Web based Multilingual Question Answering

Günter Neumann

LT-lab, DFKI & Computational Linguistics Department, Saarland University
QA at DFKI’s LT lab: Core projects

¿QUETAL?
- Crosslingual open domain QA
- Information extraction based QA
- CLEF participation (2003-2008;
 Best results for DE-EN language pair)

HyLaP
 - Machine Learning for QA
 - Hybrid QA
 - QA for speech transcripts
 - Answer validation (best results at Clef)

QALL-ME
- Multilingual multimodal QA
- Service Oriented Architecture
- Recognizing Textual Entailment (RTE)
- RTE based QA

ConQA Saarland
 - Controlled Semantic Based QA
 - Ontology based Information Extraction
 - Answer Credibility Checking

We are now planning to embed our QA technology into larger context
Outline of talk

• Machine Learning for Web based QA
• QA and Information Extraction
• QA and Crosslinguality
• A note on Future QA
Machine Learning for Web-based QA

• Our interest:
 – Developing ML-based strategies for complete end-to-end question answering for different type of questions
 • Exact answers
 • Open-domain
 • Multilingual

• Our vision:
 – Complex QA system existing of a community of collaborative (smaller) ML-based QA-agents
 – QA as a basic functionality for larger systems, e.g., intelligent services, interactive Web, robots or androids
Machine Learning for Web-based QA

• QA at Trec and Clef evaluation forums have created reasonable amount of freely available corpora
 – Question-Answer pairs
 – Multilingual and different types of questions
 – Contextual information: sentences (mainly news articles)

• Enables
 – Training, evaluating ML algorithms and
 – Comparisons with other approaches.
Machine Learning for Web-based QA

• Our initial goals:
 – Extract **exact answers** for different types of questions **only from web snippets**
 – Use strong **data-driven** strategies

• Our current results:
 – ML-based strategies for **factoid**, **definition** and **list** questions
 – Mainly **unsupervised** statistical-based methods
 – **Language poor**: Stop-word lists and simplistic patterns as main language specific resources
 – Promising performance on Trec/Clef data (~ 0.55 MRR)

F: When was Madonna born?
D: What is Ubuntu?
L: What movies did James Dean appear in?
Machine Learning for Web-based QA

• Current SOA approaches:
 – Large corpora of full text documents (fetching problem)
 – Recognition of utterances by aligning surface patterns with sentences within full documents (selection problem)
 – Exploitation of additional external concept resources such as encyclopedias, dictionaries (wrapping problem)
 – Do not provide clusters of potential senses (disambiguation problem)

• Our idea:
 – Extract from Web Snippets only (avoid first three problems)
 – Unsupervised sense disambiguation for clustering (handle fourth problem)
 – Language independent, e.g., English, German, Spanish
Why Snippets only?

- Avoid downloading of full documents
- Snippets are automatically “anchored” around questions terms → Q-A proximity
- Considering N-best snippets → redundancy via implicit multi-document approach
- Via IR query formulation, search engines can be biased to favor snippets from specialized data providers (e.g., Wikipedia) → no specialized wrappers needed
Core components of our webQA approach

• Generic seed patterns
 – Automatic generation of web search queries
 – Automatic generation of answer extraction patterns

• Word-pair-distance statistics
 – Identification of statistical regularities for word sequences
 – Extraction of answer context for factoid questions

• Semantic kernels
 – Clustering for definition and list based questions
Example output: When was Madonna born?
Example Output: What is epilepsy?
Example Output: What is epilepsy?

• Our system’s answer in terms of clustered senses:

------------- Cluster STRANGE --------------
0<->In epilepsy, the normal pattern of neuronal activity becomes disturbed, causing strange...

------------- Cluster SEIZURES -------------
0<->Epilepsy, which is found in the Alaskan malamute, is the occurrence of repeated seizures.
1<->Epilepsy is a disorder characterized by recurring seizures, which are caused by electrical disturbances in the nerve cells in a section of the brain.
2<->Temporal lobe epilepsy is a form of epilepsy, a chronic neurological condition characterized by recurrent seizures.

------------- Cluster ORGANIZATION -----------
0<->The Epilepsy Foundation is a national, charitable organization, founded in 1968 as the Epilepsy Foundation of America.

------------- Cluster NERVOUS -------------
0<->Epilepsy is an ongoing disorder of the nervous system that produces sudden, intense bursts of electrical activity in the brain.
EXample output: Novels written by John Updike?

