN

P(VBD|put,NN) = P(put|VBD)P(VBD|NN)
In the training data, we find 41,145 occurrences of put as a verb out of
7,305,323 verbs, sB(put|VBD) = 41145/7305323 = 0.0056
And, out of 4,236,041 occurrences of the tag NN, the tag VBD comes
next 389,612 time<?(VBD|NN) = 389612/4236044 0.092
Combining

» P(VBD|put,NN) = 41145/7305323 x 389612/4236041 = 0.00052

» P(NN|put,NN) = 46/4236041 x 717415/4236041 = 0.0000018

22/02/2002 47

Smoothing of the Probabilities

= Data sparseness is always a problem when
estimating probabilities based on a corpus of data

= The ,,adding one" smoothing technique: add a count
of one to all events, so that there are no zero
probabilities

C (Wl,n) + 1

P(Wl,n): N +B

C: absolute frequency of x
N: number of training instances
B: number of different types

22/02/2002 48

24

Smoothing of the Probabilities

= Linear interpolation methods can compensate for data sparseness
with higher order models. A common method is interpolating
trigrams, bigrams and unigrams:

P(tl |t1,i—l) = Alpl(tl) +/12P2(ti |ti—1) +/‘3P3(ti |ti—1,i-2)

0sA<1) A4 =1

= Usually, the lambda values are automatically determined
using a variant of the Expectation Maximation algorithm.

22/02/2002 49

Pseudo code for viterbi algorithm

= Incremental left-to-right search using dynamic programming

= 4(j) is the probability of the most likely sequence of tags that ends with
word i having the tag t;

= 4,,() gives us the most likely tag at word i given that we are in state j at
word i+1

= Induction
» Find probability of most likely sequence that ends with word i+1 having tag j,
by considering all possible tags for previous word i

91 () =max, 4 A[G(K) *P(U] t)*P(wy,, |)]
» For specific tag t“that resulted in the above max, set: ¢,,(j)= t
= Start with J,(period)=1, J,(t)=0 for all t #period
= At the end find the tag t for which J,,,(t) is the greatest
= Reconstruct the most likely sequence of tags by backtracking:
X h4q=t, for i=n downto 1 do: X;= ¢;,,(X i,;)

n+1

22/02/2002 50

25

Core Idea of Viterbi Algorithm

N
k
state K

4

3

2

1 A
1 2 t-1 t t+1 T-1 T time
O, 0O, Ou1 O, O Orip O

2210212002 observation

Further Issues with Markov
Model Tagging

= Unknown words are a problem, since we don't have the
required probabilities. Possible solutions:

» assign the word probabilities based on corpus-wide
distributions of POS

» use morphological cues (capitalization, endings) to assign
a more calculated guess

= Using higher order Markov Models:

» using a trigram model for POS captures more context and
is thus potentially a better probability model

» However, data sparseness is much more of a problem
» The Viterbi search for trigrams is more complex

22/02/2002 52

26

TnT - Trigrams's Tags

= Efficient statistical part-of-speech tagger
developed by Thorsten Brants, ANLP-2000

» Stochastic models for English (Susanne corpus)
and German (Negra corpus)

» Performance:
between 30,000 and 60,000 tokens per second on
a Pentium 500 running Linux.
e TnT is a trainable tagger (you can use it
with your own annotated corpus)
< Home page
» http://www.coli.uni-sb.de/~thorsten/tnt/
» Online testing of TnT

22/02/2002 53

Example

Input Output Extended Output

Der ART |ART 1.000000e+00

Mandolinen-Club NN * |NN 1.000000e+00 *

Falkenstein NE * |NE 8.001280e-01 NN 1.998720e-01 *
und KON | KON 1.000000e+00

der ART |ART 1.000000e+00

Frauenchor NN * NN 9.828203e-01 NE 1.717975e-02 *
aus APPR | APPR 1.000000e+00

dem ART |ART 1.000000e+00

sachsischen ADJA |ADJA 1.000000e+00

Konigstein NN NN 7.762892e-01 NE 2.237108e-01
gestalten VVINF | VVINF 1.000000e+00

die ART |ART 9.796126e-01 PRELS 1.443545e-02 PDS 5.951974e-03
Feier NN |NN 1.000000e+00

gemeinsam ADJD |ADJD 1.000000e+00

$. |$. 1.000000e+00

22/02/2002 54

Accuracy

Corpus Language Domain Size Accuracy
NEGRA German Newspaper | 350,000 [96,7%
Corpus

PennTB English Newspaper |1,200,00 |96,7%
Susanne English Mixed 150,000 |96,6%
Corpus

