DAIMLERCHRYSLER

State-of-the-art in Multimedia Databases

Recent commercial software developments in terms of support for MM applications and limitations.

Daniel Sonntag RIC/AM

DBA- Tagung Stuttgart 22.3.2004

2

MM Databases: Introduction

- Multimedia databases have to store numeric, image, video, audio, text, graphical, temporal, relational and categorical data.
- Attention in many application areas:
 - Medical information systems
 - Geographic information systems
 - E-commerce
 - Digital libraries
- We will draw attention on special purpose database files within the DC corporate group with regard to data mining Daniel Antiel Mathematical Sectors

Overview

- Discussion of commercial multimedia databases:
 - historical development
 - current architecture
 - interfaces and plans for further developments for MM data
 - general requirements for object-relational data management

Evaluation:

- highlight pros and cons of IBM DB2 V8, Oracle 9i, SQL Server 2000, Informix V7.
- Comparisons based on theoretical and practical aspects, concludes with case study

Overview

- Challenges for state-of-the-art multimedia database implementations
 - open problems
 - special requirements for special data types
- Potentials of MM databases within DCX
 - proposed system architecture
 - recommendations on the project management

Historical development

- Mid '80: Increasing popularity of OO programming languages (e.g. C++, Smalltalk, Java (later)).
- Begin '90: First prototypes of OO databases have come in the limelight.
- Mid '90: Vendors of *R* databases have responded to the new OO database products by creating hybrid products incorporating relational and OO functionality.
- 1997: The *OR* versions of Informix, Oracle, and DB2 followed.
- Future:
 - Object-oriented vendors will establish a powerful position in market.
 - Object-relational, too? (technical limitations and compromises)

Multimedia standards

- Object-relational standards SQL99/SQL-3 (Database Lang):
 - object types
 - ORDBMS model(creating, managing, querying persist. O structures)
- Multimedia standards:
 - SQL/MM (SC32/WG4 SQL Multimedia and Application Packages)
 - SQL/MM Full Text (operators: contains, in_s_s_as, stem)
 - SQL/MM Still Image (operators: format conv., scaling)
 - SQLJ (Embedding of SQL in Java programs, store Java methods in DB)

Daniel Content for audio, video, image)

Current architecture vs. ORDM requirements: Basic types

Basic type	SQL99	D B 2	Oracle	SQL- Server	Inform ix
BOOLEAN	•	-	-	-	•
SMALLINT	•	•	•	• ¹	•
INTEGER	•	•	•	•	•
BIGINT	(SQL3)	•	NUMBER	•	INT8
DECIMAL	•	•	•	-	•
NUMERIC	•	•	•	•	•
FLOAT	•	•	•	•	•
REAL	•	•	•	•	•
DOUBLE PRECISION	•	DOUBLE	•	-	•
CHAR	•	•	•	•	•
VARCHAR	•	•	•	•	•
CLOB	•	•	•	-	•
BLOB	•	•	•	•	•
BIT	-	-	-	-	-
BIT VARYING	-	-	-	-	-
DATE	•	•	•	-	•
TIME	-	•	-	-	-
TIMESTAMP	•	•	•	DATETIME	DATETIME
INTERVAL	•	-	•	-	•
XML	(SQL3)	XMLCLOB	XMLTYPE	•	-

Current architecture vs. ORDM requirements: Complete Data Model

Object-Relational Data Model	DB2	Oracle	SQL- Server	Informix
New additional basis data types for new application	•	•	•	•
domains				
Copies of basic data types with new type names	•	•	•	•
Data types for external data.	•	•	-	•
Basic types variants (i.e. structured types)	•	•	-	_1
Collection types (List, Set, Multiset)		•2	-	• ³
Reference types that objects can be referenced		•	-	-
Type hierarchies of objects		•	-	-
Type hierarchies of tables		-	-	•
Typed tables for typing complete data entries.		•	_	•
User defined routines (functions) (UDR(F)) that can be		•	٠	•
registered in the DBMS and be used as operators for data				
types.				

■ Structured type example:

CREATE TYPE employee AS

(name CHAR(40),

base_salary DECIMAL(9,2))

METHOD getSalary() RETURNS DECIMAL(9,2)

- different kinds like paintings, drawings, photographic pics, satellite images, architectural, facial ...
- digital file formats like WAV, AU, GIF, JPG, MPEG with different compression and quality rates.

Unstructured Text Data

- string of arbitrary size, in linguistic terms containing words, sentences, paragraphs as logical units
- in DB own internal representation format, converted from RTF, PDF, PS ...