- Answers: [In the Beauty, Lilies, National Book Award, Poorhouse, Poorhouse Fair, Rabbit, Rabbit Angstrom, Rabbit At Rest, Rabbit Is Rich, Rabbit Redux, Rabbit Run, Roger, Terrorist, The Centaur, The Coup, The Poorhouse Fair, The Witches of Eastwick, Villages, YOUR SHOES TOO BIG TO KICKBOX GOD]

- ### The SALON Interview: John Updike. THE SALON INTERVIEW: JOHN UPDIKE "As close as you can get to the stars". ... novel "In the Beauty of the Lilies" -- a vigorous and expansive book that tracks four generations in a single American family -- as well as a career that has spanned some 40 books, including 17 novels ...

- ### John Updike, Writer.

- ### John Updike - Wikipedia, the free encyclopedia. is well known for his careful craftsmanship and prolific writing, having published 22 novels.

- ### CRITICAL MASS: Reviewing 101: John Updike's rules. ago, in the introduction to "Picked Up Pieces," his second collection of assorted prose, John Updike. Was there a particular reason for this to be written using only male examples, or are we being old.
Multilingual Web based QA: Overview

- Generation of Extraction patterns
- Definition Extraction
- List Extraction
- Genetic Algorithm
- Fact Extraction
- Answer Prediction
- QA-History

- Questions
- S-patterns
- Snippets
- Answer Context
- Snippets
- Snippets
- Definition context
- List context

- List-WQA
- Def-WQA
- GA-QA
- Fact-WQA

- An Enumeration
- Clusters of Senses
- Ranked Sequence of exact answers

Günter Neumann, LT-lab, DFKI
Multilingual Web based QA: Overview

- Questions
- Generation of Search Patterns
- S-patterns
- Generation of Extraction patterns
- Snippets
- Answer Prediction
- Fact Extraction
- GA-QA
- Fact-WQA
- Ranked Sequence of exact answers
- GA-QA
- Definition-WQA
- Clusters of Senses
- List-WQA
- List Extraction
- An Enumeration
- Answer Context
- QA-History
- Definition Extraction
- Definition context
- List context
- Generation of Extraction patterns
- Snippets

Günter Neumann, LT-lab, DFKI
Fact-WQA - Technology

• Consult only snippets
 – Submit NL question string (no query refinement, expansion, reformulation, …)

• Goal
 – Identify smallest possible phrases from snippets that contain exact answers (AP phrases)
 – Do not make use of any smoothing technology or pre-specified window sizes or length of phrases

• Answer extraction
 – Use only very trivial patterns for extracting exact answers from AP phrases
 – Only Wh-keywords, distinguish type of tokens, punctuation symbols for sentence splitting

The prime minister Tony Blair said that

http://amasci.com/tesla/radio.txt TESLA INVENTED RADIO? ... He invented modern radio, but made such serious business mistakes that the recognition (to say ...

Who → Person; When → Time
Factoid-WQA – Technical Details

• Snippet-Document:

\[D = \{ < \omega_i, \omega_j, \varepsilon, \text{freq} (\omega_i, \omega_j, \varepsilon) > \} \]

radio ** * Tesla; 3
Tesla * * radio; 6
Tesla * * * * * radio; 1

„The president of France went on Holidays yesterday“
„The president of France * on Holidays *“
„The president of France“, „on Holidays“

• QA-specific ranking of sentences

\[
M_{ij}(S_s) = \begin{cases}
\text{freq}(\omega_i, \omega_j, \varepsilon) & \text{if } i < j \\
\text{freq}(\omega_j, \omega_i, \varepsilon) & \text{if } j > i \\
0 & \text{otherwise}
\end{cases}
\]

\[
\text{rank}(S_S) = \lambda_{\max} (M(S_S))
\]

• Define: Sequences of pairs of words which occur with a high frequency in M (i.e., in a sentence) are *chains of related words* (AP phrases)

• Words with no strong relation with any other word in \(S_s \) are replaced with * → defines cutting points for sentences
\[D = \{ <\omega_i, \omega_j, \varepsilon, freq(\omega_i, \omega_j, \varepsilon)> \} \]

radio ** * Tesla; 3
Tesla * * radio; 6
Tesla * * * * * radio; 1

\[M_{ij}(S_s) = \begin{cases}
 freq(\omega_j, \omega_i, \varepsilon) & \text{if } i < j \\
 freq(\omega_i, \omega_j, \varepsilon) & \text{if } j > i \\
 0 & \text{otherwise}
\end{cases} \]

\[\text{rank}(S_s) = \lambda_{\text{max}}(M(S_s)) \]

