
1

22/02/2002 1

Information Extraction and
Question-Answering Systems

Foundations and methods

Dr. Günter Neumann
LT-Lab, DFKI

neumann@dfki.de

22/02/2002 2

What the lecture will cover

Basic Terms &
ExamplesEvaluation

Methods

Generic NL
Core system

Lexical processingMachine Learning
for IE

Parsing of
Unrestricted Text

Domain
Modelling

Question/Answering
Core components

Advanced Topics

2

22/02/2002 3

POS tagging

• Assigning morpho-syntactic categories
to words in context

The green trains run down that track.
Det Adj/NN NNS/VBZ NN/VB Prep/Adv/Adj SC/Pron NN/VB
Det Adj NNS VB Prep Pron NN

• Disambiguation: a combination of lexical
and local contextual constraints

22/02/2002 4

POS tagging
• Major goal is to assign/select correct POS

before syntactic analysis
�Shallow processing
�Handling of unknown words (robustness)
�Reducing search space for next processing

stages (parsing)
• Good enough for many applications

� Information retrieval/extraction
�Spelling correction
�Text to speech
�Terminology extraction/mining

3

22/02/2002 5

POS tagging

• Corpus approach
�NL text for which all correct POS are already

assigned
�Use it as a history for already made

disambiguation decisions

• Major goal:
�extract underlying rules/decisions so that new

untagged corpus can be automatically tagged
using the extracted rules

22/02/2002 6

POS tagging

• Simple method:
pick the most likely tag for each word
�The probabilities can be estimated from a

tagged corpus
�Assumes independence between tags
�Works pretty well (> 90% word tag accuracy)
�But not good enough for processing of small NL

text input: One in ten words wrong

4

22/02/2002 7

Simple tagger example

• Brown corpus, 1M tagged wrds, 40 tags
• Example:

�The representatives put the chairs on the table.
�Word put occurs 41191,

� 41145 times tagged as VBD
� 46 times as NN

�P(VBD|W=put) = 41145/ 41191 = 0.999
�P(NN|W=put) = 46/ 41191 = 0.001

• Unknown words:
� If w is capitalized then tag(w)=NE else tag(w)=NN

22/02/2002 8

POS problems

• Long distance dependencies (findet statt),
• Annotation errors,
• not enough features, e.g., case assignment

(Nom vs. Acc, Er sieht das Haus)
• If more features then more data sparseness

problems
• Large corpora are needed

5

22/02/2002 9

POS corpus approaches

• Rule based
�Transformation-based error-driven

learning (Brill 95)
�Inductive logic programming (Cussens

97)

• Statistical based
�Markov models (TnT, Brants 00)
�Maximum entropy (Ratnaparkhi, 96)

22/02/2002 10

Transformation-based error
driven learning (Brill, 95)

Unannotated
text

Initial
state

Annotated
text

learner

Truth

rules

annoted reference corpus

Ordered list of
transformation

6

22/02/2002 11

Structure of a transformation

• Rewrite rule
� Change the tag from modal to noun

• Triggering environment
�The preceding word is a determiner

• Application example
�The/det can/modal rusted/verb.
�The/det can/noun rusted/verb.

22/02/2002 12

Generic learning method

• At each iteration of learning
� Determine transformation t whose application results in

the best score according to the objective function used
� Add t to list of ordered transformations
� Update training corpus by applying the learned

transformation
� Continue until no transformation can be found whose

application results in an improvement to the annoated
corpus

• Greedy search:
� h(n) = estimated cost of the cheapest path from the state

represented by the node n to a goal state
� best-first search with h as its "eval" function.