- DB2 multimedia technology (Extenders)
 - DB2 Text Extender (Text Information Extender, Net Search Extender)
 - Text search functions integrated into SQL
 - Incremental and asynchronous full-text index update
 - Supports char data types, UDFs, LOBs, and external files
 - Linguistic indexing/search for 22 languages
 - Boolean, wildcard, free-text and fuzzy search

- DB2 multimedia technology (Extenders)
 - DB2 Image Extender
 - maintains image attributes such as size in bytes, format, height, width and number of colors
 - adds CBR to SQL queries, color, texture, shape patterns as search criteria (18 UDFs)
 - format conversion, scaling, rotating, b/w image inversion, ...

- Oracle multimedia technology (Cartridges)
 - Text Data Cartridge
 - functionality similar to DB2
 - support for over 160 different text file formats
 - ASCII, HTML, XML ...
 - Microsoft formats RTF, Word, PowerPoint, Access ...
 - PDF, WordPerfect, Lotus 1-2-3, MacWrite, dBase

Select p_id, p_name from p_information where

CONTAINS(p_description, `monitor' NEAR `highresolution') > 0

- Comparison of object-relational and multimedia text features
 - DB2 offers a rich subset of the SQL standard, whereas the other databases comprise object-relational concepts not part of the standard.
 - Oracle supports user-defined orders for all types (defining own indexing structure for information retrieval. Build in: B-Tree indexes, bitmap indexes, partitioned indexes, function-based indexes, and domain indexes).
 - SQL Server 2000: very limited, not support for object types apart from build-in primitive types and formatted documents.
 - Informix has no object concept since neither object ID's (references) nor object methods exist.

Comparison of object-relational and multimedia text features

Query expansion operator	DB2	Oracle	SQL	Informix
			Server	
Fuzzy term matches to include words that are spelled	•	•	-	•
similarly to the query term.				
Taxonomy search to include more specific or more	•	\bullet^1	-	-
general terms.				
Proximity search to test whether two words are close to	•	•	•	•
each other, i.e. near positions.				
Related term matches to expand the query by related	•	•	•	•
terms defined in a thesaurus.				
Term replacement to replace a term in a query with a	•	•	•	•
preferred term defined in a thesaurus. Could also be used				
for synonym searches.				

Comparison of object-relational and multimedia text features DB2 Oracle SOL Inform

Linguistic query expansion operator	DB2	Oracle	SQL	Informix
			Server	
Stem match to search for terms that have the same	•	•	•	-
linguistic stem as the query term, e.g. runs->run, running				
->run				
Translation match to search for translated terms in a	-	•	-	-
different language, defined by a thesaurus.				
Soundex match to find phonetically similar words	•	•	•	-
computed by the soundex algorithm.				
Text summarization Automatic summarization of	-	•	-	-
documents based on key words and related				
sentences/paragraph (pseudo-semantic processing).				
Theme search/extraction Automatic extraction of the	-	•	-	-
text theme that can then be searched for.				
Decomposition match to decompose complex words into	•	\bullet^1	-	-
their stems.				

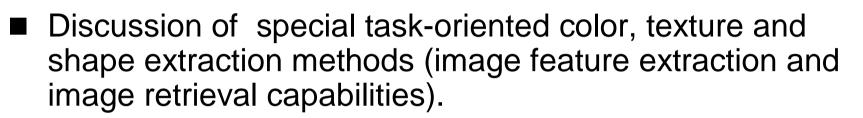
- Comparison of object-relational and multimedia image feat.
 - Image Processing is discussed in terms of content-based image feature extraction (feature concepts and extraction methods).

Example: Oracle ORDImage type definition

ORDImage Attribute	Data type	Purpose
source	ORDSource	Source storing data
mimetype	VARCHAR2(4000)	Mimetype of stored data e.g.
		tiff
height	INTEGER	Height in pixels
width	INTEGER	Width in pixels
contentLength	INTEGER	Size in bytes
fileFormat	VARCHAR2(4000)	File type e.g. *.tiff
contentFormat	VARCHAR2(4000)	Type of image e.g. grayscale
compressionFormat	VARCHAR2(4000)	Image compression format
		e.g. JPEG