22/02/2002 55

Underlying Model

al’gmaX [l Pt [t ti2)P(W [t) |P(tra [tr)

t.tr

= Trigram modelling

» The probability of a POS only depends on its two
preceding POS

» The probability of a word appearing at a particular
position given that its POS occurs at that position is
independent of everything else

= Explicit consideration of punctuation through special tags
>t beginning of sentence
>t end of sentence

= Tagging is performed by a variant of the Viterbi algorithm
(using beam search)

22/02/2002 56

28

Training
« Maximum likelihood estimates

Unigrams DB (ty) = C(N#)

Bigrams : P (t, [t,) = c(ty,t3)
c(ts)

i = = C(t11t21t3)
Trigrams P (ts |ty t,) = 2237
g (ts [ty t5) o, .10)
Lexical : P(w, |ts) = c(ws,ts)

c(ts)

= Smoothing: context-independent variant of linear
interpolation all trigrams get the same As

P [t t) FAP () AP (6 1t) AP (s [t L)

22/02/2002 57

Smoothing algorithm

Set A=0
Foreach trigram t, t, t; with f(t;, t,,t;) >0
» Depending on the max of the following three values:

= Case (f(ty, t, t;)-1)7 f(t,, t,): incr A; by f(t,, t,, t;)
= Case (f(ty t5)-1)7 f(t,): incr A, by f(t,, t,, t;)
= Case (f(ty)-1)/ N-1: incr A, by f(ty, t,, t5)
» End
< End

Normalize A,

-1 means: taking unseen data into account

22/02/2002 58

29

Handling of unknown words

= Suffix analysis:

» The probability distribution for a particular
suffix is generated from all words in the
training set that share the same suffix

» Suffix here means ,final sequence of characters
of a word", which is not necessarily
linguistically meaningful

= Suffix length in TnT: use the longest suffix
that can be found in the training set (>1)

22/02/2002 59

Suffix estimation

= Calculate the probability of a tag t given the last i
letters | of an n letter word

A | P
BN]) = Loy

C(p-ion s Tn)

= Smoothing: successive abstraction through sequences
of increasingly more general contexts (i.e., omit more
and more characters of the suffix)

22/02/2002 60

30

Evaluation

" Evaluation using two corpora:
- NEGRA Corpus: Frankfurter Rundschau (German newspaper texts)
- Penn Treebank: Wall Street Journal
" Disjoint training and test parts, 10-fold cross-validation
" Tagging accuracy: percentage of correctly assigned tags when assigning
one tag to each token
" Tagging accuracy depending on the size of the training set
" Tagging accuracy depending on the existence of alternative tags
within some beam (reliable vs. unreliable assignments)

22/02/2002 61

Part-of-Speech Tagging with TnT: NEGRA CO rpus

Avg. Accuracy —— Overall
100—(———F————— - min = 78.1%
L max = 96.7%
90 - Known
80 min =95.7%
// max = 97.7%
70 — Unknown
60 min =61.2%
max = 89.0%
50 T T T T T T T
1 2 5 10 20 50 100 200 320 Training Size (x 1000)
50.8 464 414 360 307 230 183 14.3 119 Avg. % Unknown

NEGRA corpus: 350,000 tokens newspaper text (Frankfurter Rundschau)

randomly selected training (variable size) and test parts (30,000 tokens)
10 iterations for each training size; training and test parts are disjoint
No other sources were used for training.

22/02/2002 62

31

Part-of-Speech Tagging with TnT: Penn Treebank

Avg. Accuracy —-o— Overall
1007 —— p— min =78.6%
9% e max = 96.7%
—-— Known
80 / min =95.2%
max = 97.0%
70 — Unknown
60 min =62.2%
50 max = 85.5%

1 2 5 10 20 50 100 200 500 1000 Training Size (x 1000)
50.3 42.8 334 268 202 132 98 7.0 44 29 Avg. % Unknown

Penn Treebank: 1,2 million tokens newspaper text (Wall Street Journal)

randomly selected training (variable size) and test parts (100,000 tokens)
10 iterations for each training size; training and test parts are disjoint.
No other sources were used for training.

22/02/2002 63

Additonal remarks

= Procedure of suffix handling is restricted to words
with a certain frequency threshold (< 10)

= Capitalization information
= Beam search variant of Viterbi algorithm

» Instead of considering all possible states during
one iteration, only consider states whose values
pass a certain predefined threshold 6

» But note: now, it is not guaranteed that path with
the highest probability is found

» Brants shows that setting 6 appropriately doubles
performance speed without affecting the accuracy

22/02/2002 64

32

