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Abstract. We implemented a generic dialogue shell that can be configured for
and applied to domain-specific dialogue applications. The dialogue system works
robustly for a new domain when the application backend can automatically infer
previously unknown knowledge (facts) and provide explanations for the inference
steps involved. For this purpose, we employ URDF, a query engine for uncertain
and potentially inconsistent RDF knowledge bases. URDF supports rule-based,
first-order predicate logic as used in OWL-Lite and OWL-DL, with simple and
effective top-down reasoning capabilities. This mechanism also generates expla-
nation graphs. These graphs can then be displayed in the GUI of the dialogue
shell and help the user understand the underlying reasoningprocesses. We be-
lieve that proper explanations are a main factor for increasing the level of user
trust in end-to-end human-computer interaction systems.

1 Introduction

Multimodal interaction with large and dynamic data repositiories is an important topic
for the next generation of human-computer interaction systems. Over the last several
years, we have focused on the idea that Semantic Web [Fensel et al., 2003] data struc-
tures provide new opportunities forsemantically-enabled user interfaces. The explicit
representation of themeaningof data allows us to (1) transcend traditional keyboard
and mouse interaction metaphors, and (2) provide representation structures for more
complex, collaborative interaction scenarios with more complex result presentations.
Over the last years, we have adhered strictly to the developed rule “No presentation
without representation,” in order to log the state of the dialogue system, the displayed
elements, and the user queries explicitly.

On the database side, a new area of information retrieval (IR) has begun with the
advent of structured databases in Semantic Web RDF structures and respective query
languages. The dominant query language for these RDF1 repositories is the W3C rec-
ommendation SPARQL2. For the next generation of human-computer interaction sys-
tems, explanation-based inference during data retrieval and uncertain knowledge plays
a major role. In order to implement these properties, we use an efficient reasoning
framework for graph-based, non-schematic RDF knowledge bases and SPARQL-like
queries, Uncertain RDF (URDF). URDF augments first-order reasoning by combining

1 See http://www.w3.org/TR/rdf-primer/ and http://www.w3.org/TR/rdf-schema/.
2 http://www.w3.org/TR/rdf-sparql-query



soft rules, with Datalog-style recursive implications, and hard rules, in the shape of mu-
tually exclusive sets of facts. It incorporates the common possible world semantics with
independent base facts as it is prevalent in current probabilistic database approaches.
And it supports semantically more expressive, probabilistic first-order representations,
like, for example, Markov Logic Networks.

In this paper, we discuss a prototype system which provides adialogue-based inter-
action with such a probabilistic advanced database while following the URDF model.
URDF allow us to infer and present uncertain knowledge from Semantic Web databases
in the multimodal dialogue context. More precisely, we gaingraph-based knowledge
for dialogue-based explanations with confidences for inferred knowledge. While incor-
porating the URDF functionality into a dialogue system, we provide a first prototype
implementation of an explanation-aware multimodal dialogue system (as implemented
in the Comet music retrieval system [Sonntag et al., 2009] and in the dialogue system
for the medical domain [Sonntag and Möller, 2009], but without URDF and explana-
tion knowledge). Such dialogue systems can answer complex questions and provide
additional multimedia material such as graphs or videos.

Generally speaking, dialogue-based question answering (QA) allows a user to pose
questions in natural speech, followed by answers presentedin a concise textual form
with multimedia material [Sonntag et al., 2007]. For example, “Who is the German
Chancellor?” The short answer is “Angela Merkel” accompanied by a picture. The user,
however, should not only be presented the factual answers tosuch questions, but also
some explanations about the actual QA process. As [Glass et al., 2008] show, proper
explanations are one main factor that influences the level ofuser trust in complex (adap-
tive) artificial intelligence systems. Deriving and using explanations in dialogue-based
QA is a unique opportunity for enhancing trust especially inuncertain, inferred answers
in human-computer interaction systems.

The paper is structured as follows: Section 2 discusses related work and Section 3
explains the dialogue system framework. The URDF frameworkis presented in Section
4, followed by an example dialogue (Section 5) and our conclusions (Section 6).