Feature concepts	DaimlerChrysler

Extraction methods


	Concept level	Feature extraction method	DB2	Oracle	Discovir
Color global	1/2	Global color histogram	•	•	•
	1/2	Global average color	•	-	•
	2	Color moment	_	-	•
	2	Color coherence vector	_	-	•
Color local	3	Local color histogram	_	•	•
	3	Local average color	•	-	-
Texture global	2	Homogeneity	-	-	•
	2	Entropy	-	-	•
	2	Probability	_	-	•
	2	inverse differential moment	-	-	•
	2	differential moment	_	-	•
	2	Contrast	•	-	-
	2	Edge direction	•	-	-
	2	Granularity/fineness	•	•	•
	2	Edge frequency	_	-	•
	2	Length of primitives/texture	_	-	•
Texture local	3	Locality of texture	_	•	-
Shape global	2	Geometric moment	_	-	•
	2	Eccentricity	_	-	•
	2	Invariant moment	_	-	•
	2	Legendre moment	-	-	•
	2	Zernike moment	_	-	•
	2	Edge direction histogram	-	-	•
	2	Color-based segmentation	_	•	-
Shape local	3/4	Locality of Shape	-	•	•

Theoretical evaluation: Conclusion

- (+) Principal multimedia capabilities can be certified to all discussed systems (all systems offer a kind of object-relational extension).
- (+) Standardization effort for multimedia features, the image and text processing support, the triggers, and the object-relational Java interface. In DB2, many parts of the SQL/MM standard are implemented.
- (+) Text processing capabilities of the databases are rather comparable.
- (-) Server 2000 supports only Windows, no support for any programming language except SQL.
- (-) No internal attribute changing methods (contradictory to *OO*).

DAIMLERCHRYSLER

Practical Evaluation: Case study

- Data samples:
 - DC Media service:Mercedes-Benz passenger cars
 - DC internal car image data asset: entire cars, exhaust pipes, fuel pipes, interior equipment, etc.
 - *Cardetect*: gray-scale exterior car view imagery
 - *Rearcars*: rear car views and motorbikes

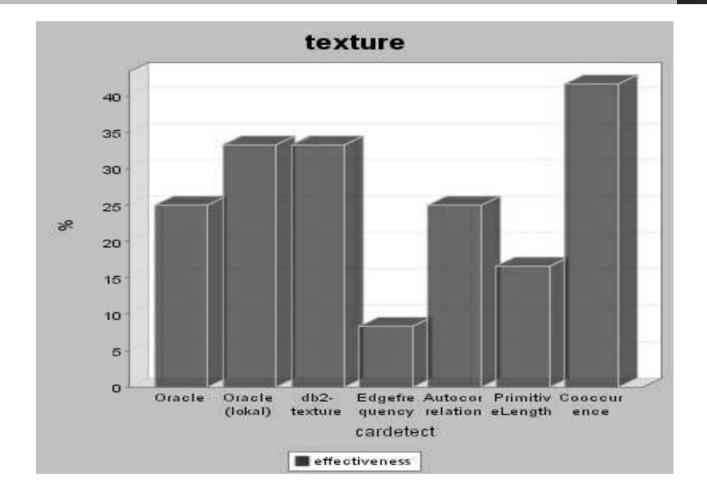
Practical evaluation: Case study

DC Media service (#50)

Cardetect (#30)

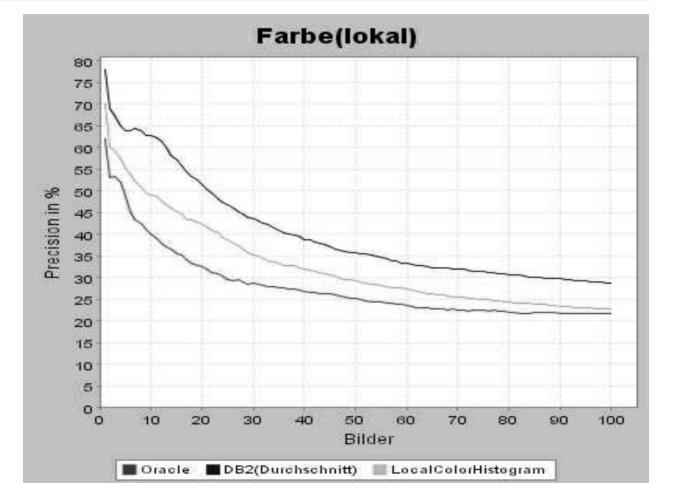
DC internal car image data ■ Rear cars (#400) 14701

Practical evaluation: Case study


Evaluation measures (#8):

- Precision: Precision measures the proportion of documents in the result set that are actually relevant.
- Recall: Recall measures the proportion of all the relevant documents in the collection that are in the result set.
- Effectiveness: This measure takes the relative order of retrieved documents into account.
- **•**