- **Define**: Sequences of pairs of words which occur with a high frequency in M (i.e., in a sentence) are *chains of related words* (AP phrases)
- **Words with no strong relation with any other word in** \(S_s \) **are replaced with** *
 \(\rightarrow \) **defines cutting points for sentences**
Factoid-WQA – Experiments

• Pattern-based Answer extraction
 – Simplistic extraction patterns
 – Open-domain fact questions (889 from Clef 2004)
 – Answers from Web (DE,EN,ES,P)
 – 0.52 MRR

• Two types of answers:
 – Exact Answer:
 • Exact matching with the answer provided by CLEF.
 – Inexact Answer:
 • Are not exact answers, but they are very close answers:
 – WHERE: not only city name, country name is also correct.
 – WHO: variants like „G. Bush“, „George W. Bush“.
 – WHEN: „6 1945“, „1945“.

Lita&Carbonell:2004:
MRR=0.447
for 296 English temporal questions for exact answer matching in TREC data

<table>
<thead>
<tr>
<th>CA</th>
<th>Total MRR NAG(%) WAG(%) NAF(%) 1(%) 2(%) 3(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEN</td>
<td>218</td>
</tr>
<tr>
<td>WHERE</td>
<td>232</td>
</tr>
<tr>
<td>WHO</td>
<td>439</td>
</tr>
</tbody>
</table>
Multilingual Web based QA: Overview

- **Questions**
- **Generation of Search Patterns**
 - Generation of Extraction patterns
 - S-patterns
 - Snippets
 - Answer Prediction
 - Fact Extraction
- **Definition Extraction**
 - Definition context
- **List Extraction**
 - List context
 - List Enumeration
- **Genetic Algorithm**
 - QA-History
 - Ranked Sequence of exact answers
- **Fact Extraction**
 - Answer Context
- **Clusters of Senses**
 - Def-WQA
 - GA-QA
 - Fact-WQA
 - List-WQA
GA-QA - Technology

• Goal:
 – Manually encoding of patterns for answer extraction is at least difficult, because snippets do have “un-predictive structure”
 – Compute answer candidates AC via random search
 – Validate/adapt AC on basis of past results computed by Factoid-WQA (QA-store)

• Answer extraction
 – QA-history oriented alignment of context of answer candidates AC
 – Word-pair-distance statistics for A-type compatible elements from QA-store (left/right model)

• Genetic algorithm for:
 – Identification of AC
 – Stretching/shrinking of context and AC
 – Specific operations for crossover and mutation

• Figueroa & Neumann, Evolutionary Computing Journal, 2008

http://amasci.com/tesla/tradio.txt
TESLA INVENTED RADIO?
... He invented modern radio, but made such serious business mistakes that the recognition (to say ...
GA-QA – Experiments

- GA-based Answer extraction (GAQA)
 - Relation-open questions (Clef)
 - Relation-closed questions
 - E.g., X invented Y
- Baseline
 - Most frequent subsequences
 - TFIDF statistics

Performance of GA-QA relative to a baseline

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MRR</th>
<th>Total</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.376</td>
<td>403</td>
<td>137</td>
<td>92</td>
<td>78</td>
<td>42</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td>GAQA</td>
<td>0.497</td>
<td>401</td>
<td>242</td>
<td>78</td>
<td>38</td>
<td>31</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

MRR for individual corpora

<table>
<thead>
<tr>
<th>Corpus</th>
<th># Quest.</th>
<th>NAS</th>
<th>Baseline</th>
<th>GAQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEF-2004</td>
<td>75</td>
<td>24</td>
<td>0.309</td>
<td>0.387</td>
</tr>
<tr>
<td>Inventions</td>
<td>185</td>
<td>28</td>
<td>0.421</td>
<td>0.502</td>
</tr>
<tr>
<td>Presidents</td>
<td>89</td>
<td>1</td>
<td>0.524</td>
<td>0.571</td>
</tr>
<tr>
<td>Pr. Ministers</td>
<td>76</td>
<td>5</td>
<td>0.473</td>
<td>0.706</td>
</tr>
<tr>
<td>Composers</td>
<td>100</td>
<td>23</td>
<td>0.315</td>
<td>0.500</td>
</tr>
<tr>
<td>Locations</td>
<td>43</td>
<td>1</td>
<td>0.568</td>
<td>0.638</td>
</tr>
<tr>
<td>Dates</td>
<td>145</td>
<td>7</td>
<td>0.173</td>
<td>0.365</td>
</tr>
</tbody>
</table>
Multilingual Web based QA: Overview

