Profile: NLP in Information Retrieval

Daniel Sonntag RIC/AM MPI -SB 28.5.2004

Agenda

- Multimedia Data Retrieval (Image/Text)
- NLP components in Question Answering/Schema Mapping
- Multiword term indexes
- Connection Wordnet<->Framenet

3

MM Databases: Introduction

- Multimedia databases have to store numeric, image, video, audio, text, graphical, temporal, relational and categorical data.
- Attention in many application areas:
 - Medical information systems
 - Geographic information systems
 - E-commerce
 - Digital libraries
- We will draw attention on special purpose database files within the DC corporate group with regard to data mining Daniel Charter Brances.

Current architecture vs. ORDM requirements: Complete Data Model

Object-Relational Data Model	DB2	Oracle	SQL- Server	Informix
New additional basis data types for new application	•	•	•	•
domains				
Copies of basic data types with new type names	•	•	•	•
Data types for external data.	•	•	-	•
Basic types variants (i.e. structured types)		•	-	_1
Collection types (List, Set, Multiset)		•2	-	•3
Reference types that objects can be referenced		•	-	-
Type hierarchies of objects		•	-	_
Type hierarchies of tables		-	-	•
Typed tables for typing complete data entries.		•	-	•
User defined routines (functions) (UDR(F)) that can be		•	•	•
registered in the DBMS and be used as operators for data				
types.				

Current architecture vs. ORDM requirements

- different kinds like paintings, drawings, photographic pics, satellite images, architectural, facial ...
- digital file formats like WAV, AU, GIF, JPG, MPEG with different compression and quality rates.

Unstructured Text Data

- string of arbitrary size, in linguistic terms containing words, sentences, paragraphs as logical units
- in DB own internal representation format, converted from RTF, PDF, PS ...

Theoretical evaluation

Comparison of object-relational and multimedia text features

Query expansion operator	DB2	Oracle	SQL	Informix
			Server	
Fuzzy term matches to include words that are spelled	•	•	-	•
similarly to the query term.				
Taxonomy search to include more specific or more	•	\bullet^1	-	-
general terms.				
<i>Proximity search to</i> test whether two words are close to	•	•	•	•
each other, i.e. near positions.				
Related term matches to expand the query by related	•	•	•	•
terms defined in a thesaurus.				
Term replacement to replace a term in a query with a	•	٠	•	•
preferred term defined in a thesaurus. Could also be used				
for synonym searches.				

Theoretical evaluation

Comparison of object-relational and multimedia text features DB2 Oracle SOL Inform

•					
70	Linguistic query expansion operator	DB2	Oracle	SQL	Informix
				Server	
	Stem match to search for terms that have the same	•	•	•	-
	linguistic stem as the query term, e.g. runs->run, running				
	->run				
	Translation match to search for translated terms in a	-	•	-	-
	different language, defined by a thesaurus.				
	Soundex match to find phonetically similar words	•	•	•	-
	computed by the soundex algorithm.				
	Text summarization Automatic summarization of	-	•	-	-
	documents based on key words and related				
	sentences/paragraph (pseudo-semantic processing).				
	Theme search/extraction Automatic extraction of the	-	•	-	-
	text theme that can then be searched for.				
	Decomposition match to decompose complex words into	٠	\bullet^1	-	-
	their stems.				

Extraction methods

	Concept	Feature extraction method	DB2	Oracle	Discovir
	level				
Color global	1/2	Global color histogram	•	•	•
	1/2	Global average color	•	-	•
	2	Color moment	-	-	•
	2	Color coherence vector	-	-	•
Color local	3	Local color histogram	-	•	•
	3	Local average color	•	-	-
Texture global	2	Homogeneity	-	-	•
	2	Entropy	-	-	•
	2	Probability	-	-	•
	2	inverse differential moment	-	-	•
	2	differential moment	-	-	•
	2	Contrast	•	-	-
	2	Edge direction	•	-	-
	2 Granularity/fineness		•	•	•
	2	Edge frequency	-	-	•
2 Length of primitives/texture		-	-	•	
Texture local	3	Locality of texture	xture - • -		-
Shape global 2 Geometric moment		-	-	•	
	2	Eccentricity	-	-	•
	2	Invariant moment	-	-	•
	2	Legendre moment	-	-	•
	2	Zernike moment	-	-	•
	2	Edge direction histogram	-	-	•
2 Color-based segmentation		-	•	-	
Shape local 3/4 Locality of Shape		Locality of Shape	-	•	•

Practical evaluation: Case study

DC Media service (#50)

Cardetect (#30)

DC internal car image data ■ Rear cars (#400) 14701

Practical evaluation: Case study

Evaluation measures (#8):

- Precision: Precision measures the proportion of documents in the result set that are actually relevant.
- Recall: Recall measures the proportion of all the relevant documents in the collection that are in the result set.
- Effectiveness: This measure takes the relative order of retrieved documents into account.
- Accuracy, Reciprocal Rank, Interpolated Average Precision, F-Measure, Fallout.