7

22/02/2002 13

Greedy search

Annotated corpus
Err=5100

Annotated corpus
Err=3145

Annotated corpus
Err=3910

Annotated corpus
Err=6300

Annotated corpus
Err=3310

Annotated corpus
Err=2110

Annotated corpus
Err=1231

Annotated corpus
Err=4224

Unannotated
corpus

Annotated
Corpus

Err=5100

Initial state
annotator

T1

T2

T3

T4

T1

T2

T3

T4

22/02/2002 14

Instances of TBL schema

• The initial state annotator
• Te space/structure of allowable

transformations (patterns)
• The objective function for comparing the

corpus to the truth
• Applications

�Pos tagging
�PP-attachment
�Parsing
�Word sense disambiguation

8

22/02/2002 15

TBL POS tagging

• Initial annotator (our simple method)
�Assign each word its most likely tag
�Tag unknown words as proper noun if

capitalized and common noun otherwise

• Error triple: <taga,tagb,number>
�Number of times tagger mistagged a

word with taga when it should have been
tagged with tagb

22/02/2002 16

Transformation patterns
Change tag a to tag b when

1. Preceding (following) word is tagged z
2. The word two before (after) is tagged z
3. One of the two preceeding (following) words is tagged z
4. One of the three preceeding (following) words is tagged z
5. The preceeding word is tagged z and the following word is

tagged w
6. The preceeding (following) word is tagged z and the word

two before (after) is tagged w
Learning task

� apply every possible transformation t
� count the number of tagging errors caused by t
� choose the transformation with the highest error reduction

9

22/02/2002 17

Examples of learned
transformation from PennWSJ

Next tag is NNDTIN17

Next tag is VBZWDTIN16

...

Prev. tag is NNSVBDVBN7

Prev. tag is PRPVBDVBN6

One of the prev. 3 tags is VBZVBNVBD5

One of the prev. 2 tags is DTNNVB4

One of the prev. 2 tags is MDVBNN3

One of the prev. 3 tags is MDVBVBP2

Previous tag is TOVBNN1

ConditionToFrom#

To/TO conflict/NN/VB

might/MD vanish/VBP/VB

might/MD not reply/NN/VB

22/02/2002 18

Lexicalized transformations

• Change tag a to b when
�The preceding (following) word is w
�The word before (after) is w
� ...

• Example (WSJ): wi: word at position i
�From IN to RB if wi+2 = as
�From VBP to VB is (wi-2 or wi-1) = n‘t

10

22/02/2002 19

Tagging Performance

97378600KTBL
W/o Lex. rules

97.2447600KTBL
With Lex. rules

215

10,000

6,170

rules or
contex.
Probs

96,764TBL
With Lex. rules

96,71MStochastic

96.364KStochastic

Acc.
(%)

Tagging
corpus size

(words)

Method Closed vocabulary
assumption:
All possible tags
for all words in the
test set are known

22/02/2002 20

Handling unkown words

• Change the tag of an unknown word (from X)
to Y if
�Deleting prefix (suffix) x, |x|≤ 4, results in a

(known) word
�The first (last) 1,2,3,4 characters of the word are x
�Adding character string x as prefix (suffix) results

in a word
�Word W ever appears immediately to the left

(right) of the word
�Character Z appears in the word

11

22/02/2002 21

Some example transformations

...

Word it appears to the leftVBZNNS5

Has suffix -lyRB??4

Has suffix -edVBNNN3

Has character .CDNN2

Has suffix -sNNSNN1

ConditionToFrom#

Tagging performance:
Unknown word accuracy on WSJ test corpus:

82.2%
Overall accuracy:

96.6%

22/02/2002 22

Unsupervised TBL

• Goal: automatically train a rule-based POS
tagger without using a manually tagged
corpus

• Source: a dictionary listing the allowable
parts of speech for each word

• Challenge: define an objective function for
training that does not need a manually
tagged corpus as truth

12

22/02/2002 23

Core idea
• Note that for ambiguous words we can only

randomly choose between the possible tags
�The can will be crushed

• Using an unannotated corpus and a
dictionary, we could discover, that of the
words that appear after The that have only
one possible tag, nouns are most common
�Change tag of a wrd from (MD|NN|VB) to NN if

the previous word is The

22/02/2002 24

Transformation Templates

• Change the tag of a word from χ to Y in
context C if:

