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Abstract

In this paper we propose a possible connection between Distributed
NLP, Java Technologies for Distributed Computing and Machine Learn-
ing techniques for Question Answering. In a natural process, knowl-
edge bases and processing components for natural language are loosely
coupled, instead of hard-wired, to take advantage of a synergistic effect
that can be learned in supervised experiments on a meta level.

We begin with our view on QA as application which determines the
workflow of the answering process. Then we express the QA process
by a distributed computing task and show finally, how the control of
this distributed QA task can be learned automatically.
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1 Introduction: QA processing steps

Modern QA systems define different processing steps for different QA types
(e.g. fact-based questions, template-based questions, thematic-oriented ques-
tions). Because of the variety of processing steps and components involved
and the different possibilities for answering a query, QA can be a complex,
composite process, for which the best way of selecting and applying single
components is not obvious. At least, data access, data availability and good
performances of single QA components cannot be guaranteed for all possible
query instances in the normal case.

One way to enhance performance and robustness is the following exam-
ple. The idea in [NX03] is that depending on the complexity of the query,
the processing steps can be varied, i.e. shallow and deep QA strategies can
be selected corresponding to different levels of linguistic processing. We will
briefly present the strength and weakness of this approach. The idea to use
different processing stages for different query types is good, for example,
to answer simple fact-based question for which shallow QA strategies work
quite well. This was shown for Person, Location, Date and Quantity ques-
tions in [ACS00] and in [CNPB00]. (Here a good example for deep NLP in
QA in missing! On the other hand, robustness to accept all queries (e.g.
difficult entity classes such as duration and measures, very short queries,
very long queries, ungrammatical queries, unrecognised tokens, no appropri-
ate answer in knowledge base) and scalability in terms of efficient processing
cannot be achieved by this coarse-grained distinction. The major reason is,
that the computational and conceptual difficulty to answer a certain query
is more a question of the availability of the processing and information re-
sources to answer the question, and less a question of the type of the posed
query or similar characteristics based on the query. The QA system charac-
teristics do count.

In the case of processing resources, the QA strategy is dependent on the
suitability of an atomic or composite process to handle the task which can
be expressed in terms of its apriori probability of returning a successful and
well timed answer or its aposteriori online performance. Especially for the
latter case, we have high expectations.

In the case of information resources, the QA strategy is dependent on the
representation of the knowledge, the decisive question is whether the knowl-
edge is explicit or implicit represented. If implicit represented, knowledge
inference plays a major role which assumes both the query and the possible
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answers to be represented in a logical form (e.g. first-order logic predicates).1

However, we do not address the question of knowledge representation and
knowledge inference here and get back to QA strategies by the following as-
sumption: The best way to answer a query is to decide on the QA strategy
not by a query/answer type dependent feature at an early stage of the QA
process, but during processing in a freely coupled architecture whose stages
can be defined for each instance individually. So how can this be achieved?
Of course, the approach must be flexible enough to decide which kind of
linguistic processing steps are required and which components are suitable
for a particular instance at certain processing stage. Flexibility can also be
shown by leveraging the strictness of order in which the NLP components
are to be applied.

At this stage, we informally introduced requirements for a QA system and
hence the software architecture. Next, we light up the underlying software
principles and patterns, before we draw attention to the connection be-
tween the QA requirements and the conceptual/computational processing
resources.

2 Distributed Computing and JavaSpaces

We define Distributed Computing as co-operation of several computers work-
ing together on a particularly processing-intensive problem. A single com-
puter accounts for local processing needs and is linked toward other comput-
ers by a communication network. The object-oriented view of distributed
computing is that several component objects (e.g. Java objects) work on
the same problem. We introduce JavaSpaces for this task. JavaSpaces is
a powerful Jini service (network technology service) from Sun Microsys-
tems, that facilitates building distributed applications for the Internet and
Intranets. The JavaSpaces model involves persistent object exchange ar-
eas in which remote processes can co-ordinate their actions and exchange
data, thus providing a necessary ubiquitous, cross-platform framework for
distributed computing [EF99].2