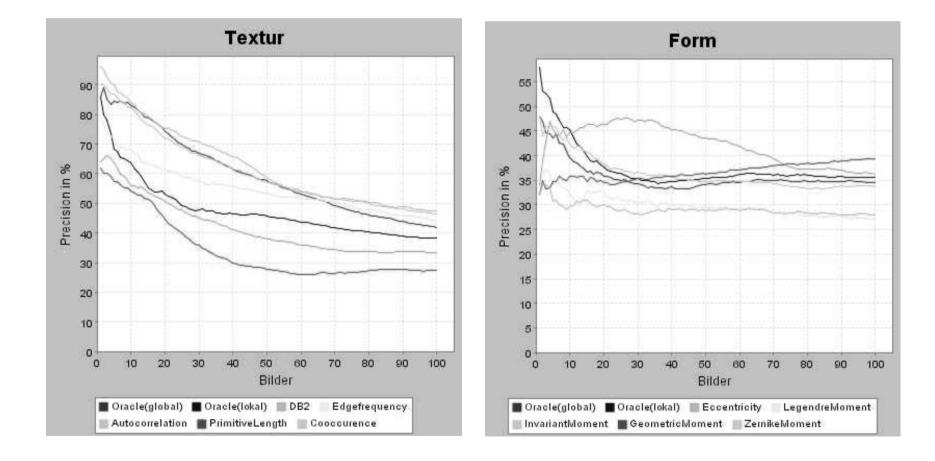
DAIMLERCHRYSLER


Practical evaluation: Case study

Daniel Sonntag, RIC/AM

Practical evaluation: Case study

Daniel Sonntag, RIC/AM


DAIMLERCHRYSLER

DAIMLERCHRYSLER

Practical evaluation: Case study

Daniel Sonntag, RIC/AM

Case study: Conclusion

- Oracle and DB2 image extraction features performed considerable well, whereat the *Discovir* features were always among the best, even better for measures of retrieval effectiveness.
- DB2 LocalColor feature performed most robust, in particular for noisy input. On the other hand, Oracle's shape features outperformed all other measures significantly on data without noise.
- Enhance DB2's feature extraction by *Discovir* shape features
- Black box fashion vs. transparent *Discovir* extraction features
 - computational and compositional aspects
 - source code is readable and freely adjustable

Challenges for MM databases

- Special data types for media types
- Feature extraction and selection
 - extractable vs. perceptible vs. interpretable (semantic gap)
- Query system and language
- Similarity search
- Realtime retrieval

Potentials of multimedia databases within DCX

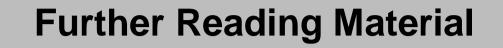
- Differentiating advantage to companies not addressed the MM processing domain
 - Participate in standard activities (internal/external research and development)
 - Accommodate DC-specific requirements into new commercial releases
- Qualitative/quantitative benefit
 - Multimedia data analysis, e.g. data quality for pure data, image, text.
 - Central management strategy for different data sources of different media

Faster implementation through evaluated test scenarios and Daniel Som Wendor tools comparison.

Proposed DCX architecture

- Exploit commercial MM extensions before developing new
- Database commitments
 - Is it a single media application?
 - Is the user involved in capturing, editing, and manipulating the data?
 - Is the communication one-directional, only for retrieving data?
- Conceptual architecture commitments
 - Assumption: different related media types are stored together
 - rely on efficient storage of multimedia objects in Oracle/DB2

Multimedia object containing all types, and XML extracted Daniel Sonntag, RIC/AM


DAIMLERCHRYSLER

Proposed DCX conceptual architecture

Outlook

Multimedia Mining:

- Improve business processes in all fields where information of different media is relevant.
 - Customer Relationship Management
 - Quality assurance and innovative marketing
 - Competition analysis
 - Knowledge extraction from Internet portals, where video, audio, text, image and speech data are likewise represented as infinite multimedia source.

- MultimediaDatabases, State-of-the-art report, Daniel Sonntag, RIC/AM, (2004).
- Analyse kommerzieller ORDB-Bild-Retrieval-Systeme, Diplomarbeit, Doreen Pittner, (2004).
- Image Databases, Search and Retrieval of Digital Imagery, edited by Vittorio Castelli and Lawrence D. Bergman (2003)
- Ingo Schmitt, Retrieval in Multimedia-Datenbanksystemen, Institut für Technische und Betriebliche Informationssysteme, Otto-von-Guericke-Universität Magdeburg, to appear (2004).