1. The previous tag is T
2. The previous word is W
3. The next tag is T
4. The next word is W

� Different use of transformation: reduce
uncertainty instead of changing one tag to
a another ⇒ Y ∈ χ

13

22/02/2002 25

Examples of transformations

• Change the tag:
�From NN|VB|VBP to VBP if the

previous tag is NSS
�From NN|VB to VB if the previous tag is

MD
�From JJ|NNP to JJ if the following tag

is NNS

22/02/2002 26

Scoring criterion

• Learner has no gold standard training corpus
with which accuracy can be measured

• Instead: use information from the distribution
of unambiguous words

• Initially, each word in the training corpus is
tagged with all tags allowed for that word

• In later learning iterations, training set is
transformed as a result of applying previously
learned transformations

14

22/02/2002 27

Computation of the score of a
tranformation

• For each tag Z ∈ χ, Z≠Y, compute freq(Y)/freq(Z)*incontext(Z,C)
� freq(Y) = # occurences of words unambiguously tagged with Y;
� the same for freq(Z)
� incontext(Z,C) = # times a word unambig. tagged as Z occurs in C

• Let: R=argmaxzfreq(Y)/freq(Z)*incontext(Z,C)
• Then Change the tag of a word from χ to Y in context C is:

� Incontext(Y,C)-freq(y)/freq(R)*incontext(R,C)

• Computing the difference between the number of unambiguous
instances of tag Y in context C and the number of unambiguous
instances of the most likely tag R in context C, where R∈ χ, R≠Y.
Choose the transformation which maximizes this function.

22/02/2002 28

Evaluation results

• When tagset of a word not fully
disambiguated, choose randomly a
single tag

• Results (Training/Test)
�PennTB (120K wrds/200T wrds):

95.1%, 1,151 rules learned
�BrownTB (350T wrds /200T wrds):

96.0%, ~1,729 rules learned

15

22/02/2002 29

Final remarks

• Weakly supervised rule learning:
�Best score: 96.8% using 88,200 corpus

(better than supervised on same corpus)

• Further issues
�Rules can be converted into deterministic

FST: O(n), independent of # rules (cf.
Roche&Schabes, 1995)

�Get the source code for free

22/02/2002 30

Main Information Sources for
statistical POS Tagging

• Paradigmatic information - the distribution of tags
for the word in isolation: P(t|w)
�P(VBD|W=put) = 41145/ 41191 = 0.999
�P(NN|W=put) = 46/ 41191 = 0.001

• Syntagmatic information - look at the tags of other
words in the context of the word we are interestd
in
�a new play: AT JJ NN versus AT JJ VBP

16

22/02/2002 31

Statistical POS tagging

• We would like to have a statistical
model that would be able to take into
account both types of information in a
principled way
�Learn that information from some

annotated corpus (i.e., from examples,
observations)

�Keep the syntagmatic context as local as
possible

22/02/2002 32

Brief excursion:
probability theory (1)

• 0 ≤ P(A) ≤ 1

• P(A+B)= P(A) + P(B), if A & B are independent

• P(A+¬A) =P(A) + P(¬ A), ¬ A is the negation of A

• P(A) + P(¬ A) = 1

17

22/02/2002 33

Brief excursion:
probability theory (2)

• Let P(A)=k/N, P(B)=l/N,P(AB)=m/N

• Then P(B|A) = P(AB)/P(A) = m/k

• Chain rule:

• Bayes rule:

)...(

)...(
)...|(

11

11
11

−

−
− =

n

nn
nn

AAP

AAAP
AAAP

)(
)|()(

)|(
AP

BAPBP
ABP =

22/02/2002 34

Brief excursion:
probability theory (3)

• Maximum Likelihood Estimates

)...(

)...(
)...|(

)...(
)...(

11

1
11

1
1

−
− =

=

n

n
nnMLE

n
nMLE

WWC

WWC
WWWP

N

WWC
WWP

18

22/02/2002 35

N-Gram Model of Language
• Predict a word or properties of a word on the basis

of already observed sequences of words
Morgen gehe ich ins ... (Kino/Theater/...)
P(wn|w1,..., wn-1)

• Question:
�How many words should we look back?