2 Related Work

Prominent examples of dialogue platforms include OOA [Martin et al., 1999], TRIPS
[Allen et al., 2000], and Galaxy Communicator [Seneff et al., 1999]; these infrastruc-
tures mainly address the interconnection of heterogeneoussoftware components. A
comprehensive overview of ontology-based dialogue processing and the systematic re-
alisation of these properties can be found in [Sonntag, 2010], pp.71-131. Many sys-
tems are available that translate natural language input into structured ontological rep-
resentations (e.g., AquaLog [Lopez et al., 2005]), port thelanguage to specific domains,
e.g., ORAKEL [Cimiano et al., 2007], or use reformulated semantic structures NLION
[Ramachandran and Krishnamurthi, 2009]. AquaLog, for example, presents a solution
for a rapid customisation of the system for a particular ontology; with ORAKEL a sys-
tem engineer can adapt the natural language understanding (NLU) component in several
cycles thereby customising the interface to a certain knowledge domain; and NLION
uses shallow natural language processing techniques (i.e., spell checking, stemming,



and compound detection) to realise a single semantic concept or an ontology property.
All of them support the translation to SPARQL queries in principal. However, all of
them deal with written keywords or simple semantic relations, e.g., XisDefinedAsY.
They do not focus on the much more complex explanation-basedanswering process
while using a dialogue system.3

As introduced, the dominant query language for RDF repositories is the W3C rec-
ommendation SPARQL. Similar RDF-based query languages areworth mentioning,
such as RDQL4 or SERQL5. These languages are based on the notion of RDF triple
patterns, which can be connected via several query operators such as “union” or “fil-
ter”. In previous implementations of dialogue system backends without URDF, we used
SPARQL queries because they are the de facto standard. We also used the resources in
the Linked Data framework (see [Bizer, 2009]). The RDF triple structure itself, which
is used in Linked Data, represents enough structure to be called a database index,
which maps a wildcard triple pattern onto the matching concrete data triples. Although
the Linked Data sources are updated frequently, they can be considered rather static,
i.e., OWL-style reasoning about these sources is normally not provided. Moreover, the
SPARQL 2 specification (which most of these endpoints implement) provides support
for operators such as “group by” or aggregate functions (e.g., COUNT, MIN, MAX,
SUM). In the context of unstructured natural language input, SPARQL also provides
convenient operator extension, i.e., the “filter” operator, to specify free test searches
and even regular expressions based on operations for regular expressions. Examples of
how these operators can be used in the context of integratingLinked Data for semantic
dialogue and backend access can be found in [Sonntag and Kiesel, 2010].

3 Dialogue System Framework

In earlier projects [Wahlster, 2003,Reithinger et al., 2005] we integrated different sub-
components to multimodal interaction systems. In the context of the new THESEUS
programme6, we then implemented a situation-aware dialogue shell for semantic access
to image media, their annotations, and additional textual material. We use a distributed,
ontology-based, dialogue system architecture, where every major component for speech
understanding, dialogue management, or speech synthesis can be run on a different
host, increasing the scalability of the overall system.7 A shared representation and a
common knowledge base ease the dataflow within the system andavoid costly and
error-prone transformation processes (c.f. “No presentation without representation”).
More precisely, an ontology-based representation of a userquery can be used to create
a query that can be posed to a (U)RDF endpoint.

3 In addition, these systems directly transfer the input to the desired SPARQL queries with-
out dealing with the complex influences of message passing indialogue frameworks or input
fusion.

4 http://www.w3.org/Submission/RDQL/
5 http://www.openrdf.org/doc/sesame/users/ch06.html
6 http://www.theseus-programm.de
7 The dialogue system architecture is based on a generic framework for implementing multi-

modal dialogue systems (ODP platform, available at http://www.semvox.de/).



The dialogue system acts as the middleware between the clients and the backend
services (i.e., the RDF repositories with an online API) that hide complexity from the
user by presenting aggregated ontological data. Figure 1 shows the dialogue system
architecture. The client provides means to connect to the dialogue system via theevent
bus, to notify it of occurred events, to record and play back audio streams, and to render
the received display data obtained from thedialogue system/dialogue manager. The
generated (U)RDF queries are then processed by the backend system (Remote RDF
Repository) in order to retrieve the requested entities.

Fig. 1: Dialogue System Architecture

A central building block for component development and an integral part of the di-
alogue middleware is the included application programminginterface for the efficient
representation of ontology-based data using extended Typed Feature Structures (eTFS).
As described in [Schehl et al., 2008], the eTFS API is tightlyintegrated into a produc-
tion rule system which enables a declarative specification of the processing logic in
terms of production rules. While processing the user input in the dialogue system, the
output of the fusion step8 is transferred to the backend system. Figure 2 provides a
high-level view and rough sketch of the basic processing chain within the typical QA
process. In this work, the backend access has been extended by addressing URDF. We
use an Apache Tomcat server9 for this purpose. The presentation has to be adapted to
the result of the URDF process, i.e., graph-based explanations.

8 A modality fusion component keeps track of the ongoing discourse, completes different types
of anaphora, and merges input from different modalities. Weuse a production rule system,
FADE, which is part of the ODP distribution.