Several benefits of distributed computing, such as increased computation

1The relationship between logic-based IR models and inference models for QA is still

worth exploring, but is left undetermined in this approach sketched here
2A distributed network architecture requires specific knowledge of network program-

ming and with the help of JavaSpaces this effort can be reduced to a minimum.
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power with parallel CPU’s can be encountered. Especially for QA, the ben-
efits in scalability, resource sharing and availability of resources come into
account. Scalability is to be understood in terms of adding new QA compo-
nents (possibly lightweight annotators or databases) to match the size of the
question processing problem and especially the answer retrieval problem: If
the amount of data exceeds the processing power or the document server, we
can simply replace a component or add a new server without changing the
client application and without changing the other servers. Resource sharing
is a related topic. It means basically that the answer documents are collected
on a complete different server as e.g. the NLP components. Availability of
data/components can be guarantied by a distributed architecture, if several
server are available for the same NLP task and the distributed application
chooses the best available server.

The benefits don’t come along without challenges. In a distributed net-
work, the communication between network points may be too slow (latency).
This can occur, when many interactions between several components is the
normal case, if a special order of processing and interaction between com-
ponents does occur (maybe the case for QA). This leads to the problem of
synchronisation. Distributed systems run without the control, which process
terminates first, before another can be invoked. If another process relies on
the output of the first, they have to be synchronised, e.g. a QA step must
be started on a consistent data state, and other loading or deleting actions
have to be looked as long as the first process is running.3 This topic will be
addressed in section 4.4. We proceed with another problem in distributed
systems: Just like a database query has to be committed (alternatively also
partly if an atomic transaction action fails) to bring the database from one
consistent state to the other, a distributed application must be robust if a
component fails to return a (proper) result or returns it too late. In NLP,
computational complexity of e.g. deep parsers constrained by HPS or LF
grammars has always been an issue. Unfortunately, computational intensive
components have to be part of good performing state-of-the-art QA systems.
In the context of distributed application, the disadvantage of computational
intensive components can be turned into a vantage, indirectly. With a suit-
able transaction protocol, deep NLP components can always be started in
parallel, and will only be used when appropriate and delivered in time, which

3One can even think of a QA system with JavaSpaces as a distributed object-relational

multimedia database. This adds potentials for multimedia processing in different environ-

ments at different places, but also introduces the challenges stated above.
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is determined during processing. This point lefts a mark on important use
cases in distributed computing architectures. We will introduce the complete
set of QA relevant use cases in the next section in a formal way.

2.0.1 Use cases for distributed computing architectures

In this section we discuss use cases for distributed computing architectures
in the context of QA. Many NLP problems, such as QA, can naturally and
easily be expressed in a distributed architecture. Consider that a complex
NLP or QA query can often be processed asynchronously and co-ordinating.
(Here some examples would have been adequate)

The following use cases (cited from the more general use case desiderata
in [CBTW00]) attract interest for QA in a distributed computing architec-
ture:

• Support of Language Engineering R&D workers producing software
and performing experiments.

• Localisation and internationalisation. The goal in [CBTW00] for this
use case is to allow the use of the architecture in and for different
languages. In our specific application context (special LRs for QA),
localisation and internationalisation become much broader in scope,
particularly in a distributed computing architecture in which those
terms refer to basic distributed processing concepts, to run local pro-
cesses over a network of geographically possibly far-off NLP servers.
This use case implements recent NLP activities by implementing re-
cent engineering requirements. Grid technology is intended to take the
concept of the [Internet] one stage further by allowing seamless access
and use of distributed computing resources as well as information.4

We will adopt the following terminology to refer to special types of NLP
components. Language Resources (LRs) refer to data-only resources such
as lexicons, corpora, thesauri or ontologies [CBTW00]. Processing resources
(PRs) refer to resources whose character is principally programmatic or al-
gorithmic, such as POS-Tagger, NERs or parsers. PRs typically include
LRs such as a lexicon. For the JavaSpace QA architecture, both LRs and
PRs are to be considered as possible QA components. We first focus on PR