• Markov assumption:
�Only a few is enough

• N-gram: consider a context of length (N-1)
�unigram (no context),
�bigram (previous word),
� trigram (last previous words)

22/02/2002 36

Markov Models
• A system

� which may be described at any time as being in one of N
distinct states

� At each discrete time step, the system undergoes a change
of state according to a set of probabilities associated with
the state

• Let Q = (q1, ...,qT) be a sequence of random
variables taking values in some finite set
S={s1,...,sN}. Markov properties:
�Limited horizont: a word’s tag only depends on the

previous word’s tag (order 1 Markov Model)
P(qt+1=sk| q1, ...,qt)= P(qt+1=sk| qt)

�Time invariant: tag probabilities don’t change over time

)|()|(:, 11 iktiktjtit sqsqPsqsqPkt =====∀ −++−

19

22/02/2002 37

Markov Model

ia

jia

sqsqPa

N

j
ij

ij

itjtij

∀=

∀≥

===

∑
=

+

,1

,,,0

),|(

1

1

Stochastic transition matrix: Markov model as
a probabilistic FSA:

N V

A

0.25

0.50

0.25

1),(
1

1 === ∑
=

N

i
iii sqP ππ

Probs for initial states:

1

1

22/02/2002 38

Hidden Markov Model

• Observation/Output is a probabilistic function; doubly
embedded stochastic process

1. Probability of observation (output sequence)
2. Probability of internal process (internal state

sequence), which are not observable (hidden);
Indirectly observable only through 1.

• Thus a HMM λ is characterized by a tripple
(A,B, π), with

1. A, a matrix of transition probabilities
2. B, a matrix of observation (emission) probabilities
3. π, a vector of initial probabilities

20

22/02/2002 39

Example HMM

In an HMM, any sequence of states can
generate any sequence of observations with
a given probability.





�

�

�
�
�

�

�

=
100

7.03.00

2.05.03.0

A




�

�

�
�
�

�

�

=
10

5.05.0

01

B




�

�

�
�
�

�

�

=
0

4.0

6.0
π

22/02/2002 40

Hidden Markov Models

• Prototypical tasks to which HMMs are
applied include the following. Given a
sequence of signals O = {o1, ..., on}:
�Determine the most probable state sequence

that can give rise to this signal sequence.
(Viterbi algorithm)

�Determine the set of model parameters λ = (A,B,
π), maximizing the probability of this signal
sequence. (Baum-Welch algorithm)

• Part-of-speech tagging is an example of the
first task and training an HMM is an
example of the second.

21

22/02/2002 41

HMM (cont.)

• Ergodic model: every state of an HMM is
connected with all other states

• HMM and POS
�Observable sequence: words
�Hidden sequence: part-of-speech

• Thus seen it is assumed that a string α was
generated from some hidden POS sequence;
therefore, the major goal is to determine
the most probable POS sequence which
could have generated α.

22/02/2002 42

Markov Models for POS
Tagging

• Given a string of words w1,n find a
sequence of tags t1,n that maximizes
P(t1,n|w1,n)

• Using Bayes Rule:

