Centrally Managed System Infrastructure and
Integration in ComIC

Peter Poller

German Research Center for Artificial Intelligence (DFKI GmbH),
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany

Abstract. The following article reports on centrally managed integra-
tion of distributedly developed software components into the multi-modal
dialog system CoMiIc. First, the technical issue of selecting and providing
an appropriate inter-modular communication infrastructure is briefly il-
lustrated. Second, the organization of the integration of middleware com-
pliant software components into a fully functional multi-modal dialog
system is recapitulated and described in detail. Finally, the experiences
gained and the results of these procedures are compiled into a list of the
most important aspects for further disposition in other contexts.

1 Introduction

In the last 7 years, DFKI played a central role in three large-scale projects focus-
ing on different aspects of multi-modal dialogue systems: SMARTKoM! (09/1999
-09/2003), Comic? (03/2002 - 02/2005), and TALK® (01/2004 - 12/2006). In this
paper, we report on conclusions and recommendations drawn from experiences
and observations on centrally managed infrastructure and the four system inte-
gration cycles in the CoMIC project. First, we give an introduction of the Comic
demonstrator. Then, we concentrate on the essentials needed to implement the
system, i.e, communication infrastructure and system integration. Finally, we
present the results, recommendations, and conclusions resulting from of such a
complex implementation and integration task.

2 The ComMiIC System

CoMiIcC was a three years R&D project concentrating on research and implemen-
tation of speech centric multi-modal conversational systems within a consortium
of six different research institutes from three countries and one small SME. The
final CoMIC demonstrator is a multi-modal dialog system that helps the users
to design their new bathroom within a natural dialog around a bathroom design
application. The system comprises 15 independent software components (also

! SmArRTKOM was funded by the German Federal Ministry for Education, Science,
Research and Technology (BMBF) under grant 01 IL 905 A5.

% Comic was funded by the European Union in FP5 under grant IST-2001-32311.

3 TALK is also funded by the European Union in FP6 under grant IST-2003-507802.



referred to as modules) that communicate over 34 different inter-modular com-
munication channels (sc. data pools). Figure 1 shows a screenshot of the Comic
control GUI in which each module is reflected as a blue button while their in-
terfaces are represented by the white lines in a simplified fashion. It is a multi-
functional tool for (i) visualization and demonstration purposes, (ii) comfortable
system configuration and start-up, and (iii) module control and resetting.

CoMIC runs in a distributed fashion on two Linux PCs and one Windows PC
with one output screen each. The interaction with the system (see figure 2) is a
speech centered multi-modal dialogue in terms of a conversation with the face
— an animated agent consisting of a face that performs lip-synchronous mouth
movements and mimics running under Linux — complemented by simultaneous
pen drawings and gestures on the graphical output presentations of the ViSoft*
application on a tablet Windows screen. The control GUI runs on an auxiliary
screen for supervising purposes only.

Fig. 1. ComIC control GUI Fig. 2. User interaction in CoMIC

3 Infrastructure

The functional system architecture of CoMIC is based on a traditional modu-
larization into distinct and independent software components for multi-modal
dialog systems comprising, e.g, device control, recognition, analysis, generation,
synthesis, and the ViSoft application. The first technical implementation task
was the provision of an optimally suitable inter-modular communication infra-
structure. The spectrum of candidates ranged from basic interfaces following a
client-server paradigm to higher-level abstracting communication frameworks.
Due to the modularized software division, we decided at a very early stage to
use a suitable higher-level middleware architecture framework in order to benefit

* The ViSoft tool (http://www.visoft.de) comprises large databases of tiles and sani-
tary ware from manufacturers to choose from and generates dimensionally accurate,
photo-realistic 3D views of respectively equipped bathrooms.



from its advantages: (i) efficient inter-process communication infrastructure on
an abstract higher-level communication model (including a well-defined mod-
ule API), and (ii) useful tools that support system development and handling,
including utilities for debugging, configuring, integration, and testing purposes.

The remainder of the paper focuses on our specific experiences with MULTI-
PLATFORM in the COMIC project, but these are currently exploited for the Open
Agent Architecture [5, 2] in the TALK project and should be transferable further
to other projects with comparable implementation tasks as well.