Practical evaluation: Case study

Daniel Sonntag, RIC/AM

Feature concepts	DaimlerChrysler

Challenges for MM databases

- Special data types for media types
- Feature extraction and selection
 - extractable vs. perceptible vs. interpretable (semantic gap)
- Query system and language
- Similarity search
- Realtime retrieval

Proposed DCX conceptual architecture

Further Reading Material for MM

- MultimediaDatabases, State-of-the-art report, Daniel Sonntag, RIC/AM, (2004).
- Analyse kommerzieller ORDB-Bild-Retrieval-Systeme, Diplomarbeit, Doreen Pittner, (2004).
- Image Databases, Search and Retrieval of Digital Imagery, edited by Vittorio Castelli and Lawrence D. Bergman (2003)
- Ingo Schmitt, Retrieval in Multimedia-Datenbanksystemen, Institut für Technische und Betriebliche Informationssysteme, Otto-von-Guericke-Universität Magdeburg, to appear (2004).

Question Answering

Schema Matching Problems

- External schemas (beside complexity)
 - unknown synonyms
 - unknown hyponyms
 - foreign-language data material
 - cryptic schemata (# attr < n)
- -> false positives/false negatives
- Iabel-based, instance-based, and structure-based mapping
- Match cardinality: 1:n, n:1
 - Parsing rules, (De)composition

Schema Matching Approaches [RB01] [FN04]

DSTAT: pattern matching

- a -> abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZäöüÄÖÜß
- d -> 0123456789
- s -> !§\$%&()={[]}?*+-_.:,'#~@"∧
- o -> any other character

■ ULM_CMP2_S_ADDR_ORG.CONFLICT_ID

- Type: VARCHAR2, Size: 15
- Patterns: d1 -> 237624 (99.974%)
- d1s1a3s1d4 -> 11 (0.005%)
- d1s1a1d1a1s1d3 -> 8 (0.003%)
- d1s1a1d1a1s1d4 -> 5 (0.002%)
- d1s1a2d1s1d4 -> 5 (0.002%)
- d1s1a3s1d3 -> 5 (0.002%)

...

Multiword term indexes

- Similarity function: s(x,y) := s(f(x), f(y));
 - s(x,y): class-based approaches -> thesaurus-based similarity
 - s(x,y): distributional approaches -> clustering, KNN

word co-occurrence patterns -> class co-occurrence patterns ?

 f(x), f(y): add dimensions, new/replacing document (content) descriptors

-> add MWU/MWE, but which ones? coverage, coding

-> formalism, DB, textual XML, SGML, FS, typed FL?

- MWU/MWE Induction (Computational Terminology, TE, RL):
 - use knowledge-free methods -> subtype collocation finders

Multiword term indexes

Collocation finding:

- knock (at) door, make up, Buenos Aires, prime minister, (to turn off the power),
- Problems for German: decomposition (syntactic)
- Problems for English: verb-particle constructions
 - knock off, tell off, cook off
- segmentation-driven: collocation = byproduct of segmenting stream of symbols.
- Word-based knowledge-driven: linguistic patterns: N de N (regex), linguistic phenomena: NPs
- Word-based probabilistic: word combination probabilities

Multiword term indexes: Prob. **MWU Finder/collocation finder** [SJ01]

Frequeny-based VS. **Information-based**

METHOD	FORMULA
Frequency (Guiliano, 1964)	$f_{ m XY}$

Selectional Association (Resnik, 1996)	$\frac{P_{X Y}*MI_{XY}}{\sum_{Z} Pr_{Z Y}*MI_{ZY}}$

Log-likelihood (Dunning, 1993; Daille, 1996)	$-2\log \frac{\left[P_{X}P_{Y}P_{\overline{X}}P_{\overline{Y}}\right]^{f_{Y}}}{\left[P_{XY}P_{\overline{XY}}\right]^{f_{XY}}\left[P_{X\overline{Y}}P_{\overline{XY}}\right]^{f_{\overline{XY}}}}$
Student's t-Score (Church and Hanks, 1990)	$\frac{f_{XY} - \xi_{XY}}{\sqrt{f_{XY}(1 - (f_{XY}/N))}}$