• We need to find t1,n that maximizes the
numerator

)(

)(*)|(
)|(

,1

,1,1,1
,1,1

n

nnn
nn wP

tPtwP
wtP =

22

22/02/2002 43

Example

le/art

le/pro

gros/adj

gros/noun

chat/noun

1. Pr(art|∅) . Pr(adj|art, ∅) . Pr(noun|adj, art) . Pr(le|art) . Pr(gros|adj) . Pr(chat|noun)

2. Pr(pro|∅) . Pr(adj|pro, ∅) . Pr(noun|adj, pro) . Pr(le|pro) . Pr(gros|adj) . Pr(chat|noun)

3. Pr(art|∅) . Pr(noun|art, ∅) . Pr(noun|noun, art) . Pr(le|art) . Pr(gros|noun) . Pr(chat|noun)

4. Pr(pro|∅) . Pr(noun|pro, ∅) . Pr(noun|noun, pro) . Pr(le|pro) . Pr(gros|noun) .

Pr(chat|noun)

22/02/2002 44

Two main independence
assumptions

• Words are independent of each other

)|(*...*)|(*)|()|(,1,12,11,1,1 nnnnnn twPtwPtwPtwP =

• The probability of a word depends only
on its tag (bigram tagging)

)|()|(,1 iini twPtwP =

23

22/02/2002 45

Probability model for P(t1,...,tn)

• Breakdown of joint probability:
P(t1,...,tn)=
P(tn|t1,...,tn-1)* P(tn-1|t1,...,tn-2)*...* P(t1)

• First order Markov Model:
P(tn|t1,...,tn-1)= P(tn|tn-1)

• Thus we get:
P(t1,...,tn)= P(tn|tn-1)* P(tn-1|tn-2)*...* P(t1)

• With a simple Markov model we need to find
the POS sequence P(t1,...,tn) that maximizes

∏
= −
n

i iiii ttPtwP
1 1)|(*)|(

22/02/2002 46

Two main questions

• How do we obtain (train) these probabilities?
�Calculate estimated probabilities based on

frequency counts from a corpus
�Smooth the estimated probabilities to avoid

anomalies due to data sparseness

• How do we efficiently find the sequence of the
tags that maximizes the joint product?
�Viterbi algorithm

24

22/02/2002 47

Maximum Likelihood Estimation

• Back to our simple example: Therepresentative put . . .
AT NN VBD/NN

• P(VBD|put,NN) = P(put|VBD)P(VBD|NN)
In the training data, we find 41,145 occurrences of put as a verb out of
7,305,323 verbs, soP(put|VBD) = 41145/7305323 = 0.0056

• And, out of 4,236,041 occurrences of the tag NN, the tag VBD comes
next 389,612 times:P(VBD|NN) = 389612/4236041= 0.092

• Combining
� P(VBD|put,NN) = 41145/7305323 × 389612/4236041 = 0.00052

� P(NN|put,NN) = 46/4236041 × 717415/4236041 = 0.0000018

22/02/2002 48

Smoothing of the Probabilities

• Data sparseness is always a problem when
estimating probabilities based on a corpus of data

• The „adding one'' smoothing technique: add a count
of one to all events, so that there are no zero
probabilities

BN

wC
wP n

n +
+

= 1)(
)(,1

,1

C: absolute frequency of x
N: number of training instances
B: number of different types

25

22/02/2002 49

Smoothing of the Probabilities

• Linear interpolation methods can compensate for data sparseness
with higher order models. A common method is interpolating
trigrams, bigrams and unigrams:

)|()|()()|(2,133122111,1 −−−− ++= iiiiiiii ttPttPtPttP λλλ

• Usually, the lambda values are automatically determined
using a variant of the Expectation Maximation algorithm.

∑ =≤≤
i ii 1,10 λλ

22/02/2002 50

Pseudo code for viterbi algorithm

• Incremental left-to-right search using dynamic programming
• δi(j) is the probability of the most likely sequence of tags that ends with

word i having the tag tj

• ψi+1(j) gives us the most likely tag at word i given that we are in state j at
word i+1

• Induction
� Find probability of most likely sequence that ends with word i+1 having tag j,

by considering all possible tags for previous word i:
δi+1(j) =max1≤k≤T[δi(k) *P(tj| tk)*P(wí+1| tj)]