9 http://tomcat.apache.org/
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Fig. 2: Basic building blocks and core workflow of multimodaldialogue processing

4 URDF Framework

The URDF project, which is currently under development at the Max Planck Institute
for Informatics, aims to enhance SPARQL-style query processing over RDF knowledge
bases with simple and effective, top-down reasoning capabilities. Specifically, URDF
supports rule-based, first-order reasoning concepts knownfrom OWL-Lite and OWL-
DL, thus capturing a decidable subset of first-order predicate logic. Moreover, since
information extraction on the Web is often an iterative and inherently noisy process,
URDF explicitly targets the resolution ofinconsistenciesbetween the underlying RDF
facts and the inference rules. URDF also augments first-order reasoning by combining
soft rules, which may be violated by some instances (facts) in the knowledge base, and
hard rules, which may not be violated by any instance and can therefore be employed
as hard consistency constrains, e.g., for capturing functional properties in OWL-Lite.
Key to our approach for reasoning over uncertain data and resolving inconsistencies
directly at query time is a novel and efficient approximationalgorithm for a gener-
alised version of the Weighted MAX-SAT problem, which allows URDF to dynami-
cally cope with noisy data and/or evolving knowledge bases and changing domain con-
straints (rules). A further key feature of URDF is the ability to capture the resolution
steps employed to infer answers by the reasoner in the form ofan acyclic derivation
graph over grounded rules (aka data “provenance” [Buneman and Tan, 2007] or “lin-
eage” [Benjelloun et al., 2008]). This directed acyclic graph (DAG, cf. answer graphs)
structure connects both base and derived facts via the rulesthat were used for grounding,
which can be used toexplainthe answers given to a query and represent this explanation
in graphical form to the user.

4.1 Representation Model and Expressiveness

URDF considers aknowledge baseKB = {F , C,S} as a triple consisting of RDF
base factsF , soft clausesC, and hard (i.e., strict) rulesS. An RDF graphis a directed,
labeled multi-graph, in which nodes are entities (such as individuals and literals), and
labeled edges represent relationships between the entities. For example, an RDF graph



can have an edge between the entityUllmanand the entityStanford. This edge would be
labeled with the relation nameworksAt. More formally, an RDF graph over a finite set
of relationsRel and a finite set of entitiesEnt ⊇ Rel is a set of triplets (or facts)F ⊂
(Rel×Ent×Ent). RDF allows two entities to be connected by multiple relations (e.g.,
two people can be colleagues and friends at the same time). Thus, facts express binary
relationships between entities. For readability, we will write a fact(x,r,y) in common
prefix notation asr(x,y).

As opposed to OWL, RDF cannot directly express relationships between facts (i.e.,
“facts over facts”). Relationships with higher arity can however be represented by in-
troducing anevent entity, i.e., a new entity that stands in binary relationships withall
arguments of then-ary fact. Alternatively,n-ary relationships can be represented using
reification [Suchanek et al., 2008]. In RDF graphs, there is a distinction between indi-
vidual entities (such asAlbert Einstein) and class entities (such as the classphysicist).
Individuals are linked by thetyperelationship to their class. For example,Albert Ein-
steinis linked to the classphysicistby a statement(AlbertEinstein, type, physicist). The
classes themselves form a hierarchy. More general classes (such asscientist) include
more specific classes (such asphysicist). This hierarchy is expressed in RDF by edges
with thesubclassOfrelationship:(artist, subclassOf, singer).

Soft Rules We consider first-order logic rules over RDF facts. Agrounded soft rule
over a setF of RDF facts is a setC ⊆ F of facts, where each atomic factf ∈ C

is marked as either positive or negative and thus becomes aliteral. For example, a
grounded rule could be:

{¬worksAt(Ullman, Stanford), livesIn(Ullman, Stanford)}[0.4]

Each soft rule is assigned a non-negative, real-valued weight. A higher weight indi-
cates that matching the rules is of higher importance than matching a rule with a lower
weight. To simplify talking about grounded rules of the sameshape, we introducenon-
grounded rules. A non-grounded ruleC′ is a grounded ruleC over a set of facts inF ,
where one or more entities are replaced by variables. A non-grounded ruleC′ overF
implicitly stands for all grounded rulesC that can be obtained by substituting the vari-
ables inC′ by entities. Thus, the following rule subsumes the aforementioned grounded
rule:

{¬worksAt(Ullman, x), livesIn(Ullman, x)}[0.4]

When grounded, the weight of the ungrounded rule is propagated to all its ground-
ings. We use non-grounded rules solely to increase readability. We allow only Horn
rules, i.e., rules where at most one literal is positive. Horn rules with exactly one posi-
tive literal can equivalently be rewritten as implications, in which all literals are positive.
When written as implication, thebodyof a rule is a conjunction and theheadconsists
of a single literal. In a first-order representation, only simple literals with no nested
predicates or function calls are allowed in the rules. We can, however, extend the ex-
pressiveness of our reasoner (and yet remain in first-order)by allowing also rules with
simplearithmetic predicates, which are “closed” within the rule, i.e., they can be eval-
uated (and thus be grounded) on-the-fly from the given variable bindings when the rule



is processed. A grounded soft rule corresponds to a disjunction of literals, a so-called
clause.