4Work in progress by Ewan Klein, Miles Osborne and Lex Holt
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requirements and associate them with our distributed computing architec-
ture. Focusing on PRs, the requirements stated in [CBTW00] look like the
following. We will directly relate them to the requirements of a distributed
system architecture as can be achieved by the use of JavaSpaces technology.
The requirements:

• PR Management: The developer or itself is able to choose a subset
of available components and wire them together .
In our proposed architecture, the predefined order of components to
be applied is more relaxed, the only wires between components is their
input and output behaviour. In section 2 we could already receive an
impression which benefits and problems are to be expected with this
approach.

• Distributed Processing: Components must be made available over
a network for distributed processing. This requirement on the config-
uration of NLP component is the key point in the common infrastruc-
ture for both PRs and LRs. Furthermore, the idea of distributed NL
processing finds as its successor the idea of distributed NL computing
which forms the basis of the ML learning task described in section 3,
as one of the main concerns in this paper.

• Component Communalities: Families of components share certain
characteristics. These communalities should be modelled. In our ar-
chitecture, this modelling plays the central role and is directly related
to the PR Management: If a component falls into a certain family
of components (the equivalence classes of PRs/LRs), it can be re-
placed by an equivalent component in the sense of its input/output
behaviour. On the other hand, the equivalent component might be
more suitable for the specific (query) instance. The protocol of suit-
able components based on the component communalities is a concrete
meta learning task5. The learning process hereby comes along with a
s̈ilbing rivalryämong the components of the same class in a distributed
architecture. The component communalities requirement initiates the
ML task described in section 3.

5To avoid misunderstanding, here meta learning means to learn which components

should be applied in which order, learned by the output of a single QA component on the

test instances. To produce additional meta data of the components or their interaction

is not compulsory, but desirable, e.g. information about the performance of a system

component on a class of questions, or single question instances
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The question, how to specify a component, i.e. the interface with one
another for the distributed computing architecture is not discussed in this
work, some very good ideas for NLP component state descriptions can be
found at Evan Klein’s homepage.

In the rest of this section, we sum up our ideas for connecting QA and JavaS-
paces and plan how to proceed. We have heard that QA systems could be
designed in a distributed computing architecture, and that QA components,
just as other NLP resources may also be spread over a network. We conclude
that JavaSpaces may become an important tool for realising component-
based QA systems. Having discussed QA systems and JavaSpaces, we now
have an idea, how they can be connected to build runnable QA applications.

In the next chapter, we will bring the JavaSpaces, QA systems and ML
altogether in such a way that distributed QA systems can be learned a pro-
cessing behaviour with unique and striking potentials in distributed com-
puting environments.

3 Machine Learning and QA

Since the QA process involves a variety of single (NLP) processing compo-
nents (tokeniser, morphology parser, NE recognition, chunk parser, ...), and
since many of these have many adjustable parameters (e.g. HMM-based
POS-Tagger), machine learning algorithms6 are principally suitable to ad-
just these parameters. The majority of researcher developing state-of-the-art
QA tools have subscribed to the view that optimising single components,
e.g. finer-grained NE rules or probabilistic grammar rules by ML techniques
can improve their systems [NS03]. For some task, like detecting the expected
answer type, one can easily agree with this opinion, since this tasks can be
expressed as a classical classification task that can be solved by SVMs, for
example [ZL03], and the process of classifying the query is rather indepen-
dent from the answer process once the answer type is detected. However,
it cannot be assumed in principle that improving a single component also
improves the overall performance. To that effect, using machine learning to
improve a single QA component (PR), does not necessarily improve the QA
system. This can be explained as follows: The performance of a QA system
can only be increased by ML techniques if, and only if the optimisation crite-
rion of the ML process is equal to the optimisation criterion of the entire QA