� For specific tag tk that resulted in the above max, set: ψi+1(j)= tk

• Start with δ1(period)=1, δ1(t)=0 for all t ≠ period
• At the end find the tag t for which δn+1(t) is the greatest
• Reconstruct the most likely sequence of tags by backtracking:

X n+1=t, for i=n downto 1 do: Xi= ψi+1(X i+1)

26

22/02/2002 51

Core Idea of Viterbi Algorithm

k
aNk

N

1

2

3

4

1 2 t-1 t t+1 T-1 T

O1 O2 Ot-1 Ot Ot+1 OT+1 OT

a1k

time

state

observation

22/02/2002 52

Further Issues with Markov
Model Tagging

• Unknown words are a problem, since we don't have the
required probabilities. Possible solutions:
� assign the word probabilities based on corpus-wide

distributions of POS
� use morphological cues (capitalization, endings) to assign

a more calculated guess
• Using higher order Markov Models:

� using a trigram model for POS captures more context and
is thus potentially a better probability model

� However, data sparseness is much more of a problem
� The Viterbi search for trigrams is more complex

27

22/02/2002 53

TnT – Trigrams‘s Tags
• Efficient statistical part-of-speech tagger

developed by Thorsten Brants, ANLP-2000
�Stochastic models for English (Susanne corpus)

and German (Negra corpus)
�Performance:

between 30,000 and 60,000 tokens per second on
a Pentium 500 running Linux.

• TnT is a trainable tagger (you can use it
with your own annotated corpus)

• Home page
�http://www.coli.uni-sb.de/~thorsten/tnt/
�Online testing of TnT

22/02/2002 54

Example
Input Output Extended Output

Der ART | ART 1.000000e+00

Mandolinen-Club NN * | NN 1.000000e+00 *

Falkenstein NE * | NE 8.001280e-01 NN 1.998720e-01 *

und KON | KON 1.000000e+00

der ART | ART 1.000000e+00

Frauenchor NN * | NN 9.828203e-01 NE 1.717975e-02 *

aus APPR | APPR 1.000000e+00

dem ART | ART 1.000000e+00

sächsischen ADJA | ADJA 1.000000e+00

Königstein NN | NN 7.762892e-01 NE 2.237108e-01

gestalten VVINF | VVINF 1.000000e+00

die ART | ART 9.796126e-01 PRELS 1.443545e-02 PDS 5.951974e-03

Feier NN | NN 1.000000e+00

gemeinsam ADJD | ADJD 1.000000e+00

. $. | $. 1.000000e+00

28

22/02/2002 55

Accuracy

96,6%150,000MixedEnglishSusanne
Corpus

96,7%1,200,00NewspaperEnglishPennTB

96,7%350,000NewspaperGermanNEGRA
Corpus

AccuracySizeDomainLanguageCorpus

22/02/2002 56

Underlying Model

• Trigram modelling
� The probability of a POS only depends on its two

preceding POS
� The probability of a word appearing at a particular

position given that its POS occurs at that position is
independent of everything else

• Explicit consideration of punctuation through special tags
� t-1, t0 beginning of sentence
� tT+1 end of sentence

• Tagging is performed by a variant of the Viterbi algorithm
(using beam search)

)|()|(),|(1
1

21

...

maxarg
1

TT

T

i
iiiii

tt

ttPtwPtttP
T

+
=

−− 
�

�
�
�

� ∏

29

22/02/2002 57

Training
• Maximum likelihood estimates

)(

),(
)|(:

),(
),,(

),|(:

)(

),(
)|(:

)(
)(:

3

33
33

32

321
213

3

32
23

3
3

tc

twc
twPLexical

ttc

tttc
tttPTrigrams

tc

ttc
ttPBigrams

N

tc
tPUnigrams

=

=

=

=

• Smoothing: context-independent variant of linear
interpolation � all trigrams get the same λs