- **Questions**
 - Generation of Search Patterns
 - Snippets
 - List context
 - List Extraction
 - An Enumeration

- **Snippets**
 - Definition Extraction
 - Clusters of Senses
 - Definition context
 - Def-WQA

- **S-patterns**
 - Generation of Extraction patterns
 - Snippets
 - GA-QA

- **Answer Prediction**
 - Snippets
 - GA-QA

- **Fact Extraction**
 - QA-History
 - Fact-WQA

- **Fact**
 - List-WQA

- **List**
 - An Enumeration

Günter Neumann, LT-lab, DFKI
ML for Definition Questions – Def-WQA

• Questions such as:
 – What is a prism?
 – Who is Ben Hur?
 – What is the BMZ?

• Answering consists in collecting as much descriptive information as possible (nuggets):
 – The distinction of relevant information
 – Multiple sources
 – Redundancy

• Def-WQA extracts descriptive sentences only from web snippets:
 – Avoid processing and downloading a wealth of documents.
 – Avoid specialized wrappers (for dictionaries and encyclopedias)
 – Extend the coverage by boosting the number of sources through simple surface patterns (also here: KB poor approach)
 – Due to the massive redundancy of web, chances of discriminating a paraphrase increase markedly.

Note: Our goal is on open domain question answering, i.e., no restrictions on the topic.
Surface patterns for definition candidates

• Some surface patterns
 1. X (is|are|was|were) (a|the|an) Y.
 – “Noam Chomsky is a writer and a critic…”
 2. X , or Y ↔ Y , or X.
 – “Myopia, or nearsightedness, can be ..”
 3. X (Y) ↔ X (Y).
 – “United Nations (UN)”
 4. X (become|became|becomes) Y.
 – “.... Althea Gibson became the first African American …

– We have manually defined a total of 8 patterns*

• For example, “What is the DFKI?”, then surface patterns:
 – “DFKI is a” OR “DFKI is an” OR “DFKI is the” OR “DFKI are a”...
 – “DFKI, or ”.
 – “(DFKI)”
 – “DFKI becomes” OR “DFKI become” OR “DFKI became”

• Some fetched sentences:
 – “DFKI is the German Research Center for Artificial Intelligence”.
 – “The DFKI is a young and dynamic research consortium”
 – “Our partner DFKI is an example of excellence in this field.”
 – “the DFKI, or Deutsches Forschungszentrum für Künstliche …”
 – “German Research Center for Artificial Intelligence (DFKI GmbH)”

Selecting and Clustering Definition Candidates

- Relaxed string matching for identifying possible paraphrases/mentionings of target in snippets
 - computes the ratio of common different words to all different words
 - J("The DFKI", "DFKI") = 0.5
 - J("Our partner DFKI", "DFKI") = 0.333
 - J("DFKI GmbH", "DFKI") = 0.5
 - J("His main field of work at DFKI", "DFKI") = 0.1428
- Avoids the need for additional specific syntax oriented patterns or chunk parsers
- LSA-based clustering into potential senses
 - Determine semantically similar words/substrings
 - Define different clusters/potential senses on basis of non-membership in sentences
- Ex: What is Question Answering?
 - SEARCHING: Question Answering is a computer-based activity that involves searching large quantities of text and understanding both questions and textual passages to the degree necessary to.
 - INFORMATION: Question-answering is the well-known application that goes one step further than document retrieval and provides the specific information asked for in a natural language question.
Def-WQA: Results

<table>
<thead>
<tr>
<th>Corpus</th>
<th># Questions</th>
<th># Answered Def-WQA/Baseline</th>
<th># nuggets Def-WQA/Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC 2003</td>
<td>50</td>
<td>50/38</td>
<td>14.14/7.7</td>
</tr>
<tr>
<td>CLEF 2006</td>
<td>152</td>
<td>136/102</td>
<td>13.13/5.43</td>
</tr>
<tr>
<td>CLEF 2005</td>
<td>185</td>
<td>173/160</td>
<td>13.86/11.08</td>
</tr>
<tr>
<td>TREC 2001</td>
<td>133</td>
<td>133/81</td>
<td>18.98/7.35</td>
</tr>
<tr>
<td>CLEF 2004</td>
<td>86</td>
<td>78/67</td>
<td>13.91/5.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corpus</th>
<th>F-score (β=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trec 2003</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Trec 2003 best systems (on newspaper articles): 0.5 – 0.56