3.1 Selection of a Middleware Architecture

The selection of a middleware infrastructure is a crucial step because it’s impos-
sible to revise it later on in the course of the project. In CoMIC we took 4 month
of preparation conducting the following 4 steps:

1. Extensive compilation of a detailed hardware and software overview of all
existing and planned system components.

2. Appraisal of appropriate infrastructure platforms or frameworks.

. Estimation of the effort to provide a project specific platform variant.

4. Comparison and decision.

w

The module specific features and requirements of each project partner and
each software component were collected by means of a corresponding question-
naire. These questionnaires brought to light that the first CoMiCc demonstrator
will be a distributed system running on the two operating systems Linux and
Windows, initially comprising 9 software components programmed in three dif-
ferent programming languages. Realistically, the number of components cannot
be considered fixed for the rest of the project. In CoMicC it grew from 9 up
to 15. Obviously, growing functionalities naturally require additional software
components. Altogether, the mandatory infrastructure requirements were:

— Flexibility concerning the number and the contents of inter-modular com-
munication channels as well as the number of modules at all.

— Module APIs for C, C++, and Java.

— Distributed processing with bi-directional communications on several ma-
chines under Linux and Windows.

— Flexible configurability, i.e., operability in arbitrary module combinations.

— Supporting tools and utilities.

To match these constraints, we shortlisted the Open Agent Architecture
(OAA) [5, 2], the Galaxy Communicator [1], and MULTIPLATFORM |3, 4]. Apart
from the differing communication models, our attention concentrated on the
following practically relevant parameters and constraints which may be easily
transferable to other projects in similar situations:

— Technical acceptability concerning performance, flexibility, stability, and con-
figurability.



— Availability of tools and utilities for debugging, installation, starting up,
monitoring, logging, log-data filtering, and testing.

— Declarativity as far as possible for, e.g., specification of communication chan-
nels and individual system configurations.

— Extent and Completeness of the documentation (module API, system han-
dling, tools).

— Availability of the platform beyond the end of project.

— Experience at project partners.

Minimal effort to provide a project specific platform (if necessary at all).

— Availability of source code for rapid bug fixing (optional).

Disposability of support, e.g., from platform owner or via active mailing lists

(optional).

Based on a comparison according to the criteria above, the project part-
ners voted for MULTIPLATFORM as the best suitable framework. Nevertheless,
the preparation of a project specific variant of MULTIPLATFORM took extra, but
well invested efforts, e.g., as it provided project specific middleware tools like the
control GUI (see figure 1 above) for visualization and control purposes. Further-
more, these extra efforts were more than equated by the benefits from DFKI’s
practical (positive and negative) experiences in SMARTKOM:

— Reuse of an easily adaptable module developer tutorial.

— Well founded module developer guidelines containing directives about
e Module packaging
e Directory organization (for the overall system and the modules)
e Module versioning.

— Central version specifications for operating systems and programming lan-
guages.

— Data producers are strictly responsible for content and maintenance of their
output data format (SMARTKOM: High effort for central data format super-
vision).

— Practical organization and management of system implementation and inte-
gration described in the following sections.

4 Integration

In CoMicC we integrated four continously improved demonstrator systems. These
integration cycles were conducted in line with the following general principles:

— Data and modules are exchanged by means of a central ftp-server.

— All modules must be centrally approved and released by the integration
manager before distribution in the consortium.

— Every partner must have the whole system installed.

— Every partner must regularly update its system according to module releases.

The integration manager supervises the (technical) correctness of the mod-

ules and manages their updating.



4.1 Management Tools for Monitoring

An important part of centrally managed system integration is the monitoring of
the respective state of affairs. In CoMic, we distinguished right from the start
between two aspects of the integration: (i) technical, and (ii) functional. Techni-
cal matters exclusively concern MULTIPLATFORM compliance aspects, e.g., the
logon procedure or the purely technical capability to correctly handle incoming
messages while functional matters are aspects of the contents, e.g., the correct
I/O-behavior with respect to the communicated data, or the correct functional-
ity of a module or the overall system. Consequently, we used different tools for
monitoring technical and functional aspects during an integration.

For technical matters we developed a special table, the sc. integration matriz
in which every module was assigned to a line. The overall technical state of a
module was signaled by colored lines in the traffic light colors red, yellow, and
green while the details of wrong or missing features were described in dedicated
table columns. System releases were conducted by means of the announcement
of an updated integration matrix within the whole consortium.