Hard Rules Hard rules are a distinct set of rules which definemutually exclusivesets
of facts. Similarly to soft rules, hard rules can be expressed both in grounded and non-
grounded form. Agrounded hard ruleis a set of factsS ⊆ F (also called acompetitor
set) that enforces the following constraint: a possible worldp : F → {true, false} can
assigntrue to at most one factf ∈ S. For example, the following hard rule

{ bornIn(AngelaMerkel, Hamburg),
bornIn(AngelaMerkel, München),
bornIn(AngelaMerkel, Stuttgart)} �

specifies thatAngela Merkelcould be born in at most one out of the above cities. Sim-
ilarly to soft rules, we introducenon-grounded hard rules, where constants may be
replaced by variables. For example,bornIn(AngelaMerkel,x)may be used to mark all
the possible birth places ofAngela Merkelin the knowledge base as mutually exclu-
sive. Hard rules may not be violated and thus have no weights assigned (hence they are
marked by a�). For expressing these mutual-exclusion constraints, thehard rules en-
code special Horn clauses with only negatived literals. Equivalently, they can be rewrit-
ten as a number of conjunctions over binary Horn clauses withpair-wisely negated
literals.

4.2 Reasoning Framework

The URDF reasoning framework combines classic first-order reasoning with a gener-
alised Weighted MAX-SAT solver over both soft and hard rules. Query processing with
URDF consists of two phases: 1) lookups of basic query patterns against the knowl-
edge base, which involves both direct lookups of base facts in the knowledge base,
but also recursively grounding rules and inferring new facts; and 2) resolving poten-
tial inconsistencies by a second reasoning step in the form of a Weighted MAX-SAT
solver, which yields the final truth assignments to candidate answers obtained from the
previous grounding step. That is, given a query in the form ofa set of non-grounded
atoms, we aim to find an assignment of truth values to the grounded query atoms (and
all other grounded facts that are relevant for answering thequery), such that the sum of
the weights over the satisfied soft rules is maximised, without violating any of the hard
constraints.

SLD Resolution and Dependency Graph Construction In the absence of any rules,
URDF conforms to a standard (conjunctive) SPARQL engine, with the returned facts
consisting only of grounded query atoms over base factsF . URDF, however, allows
for the formulation of recursive rules (i.e., with the same predicate occurring in the
head as well as in the body of a rule), as well as mutually recursive sets of rules (i.e.,
with one rule producing grounded facts as input to another rule). Rather than reasoning
about all facts in the knowledge base (which would be infeasible at query time), URDF
investigates efficient top-down resolution algorithms forgrounding rules against the



knowledge base. Instead, we compute the so-calleddependency graph, which consists
only of facts in the knowledge base which are relevant for answering the query (includ-
ing lineage pointers to grounded rules for the derived facts). Dependency graph con-
struction is performed via SLD resolution [Apt and van Emden, 1982], which is similar
to the resolution strategy used in Prolog and Datalog. Furthermore, SLD resolution
over soft rules is also extended by a separate grounding phase for the hard rules (see
[Theobald et al., 2010] for algorithmic details).

Resolving Inconsistencies After dependency graph construction, URDF constructs a
propositional Boolean formula in conjunctive normal form (CNF) from all the lineage
pointers to the grounded soft and hard rules, as well as the base facts inF used for
grounding the rules. Since all rules are readily available in Horn clause form, the CNF
can efficiently be constructed as a conjunction of all rules which are embedded in the
dependency graph after the grounding phase. URDF employs anefficient approxima-
tion algorithm for a variant of the well-known Weighted MAX-SAT problem, which is
specifically tailored to our setting, i.e., by considering ageneralisation that is able to
capture the presence of both soft rules (which may be violated in the MAX-SAT solu-
tion) and hard rules (which may not be violated by the solution). The MAX-SAT solver
finally assignstrue to only a subset of answer facts which are free of inconsistencies.