Notes:
- we prefer sentences instead of nuggets (readability)
- we need no predefined window size for nuggets (~ 125 characters)
- Still open: Merging of clusters (external knowledge sources needed !?)
Multilingual Web based QA: Overview

- Questions
- Generation of Search Patterns
- S-patterns
- Generation of Extraction patterns
- List context
- List Extraction
- An Enumeration
- List-WQA
- Definition context
- Definition Extraction
- Clusters of Senses
- Def-WQA
- Genetic Algorithm
- Snippets
- GA-QA
- Fact Extraction
- Ranked Sequence of exact answers
- Fact-WQA
- QA-History
- Answer Prediction
- Answer Context
- Snippets
- Snippets
- Snippets
- Snippets

Günter Neumann, LT-lab, DFKI
Problem Formulation

• List:
 – “What are 9 works written by Judith Wright?”
 – “What are works written by Judith Wright?”
 – “List states in Australia”.
 • New South Wales, Queensland, South Australia, Tasmania, Victoria and Western Australia.
 – “Wiggle’s songs”.

• Works, states and songs are called foci.
 – Not necessarily only plural nouns (NNS).
 – The most descriptive NP of the expected answer type: “breeds of dog”, “types of clams”.

• Note:
 – Our aim is an open-domain Question Answering System.
Related Work

• Currently, research:
 – It is aimed at the AQUAINT corpus.
 • Makes use of Wikipedia, answers.com, etc.
 • Full documents selected by clustering web snippets.
 • Discovered answer candidates are filtered out by projecting them into the AQUAINT corpus afterwards.

• Some important findings:
 – Answers are conveyed in lists or tables within full documents.
 – List of answers are likely to be in web-pages which contain a noun phrase of the query in the title:
 • Australia - Wikipedia, the free encyclopedia
 • Australia - World Photo Tour
 • Australia
Related Work

- Often, answers are expressed by means of lexicosyntactic patterns:
 - Judith Wright was the author of several most illuminating collections of poetry, including The Moving Image, Woman to Man, The Gateway, The Two Fires, Birds, The Other Half, and Shadow.

- Large span of text between query terms and these patterns.
- These patterns are a bridge that links this task to the automatic acquisition of hyponyms-hypernym.
- Semantically close related foci: poetry and works.
List-WQA – Overview

“What are 9 works written by Judith Wright?”

Search Query construction

Qfocus → inbody
NPs → intitle
Apply 4 patterns Qi

Q1: (intitle:“Judith Wright”) AND
(inbody:“works” OR inbody:“written”)

Max 80 snippets:
Most of Wright’s poetry was written in the mountains of southern Queensland. ...
Several of her early works such as ‘Bullocky’ and ‘Woman to Man’ became standard ...

Answer Candidate extraction

Apply 8 patterns πi (hyponym, possessive, copula, quoting, etc.)

π4: entity is \w+ qfocus \w*

Chubby Hubby is Ben and Jerry’s ice cream brand.

Answer Candidate selection

Use Semantic kernel & Google N-grams

List-WQA: Results

- **Answer Selection:**
 - Two values
 - All questions
 - Only questions where at least one answer was found in the fetched snippets.
 - Duplicate answers have also an impact on the performance. For instance:
 - “Maybelline” (also found as “Maybeline” and “Maybeline”).
 - John Updike’s novel “The Poorhouse Fair” was also found as “Poorhouse Fair”.