For functional matters, we used several bug tracking procedures. We started
with a central management by the integration manager for module and system
functionality aspects and appropriate bug assignments via E-mails. The intention
to exceptionally manage all aspects of the first integration centrally was to guide
once the whole consortium through a complete integration. Later on, we followed
different concepts of distributing the functional responsibility within the whole
consortium which are described in more detail in section 4.4.

Generally speaking, we tried to balance the often observed “trade-off” be-
tween (i) providing insufficient information which could slow down partner ac-
tivities due to lacking information, and (ii) providing a constant stream of poten-
tially bothering information which could have the same effect when important
information is read over. Therefore, we decided for a mix, i.e., central monitoring
of the technical integration and dynamically emerging functional monitoring.

4.2 Initial Integration

The very first system integration is singled out here as it naturally required more
effort within the consortium than the following integration cycles. First of all,
every partner must have successfully installed the middleware packages. Second,
every partner must be capable of providing middleware-compliant software com-
ponents consistent with the predefined module developer guidelines. Third, due
to the lack of some of the components we must rely partly on manually edited
example data to simulate inter-modular communication.

According to a previously approved time plan, the integration started with
the delivery of the appropriate MULTIPLATFORM testbeds for the two operating
systems. Every partner was obliged to properly install them. Then we intercon-
nected a “dummy module integration” with the aim to make sure that every
partner is capable to correctly implement and deliver a technically correct but
functionally empty MULTIPLATFORM compliant component,.



The real integration itself was organized as a stepwise delivery procedure on
a weekly base for the individual modules that was distributed over 5 weeks. We
organized the order of deliveries according to the processing within the system,
i.e., we started at the input modules and ended at the output modules. The
planned functionality of the overall system was clearly specified in advance by
means of detailed example dialogs (including realistic interface data for the re-
spective communication channels). The tasks of the integration manager were (i)
the technical supervision of the modules and their interactions, (ii) the release of
modules and system updates for the whole consortium, and (iii) manual testing
of predefined example data. Finally, he supervised the overall system function-
ality by intensive testing and assignment of responsibilities for identified bugs.

4.3 System and Module Testing

As indicated above, appropriate testing procedures of various system aspects
is an important task. Again, we distinguish between technical and functional
testing. In addition to that, there is an orthogonal distinction between module-
oriented and system-oriented testing.

Module-oriented and system-oriented technical testing was centrally con-
ducted by the integration manager. The technical approval of a module con-
sisted of a manual check of compliance with the predefined module developer
guidelines.

Functional module-oriented testing was of course assigned to the module
developers themselves. Naturally, it should be obvious that a module can only be
delivered if it has the expected functionality and this functionality had explicitely
been verified by the module developer before delivery.

Finally, functional system-oriented testing requires by far the most effort
because local testing does not reveal all remaining bugs. As mentioned before,
for the first integration this task was also assigned to the integration manager.
In the following integration cycles it was distributed within the consortium in
several ways as described in the following section.

4.4 Follow-Up Integration Cycles

In the following three integration cycles we sightly modified the integration pro-
cedures in order to improve them based on the experiences with the preceeding
integration cycles and the growing expertise within the consortium.

For the functional specification of the demonstrators we continously followed
the concept of extensively specified example dialogs. Technical integration is-
sues were clearly distinguished from functional ones. In all integration cycles
we followed the concept of announcing integration matrices to regularly reflect
the latest technical state of the modules. Concerning time plans, the stepwise
integration on a weekly base was retained from the initial integration.

For the second demonstrator, we followed the functional integration concept
named “turn of the week” which we had successfully used in SMARTKOM. A



specific turn was taken from one of the example dialogs and proclaimed as the
implementation goal for one week with the aim to achieve the complete pro-
cessing of this turn starting from the user input until the corresponding system
output within that week. In CoMmic, the concept “turn of the week” turned out
to be impractical. At the beginning of the second integration it was too ambi-
tious to realize one system turn per week while at the end of that integration
— in the course of increasing system capabilities — the realization of one system
turn got a one day task.