6Most of the methods are referred to as statistical NLP in the linguistic literature.
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process. This means informally, that the question answering process itself
has to be learned, not the individual components regardless the processing
level. And there is an additional aspect we show for preprocessing. It might
be advisable to skip a (preprocessing) component or reverse the order in
which some (preprocessing) components are applied to a query, as shown
in [Cha97] for tagging and partial parsing. In [Cha97] a statistical sentence
parser worked best if the tagging was postponed, when some parse trees
delivered by a sentence tree parser already existed. This example showed
variation of processing component’s order on a very low level. But even the
more abstract QA workflow level can be varieted or partly reversed. Exper-
iments in [CNPB00] show that even though linguistic filters have been used
thus far as post-processing filters, further improvements might be made by
applying the filters at the retrieval stage. With our approach, this question
is answered by the QA system itself and its processing control. What can be
said is, that the selection of PRs and LRs and the order in which the PRs are
to be applied, is a matter of the actual words in the query on a fine-gained
level or at least matter of the query type however defined on a coarse-grained
level. The behaviour of the system to correctly decide which component is
to applied when, is what we target to model and learn automatically. In
a plan-driven architecture, that means to learn to decide which operator
(component) is to be applied next in the workflow. For this task, you need
to know about the qualitative result of a component. Before we concentrate
on the components of the QA learning architecture, we try to bring this
assumption and problem specification into formal means and computational
terms. In the view of the proposed ML task, it means to overcome the in-
ductive bias that a function for QA cannot be approximated by optimising
the functions of the QA components. More precisely, we try to address a
kind of language bias7: We do not assert that the optimisation function of
any machine-learned component is not expressive enough, but the hypoth-
esis space does not include all possible functions for the QA process, which
is a combination of (function of) the QA components. This function should
not only contain the input and output of a component, but also data about
the quality. The function to be learned in then a meta function over all com-
ponents and the component data and forms a meta learning task. For this
task, you need to know about the quality of a component’s result. A recent
approach is called introspection in QA systems, where intermediate results
are evaluated to decide on feedback loops to redo a QA step which turned

7The language for representing functions defines a hypothesis space that does not

include all possible functions
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out to be unsatisfactory. In [ea] this is used to decide whether the hit list of
an underlying search engine contains an appropriate answer passage or not.
Then it can be decided, if a new search (e.g. with the prior use of a query
expansion operator) should be started or the question should be rejected.
We would like to propose a methodology, in which the plan how to proceed
is not predefined by a prior classification model that restricts the process
pipeline. Exactly at this point aspects of meta learning occur and can be
taken into account. The meta learner accounts for the question, how it can
be assured that the QA components are loosely coupled together, while still
preserving a control mechanism for process order and termination. Prior to
this is the question

• How to represent and activate QA components? A derivate is,

• How can the components communicate?

We adress this questions in the beginning of the next section 4 .
In addition to this questions, we concern ourselves with the question how

it can be assured that the QA components are loosely coupled, or in other
words, how the activation, the input and output behaviour of the individual
components can be controlled and how this control can be learned in order
to maximise the function (objection function to be approximated) of the
complete QA process.

We would like to propose a software architecture that accounts for this
questions. On the implementation side, we will propose the control structure
of a suitable JavaSpace implementation that focuses on the so-called Java
Entries, on the ML side we will propose an idea to model feature spaces
and to infer knowledge by inferring rules (modelling the component’s meta
knowledge by rules) over the features and propose hence a fundament for ML
algorithm selection. Especially, in section 4.1 we explore, how the activation
of the individual components can be controlled. In section 4.3 we explore
how the control can be learned and define the feature space of the ML
component.

4 QA components

It is sensible to first introduce the QA components, how they are modelled
and which kind of input and output behaviour they show. Declarations



4 QA COMPONENTS 11

on this questions are vital, we need a classification of interchangeable, ex-
changeable and decomposable PRs, and decomposable question types, to
define the workflow for QA and the possible variations in the workflow8

We will treat both PR components and LR components in the same way,
because they exhibit the same input/output behaviour. They will be both
represented as services. They will communicate by a task and result area.
While the QA process is running, every component listens for a task in its
dedicated task area and performs an apparent task immediately. The com-
ponents thus communicate by the task and result areas. The crucial point
is that the components only interact indirectly, through the data exchange
areas. This uncouples them and offers the freedom to choose components
(i.e. component results) out of a set of possible results on a specific task and
to decide on the QA process workflow. We will now introduce the complete
architecture to show how the data exchange area can be implemented and
controlled.