METHOD	FORMULA
Pointwise Mutual Information (MI) (Fano, 1961; Church and Hanks, 1990)	$\log_2 \left(P_{\rm XY} / P_{\rm X} P_{\rm Y} \right)$
Symmetric Conditional Probability (Ferreira and Pereira, 1999)	$P_{\rm XY}^{2}$ / $P_{\rm X}P_{\rm Y}$
Chi-squared (χ ²) (Church and Gale, 1991)	$\sum_{\substack{i \in \{X,\overline{X}\}\\j \in \{Y,\overline{Y}\}}} rac{(f_{ij} - \xi_{ij})^2}{\xi_{ij}}$
Z-Score (Smadja, 1993; Fontenelle, et al., 1994)	$\frac{f_{XY} - \xi_{XY}}{\sqrt{\xi_{XY} (1 - (\xi_{XY}/N))}}$
Dice Formula (Dice, 1945)	$2f_{\rm XY}/(f_{\rm X}+f_{\rm Y})$

Hanks, 1990)

Multiword term indexes

- Which collocations are suitable MWU/MWE = Which collocations need a definition ?
 - Linguist's answer (Sproat):
 - Simply expanding the dictionary to encompass every word one is ever likely to encounter is wrong: it fails to take advantage of regularities.
- MWUs are ...
 - non-substitutable: compact disc vs. # densely-packed disk
 - AND/OR non-compositional: m(cd) != ded(m(c), m(d))
 - AND/OR non-modifiable: # disk that is compact

Multiword term indexes

- Idea: Extraction + Recognition in once [SA04];
 (instead of: coll. Finder + hyponymy testing (LSA): s(f(m,h), f([h|m]))
- Two goals:
 - Technological expr. are fairly compositional: *filter, oil filter* (-> ontology) vs. Good MWU are non-compositional (-> terminology)

Multiword term indexes by Mining Sequential Patterns

Determinative compound (endocentric)

6: INTERVAL@NN => **SERVICE**@NN Supp = 0.82, Conf = 72.64, Cov = 1.13, Lift = 5.52 8: 7500@CD MILE@NN => **SERVICE**@NN Supp = 0.43, Conf = 90.7, Cov = 0.48, Lift = 6.9 14: 22500@CD MILE@NN => **SERVICE**@NN Supp = 0.13, Conf = 86.35, Cov = 0.15, Lift = 6.57 16: 6000@CD MILE@NN => **SERVICE**@NN Supp = 0.46, Conf = 71.55, Cov = 0.64, Lift = 5.44 24: 7x500@CD MILE@NN => **SERVICE**@NN Supp = 0.26, Conf = 89.73, Cov = 0.29, Lift = 6.82 30: 3750@CD MILE@NN => **SERVICE**@NN Supp = 0.54, Conf = 99.02, Cov = 0.54, Lift = 7.53 40: 30000@CD MILE@NN => **SERVICE**@NN Supp = 0.41, Conf = 91.72, Cov = 0.45, Lift = 6.98

(Possessive) compound (exocentric)

80: BLOWER @NN => WIRING @NN Supp = 0.18, Conf = 52.01, Cov = 0.35, Lift = 195.89

81: **BLOWER** @NN => MOTOR @NN Supp = 0.25, Conf = 70.07, Cov = 0.35, Lift = 137.45

82: **BLOWER**@NN MOTOR@NN => WIRING@NN Supp = 0.17, Conf = 67.64, Cov = 0.25, Lift = 254.75

Daniel Sonntag, RIC/AM

Multiword term indexes

Extensions: Expansion of collocation (sets)

- -> strongly associated words
- Exploiting linguistic theory for finding associated words
 - Systematic Polysemy
 - Metonymie

-> Frame Elements

WordNet and FrameNet

- WordNet problem:
 - no syntagmatic relations, e.g. "tennis problem".
- FrameNet help:
 - Documents the range of semantic and syntactic combinatory possibilities (valences) of each word in each sense.
 - Valence descriptions:
 - Frame Elements (e.g. Patient)
 - Grammatical Functions (e.g. Object)
 - Phrase Type
 - Connection: Wordform Type ^= Wordform (Framenet)
 - Connection ?: Synsets OR Lexical Unit ^= Frame Elements (Framenet)

Daniel Sonntag, RIC/AM

Exploiting FrameNet

- Information Retrieval <-> Information Extraction
 - Automatic Frame Element Labeling is questionable!
 - too difficult in conception, only example sentences
- -> Frame Labeling
- -> Exploit frame relations
- -> Exploit documented element associations -> thesaurusbased

similarity

Further Reading Material

- [FN04] Felix Naumann, Schema Mapping Tutorial, HU Berlin/DC Ulm 2004.
- [RB01] Erhard Rahm and Philip Bernstein, A survey of approaches to automatic schema matching, VLDB Journal 10(4), 2001.
- [SJ01] Patrick Schone and Daniel Jurafsky, Is Knowledge-free induction of Multiword Unit Dictionary Headwords a Solved Problem?
- [SA04] Daniel Sonntag and Markus Ackermann, Multiword Expression Learning for Automatic Classification, to appear 2004.
- [TB02] Timothy Baldwin et al., An Empirical Model of Multiword Expression Decomposability