),|()|()(),|(213323231213 tttPttPtPtttP λλλ ++=

ˆ

ˆ

ˆ

ˆ

ˆ ˆ ˆ

22/02/2002 58

Smoothing algorithm
• Set λi=0
• Foreach trigram t1 t2 t3 with f(t1, t2, t3) > 0

� Depending on the max of the following three values:
� Case (f(t1, t2, t3)-1)/ f(t1, t2): incr λ3 by f(t1, t2, t3)

� Case (f(t2, t3)-1)/ f(t2): incr λ2 by f(t1, t2, t3)

� Case (f(t3)-1)/ N-1: incr λ1 by f(t1, t2, t3)

� End

• End
• Normalize λi

-1 means: taking unseen data into account

30

22/02/2002 59

Handling of unknown words

• Suffix analysis:
�The probability distribution for a particular

suffix is generated from all words in the
training set that share the same suffix

�Suffix here means „final sequence of characters
of a word“, which is not necessarily
linguistically meaningful

• Suffix length in TnT: use the longest suffix
that can be found in the training set (>1)

22/02/2002 60

Suffix estimation

• Calculate the probability of a tag t given the last i
letters l of an n letter word

),...,(

),...,,(
),...,|(ˆ

1

1
1

nin

nin
nin llc

lltc
lltP

+−

+−
+− =

),...,(

),...,,(
),...,|(ˆ

1

1
1

nin

nin
nin

llc

lltc
lltP

+−

+−
+− =

• Smoothing: successive abstraction through sequences
of increasingly more general contexts (i.e., omit more
and more characters of the suffix)

31

22/02/2002 61

Evaluation

" Evaluation using two corpora:

- NEGRA Corpus: Frankfurter Rundschau (German newspaper texts)

- Penn Treebank: Wall Street Journal

" Disjoint training and test parts, 10-fold cross-validation

" Tagging accuracy: percentage of correctly assigned tags when assigning

one tag to each token

" Tagging accuracy depending on the size of the training set

" Tagging accuracy depending on the existence of alternative tags

within some beam (reliable vs. unreliable assignments)

22/02/2002 62

Part-of-Speech Tagging with TnT: NEGRA Corpus
Overall

Known

Unknown

min = 78.1%
max = 96.7%

min = 95.7%
max = 97.7%

min = 61.2%
max = 89.0%

NEGRA corpus: 350,000 tokens newspaper text (Frankfurter Rundschau)
randomly selected training (variable size) and test parts (30,000 tokens)
10 iterations for each training size; training and test parts are disjoint
No other sources were used for training.

1 2 5 10 20 50 100 200 320
50

60

70

80

90

100

Training Size (x 1000)
Avg. % Unknown

Avg. Accuracy

46.4 41.4 36.0 30.7 23.0 18.3 14.3 11.950.8

32

22/02/2002 63

Part-of-Speech Tagging with TnT: Penn Treebank

Overall

Known

Unknown

min = 78.6%
max = 96.7%

min = 95.2%
max = 97.0%

min = 62.2%
max = 85.5%

Penn Treebank: 1,2 million tokens newspaper text (Wall Street Journal)
randomly selected training (variable size) and test parts (100,000 tokens)
10 iterations for each training size; training and test parts are disjoint.
No other sources were used for training.

1 2 5 10 20 50 100 200 500 1000
50

60

70

80

90

100

42.8 26.8 20.2 13.2 9.8 7.0 4.4 2.950.3
Training Size (x 1000)
Avg. % Unknown

Avg. Accuracy

33.4

22/02/2002 64

Additonal remarks

• Procedure of suffix handling is restricted to words
with a certain frequency threshold (< 10)

• Capitalization information
• Beam search variant of Viterbi algorithm

� Instead of considering all possible states during
one iteration, only consider states whose values
pass a certain predefined threshold θ

�But note: now, it is not guaranteed that path with
the highest probability is found

�Brants shows that setting θ appropriately doubles
performance speed without affecting the accuracy