<table>
<thead>
<tr>
<th>Systems \ Trec</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListWebQA(F_1)</td>
<td>0.35/0.46</td>
<td>0.34/0.37</td>
<td>0.22/0.28</td>
<td>0.30/0.40</td>
</tr>
<tr>
<td>ListWebQA(Acc)</td>
<td>0.5/0.65</td>
<td>0.58/0.63</td>
<td>0.43/0.55</td>
<td>0.47/0.58</td>
</tr>
<tr>
<td>Top one(Acc.)</td>
<td>0.76</td>
<td>0.65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Top two(Acc.)</td>
<td>0.45</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Top three(Acc.)</td>
<td>0.34</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Top one(F_1)</td>
<td>-</td>
<td>-</td>
<td>0.396</td>
<td>0.622</td>
</tr>
<tr>
<td>Top two(F_1)</td>
<td>-</td>
<td>-</td>
<td>0.319</td>
<td>0.486</td>
</tr>
<tr>
<td>Top three(F_1)</td>
<td>-</td>
<td>-</td>
<td>0.134</td>
<td>0.258</td>
</tr>
<tr>
<td>Yang & Chua 04 (F_1)</td>
<td>-</td>
<td>-</td>
<td>.464</td>
<td>~.469</td>
</tr>
</tbody>
</table>

We conclude:
Encouraging results, competes well with 2nd best; Still creates too much noise;
Summing up: Machine Learning based Web-QA

• Achievements
 – End-to-end ML QA learners for specific question types
 – Open-domain
 – Multilingual

• Next goals:
 – QA based Interactive information extraction
 – Crossing language barrier
Outlook: Web QA and Information Extraction

- **WebQA:**
 - Combining generic lexico-syntactic patterns with unsupervised answer extraction from Snippets only
 - Language independent and multilingual
 - Our approach has a close relationship to the new approach of unsupervised IE, e.g., Etzioni et al., Weikum et al., Rosenfeld & Feldman

- **Information extraction**
 - WebQA as a generic tool for web-based bottom-up knowledge extraction and ontology population
 - Ontology-based clustering for unsupervised information extraction
 - Use ontology for automatic generating QA requests -> ontology-driven active QA
 - Use web QA for populating and extending ontology
 - Interactive dynamic information extraction, cf. Eichler et al. 2008
Outlook: Crosslingual Question Answering

• Challenges
 – Find answers in documents written in language x for question of language Y
 – Merge answer candidates extracted from documents of different languages

• Our approach
 – Use Online Machine Translation services as core translation component
 – Combine it with QA specific components
 – Currently, focus is on question side
Crosslingual strategies

• After Method: DE-EN
 – Translation of NL question after parsing (on source language)
 – Only newspaper corpus in Clef 2004/2005 (23.5%/25.5% we achieved best results)
 – + Wikipedia Clef 2007/2008 (14.00% (2nd))
• Before Method: EN-DE
 – Translation of NL question before parsing (on target language)
 – Only newspaper corpus in Clef 2006 (32.8% (we achieved 1st))
 – + Wikipedia in Clef2007/Clef 2008 (18.5%/14.5% (we achieved 1st))
• Next plans:
 – Adapt and integrate with web QA
Cross-lingual QA strategies

Before Method EN-DE

• Question translation
• Translations processing -> QObjects
• QObject selection

After Method DE-EN

• Question processing -> QObject
• Question translation + alignment
• QObject alignment

Diagram:
- EN
 - External MT services
 - SMES Wh-parser
 - Answer Proc
 - Confidence Selection
 - Best QO
- DE
 - Q1, Q2, Q3
 - Online MT
 - Query Parsing
 - Language Model Via pCFG
 - Alignment of QO & NE
 - Expansion, WSD
 - German QO
 - English QO
The final slide: Future QA

Interactive QA
- Discourse modeling
- Restricted dialog
- High-speed QA

Collaborative QA
- Shared QA-store
- Personal QA-store
- QA server
- QA clients
- QA grid

Proactive QA
- Embedded QA
- Situation-aware
- Multi-sensoric QA
- Self-initiative QA
- From passive perspective to active perspective of HCI

Günter Neumann, LT-lab, DFKI
Relevant references

Alejandro Figueroa, Günter Neumann, and John Atkinson
Searching for Definitional Answers on the Web using Surface Patterns
IEEE Computer volume 42 number 4, Pages 68-76, IEEE, 4/2009

Alejandro Figueroa and Günter Neumann
Genetic Algorithms for data-driven Web Question Answering. (Draft version)

Kathrin Eichler, Holmer Hemsen, Markus Löckelt, Günter Neumann, and Norbert Reithinger
Interactive Dynamic Information Extraction

Günter Neumann
Strategien zur Webbasierten Multilingualen Fragebeantwortung - Wie Suchmaschinen zu Antwortmaschinen werden.

Günter Neumann and Bogdan Sacaleanu
Experiments on Cross-Linguality and Question-type driven Strategy Selection for Open-Domain Question Answering.