5 Example Dialogue

The following dialogue illustrates a user’s practical interest in using a dialogue interface
on top of a semantic URDF search engine for answering naturallanguage questions.
The dialogue concentrates around the questions about the URDF contents, i.e., factoid
questions about celebrities, and the multimodal presentation of answer content. We use
a big touchscreen installation for the presentation of the speech-based user requests
(similar to our installation in [Sonntag et al., 2009]). On the touchscreen (cf. Figure 3),
we display so-called semantic interface elements (SIEs). ASIE is a window on the GUI
which displays aggregated multimedia results. For example, the Video SIE (Figure 3,
left) displays videos from a YouTube API10.
1 U: “Where is Angela Merkel born?”
2 S: Shows corresponding result in a SIE.
3 U: “What do Angela Merkel and Al Gore have in common?”
4 S: Shows corresponding relation graph.
5 U: “Where does he live?”
6 S: Shows corresponding relation graph.

*Synthesises a summary of the graph’s interpretation.*
In the example dialogue, turn (1) results in a structured result display (Figure 4,

“Hamburg” is also synthesised) according to factoid QA paradigm. The answer can be
looked up directly in the URDF database (only hard rules apply in case of inconsistent
knowledge). Turn (3) results in the display of a relation graph (similar to the graph in
Figure 3, right). The last user turn (5) “Where does he live?”is of particular interest

10 http://code.google.com/apis/youtube/overview.html



Fig. 3: Touchscreen surface with several semantic interface elements (SIEs)

from both a linguistic and database standpoint. We interpret the utterance as a deictic
one, where the determination of the (celebrity) referent isdependent on the context in
which it is said. Here, of course, the context is the referent“Al Gore”, stored in the
discourse context. In addition, the result is a complex explanation graph (Figure 5)
derived from soft rules.

In the explanation (lineage) of the answerbornIn(Al Gore, WashingtonD.C.), we
can see that this fact could be derived from two different soft rules:

C1 : livesIn(a,b)← marriedTo(a,c)∧ livesIn(c,b)

C2 : livesIn(a,b)← marriedTo(a,c)∧ bornIn(a,b)∧ bornIn(c,b)

The two derivations of the factbornIn(Al Gore, WashingtonD.C.) are therefore con-
nected by an OR-node in the graph which denotes a disjunctionbetween the two sub-
graphs (while literals in the body of a rule would be considered conjunctive). The first
derivation (in grey) denotes that Al Gore likely lives in Washington, D.C., because he
is married to Tipper Gore, and ruleC1 expresses that married couples likely live at the
same place. The place where Tipper Gore lives, on the other hand, also is not directly
known in the knowledge base but is derived from similar inference steps and further
groundings steps of different rules deployed in URDF. Overall, this subgraph reaches
a recursion level of depth 4 for the inference about where Al Gore might actually live.
The second derivation (in red) however shows that there is also a much shorter way
of deriving the place where Al Gore lives, namely via ruleC2 which expresses that if
two people are married and both were born in the same place (orarea), then the former
person also likely lives in the same place (or area). In otherwords, people might have
strong ties to their birth place, which clearly is a form of “soft” inference. In this latter
case, all the grounded facts that implybornIn(Al Gore, WashingtonD.C.) can directly
be grounded against base facts in the knowledge base in just asingle inference step.



Fig. 4: Factoid answer SIE for the question “Where is Angela Merkel born?”

Fig. 5: Complex explanation graph for the question “Where does he (Al Gore) live?”



6 Conclusion

We have discussed explanations in dialogue systems throughUncertain RDF knowl-
edge bases and presented URDF, a query engine for uncertain and potentially incon-
sistent RDF knowledge bases. This new backend can be integrated into a speech-based
dialogue system to answer questions about a specific domain.Whereas factoid ques-
tions can be answered by state-of-the-art backend repositories via SPARQL queries,
URDF provides the unique opportunity to also reason about uncertain knowledge and
provide explanation graphs in the context of multimodal QA.

In our multimodal application scenario, a more complex and tighter integration of
the provided result graphs has to be investigated. By extending the functional dialogue
shell modules for a more complex dialogue behaviour on the result structures, we should
be able to not only display the result graphs, but to paraphrase the result contents in nat-
ural language form as well. For example, the result graph could be presented in conjunc-
tion with the speech synthesis “I think he lives in Washington, D.C., because his wife,
Tipper Gore, also lives there.” This would, however, heavily exceed our current natural
language generation capabilities, but pave the way toward speech-based explanations, a
main factor for increasing the level of user trust in end-to-end human-computer interac-
tion systems. Automatically inferred knowledge by URDF provides a new data stream
and explanations for future, artificial intelligence basedinteraction systems.
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