4.1 Distributed QA architecture

In our distributed architecture, the actual QA components, as introduced
in the previous section play a minor part. As desired and defined, they are
quite exchangeable as far as new components implements the same interface
of the special QA/NLP service.

The central piece in the (software) architecture is a JavaSpace that serves
as NLP/QA data exchange area. Components can deposit data and wait for
other data to process. The central issue apart from the already mentioned
data communication aspect is the synchronisation of data entries that ties
processes in a distributed program together. We will provide the conceptual
framework for their use in the following. It turns out that one standard
application scenario (discussed in [EF99]) accounts for the requirements of
the QA process. Accordingly, the architecture consists of QA components as
services of wide-spread network programs, a JavaSpace data exchange area
and a master process that controls the results of the individual components
and decides which result has to be returned. It is time to illustrate how the
architecture looks like:

8Ewan Klein declares that an ontology of data descriptions induces an ontology of

components. This ontology could serve as basis for interchangeability and exchangeability

of PRs.
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The Javaspace itself is represented as data objects that can be indepen-
dently accessed and altered by the QA components in a concurrent manner.
The provided JavaSpace implementation takes care for transaction security
and state consistency (see [EF99] again).
Processing a query, several scenarios may occur. In one scenario, the query
is decomposed into subtasks and the task bags are be filled accordingly.
The master process then listens for the result entries from the result bags
(filled by the components) and puts the results together to deliver a query
result. In this case, we investigated parallel computing to deliver partly
results of the query. The master process takes control, which subtasks are
to be fulfilled (Note, that the order in which the results are returned is not
important). Of course, this scenario only occurs, if a decomposable query
was posed. On the other hand, in all query cases we come up with one or
more subtasks to be fulfilled. We figure out the following subtask, the list
is still to be complemented 9:

• Answer type detection

• Answer template filling

9We do not assume an ontology of tasks and components so far.
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• Retrieval of relevant documents, sentences or paragraphs (possibly
plus text summarisation)

• Answer zooming

• Answer verification (possibly plus answer tiling)

It is to be mentioned that every subtask may consist of other subtasks.
In our proposed architecture, we content ourselves with that abstract pro-
cessing level. The master process takes control, whether a specific subtask
was processed satisfactory. The definition of a subtask. i.e. which NLP
components are to be applied in which order will be predefined and the
most promising workflows will be listed. For example, for detecting the an-
swer type, a shallow and a deep process could be started and the order of
tagging and partial parsing could be changed into different workflows. The
predifined workflow are expected to have high success probabilities (apriori
prob.), of course. While processing, the master process supervises whether
a PR or LR is available over the distributed system and whether it returns
a proper result in time. The strenght of this appraoch is the control of the
master process, where the ML approach begins.

In subsequent steps, this control is to be expanded towards component
level, that is the control of single steps in subtasks by the master control
process. So far.

4.2 Master control protocol

4.3 Learning of the master control protocol

4.4 Synchronisation

5 Conclusion and outlook

We conclude so far that the high conceptual and computational demands of
QA systems can at best be solved in a distributed computing architecture,
for which JavaSpace technology provides the necessary concepts.

The outlook is deferred to the possibility of recurrent user involvement in
the QA process. Unstructured natural language queries are often difficult to
formulate or ambiguous. Consequently, the updated or redesign of the query
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language should also be taken into consideration. The master control could
detects e.g. poor retrieval performances of relevant documents in activated
LRs. Apart from the request to the user to reformulate the query, also new
query types are conceivable to meet the high demands for specific requests.
Since natural language queries are more user-friendly, the alternative query
types (e.g. multimodal queries, template-based queries, ...) are only invoked
on system demand - under the control of a master process in a distributed
system.
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