At the same time, a new testing tool, the sc. autoTester, was implemented to
semi-automatically perform functionally relevant testsuites based on the process-
ing of previously stored syntactically correct example data of different kinds of
test sets containing perfect as well as realistic data with respect to speech recog-
nition quality. The auto Tester captures the resulting data sets of selected other
interfaces and puts them into an appropriate format. This way, every partner
using the auto Tester automatically worked with the same testsuites.

Consequently, for the third demonstrator, we intensified the distribution of
the testing responsibility within the consortium by taking turns between part-
ners on a weekly base. Thereby we achieved collaborative distributed testing,
debugging and immediate bug fixing in front the running system. Bugs and
errors were immediately published by E-mail within the consortium while the
corresponding log-data for reproducing a bug were put on the central ftp server
due to the huge amount of data (10 minutes of system interaction produce up
to 100 MB of log-data). Every partner was obliged to provide a new bug report
at takeover and at the end of the respective week. A side effect of this proce-
dure was that it automatically forced every partner to regularly update its local
system installation (at least when responsible for testing or when a bug was as-
signed) in order to be able to recapitulate the published bugs at its local system
installation.

For the final integration we were even able to overlap the time plans for in-
tegration and system testing because the final demonstrator was an improved
version of the third demonstrator. Again, we followed the concept of distribut-
ing the testing responsibility within the consortium. Our distribution strategy
followed the approach to make that partner responsible for testing who had just
delivered a module or who was about to deliver a module.

All but the first integration was finished by a common fine-tuning meeting
with all module developers in the same room for one or two days which signifi-
cantly accelerated progress once more.

5 Conclusion and Recommendations

All in all the integration efforts for the four demonstrator (numbers for the
individual demonstrators in parentheses)

— Module deliveries: 434 (74, 160, 100, 100)
— Integration matrices: 115 (24, 50, 30, 11)



— System tests: 1700 (300, 600, 400, 600)
— E-mails: 4400 (600, 2000, 800, 1000)
— Conversations: 310 (80, 150, 80, 100)

These numbers show a few interesting trends. First, the effort for the ini-
tial integration was relatively moderate because we interconnected the “dummy
module integration” whose efforts are not included above and the system func-
tionality was very restricted compared to the following demonstrators. Beginning
with the second integration there is obviously a trend to increasing integration ef-
ficiency according to the growing expertise within the consortium. Interestingly,
this affects the number of module deliveries only while the increasing complexity
of the demonstrators come along with equally growing needs for testing. So, in
the end it turns out that the integration management effort was not for nothing,
it pays off.

We conclude with a list of the most important aspects that should be carefully
considered in any comparable situation.

— Well founded selection of the infrastructure middleware.

— Awareness of the special role of the initial integration.

— Careful reviewing of the planned monitoring tools and aspects.
— Well elaborated realistic integration time plans.

— Previously agreed-on releasing procedures.

— Intensive testing plans including their supervising.

6 Acknowledgments

Many thanks go to my colleagues Tilman Becker and Gerd Herzog for proof-
reading and their valuable comments and suggestions on earlier versions. The
responsibility for the content lies with the author.

References

1. Galaxy Communicator Web Page, 2002. http://communicator.sourceforge.net.

2. Adam Cheyer and David Martin. The open agent architecture. Journal of Au-
tonomous Agents and Multi-Agent Systems, 4(1):143-148, March 2001. OAA.

3. G. Herzog, H. Kirchmann, S. Merten, A. Ndiaye, P. Poller, and T. Becker. MUL-
TIPLATFORM Testbed: An Integration Platform for Multimodal Dialog Systems.
In Proceedings of the HLT-NAACLQ8 Workshop on The Software Engineering and
Architecture of Language Technology Systems (SEALTS), Edmonton, Canada, 2003.

4. G. Herzog, H. Kirchmann, S. Merten, A. Ndiaye, P. Poller, and T. Becker. Large-
scale software integration for spoken language and multimodal dialog systems. In
Special issue on ”Software Architecture for Language Engineering” of the Journal
of Natural Language Engineering, volume 10-3/4, pages 283-305, 2004.

5. David L. Martin, Adam J. Cheyer, and Douglas B. Moran. The open agent archi-
tecture: A framework for building distributed software systems. Applied Artificial
Intelligence, 13(1-2):91-128, January-March 1999. OAA.

This article was processed using the IXTgX macro package with LLNCS style



