Semiotic-Based Ontology Evaluation Tool (S-OntoEval)

Renata Dividino, Massimo Romanelli and Daniel Sonntag
DFKI GmbH, Saarbrücken
renata.dividino@igd.fraunhofer.de, massimo.romanelli@dfki.de, daniel.sonntag@dfki.de

Introduction
Ontology evaluation is a basis for defining what a good ontology is.

By analyzing the heterogeneous nature of works with respect to the assessment of the ontology, we could note three groups of evaluation methods assessing:

- the graph structure and formal semantics of an ontology (Guarino and Welty, 2002; Yao et al., 2005; Huang and Diao, 2006);
- the ontology’s intended use (Maedche and Staab, 2002; Porzel and Malaka, 2004; Daelemans and Reinberger, 2004; Lozano-Tello and Gomez-Perez, 2004); and
- the quality level of the ontology’s annotations (Noy, 2004).

These three assessment approaches are directly analogous to a semiotic assessment.

Considering an ontology is a semiotic object (see figure below), the quality of an ontology may be assessed with respect to its analogous to a semiotic assessment. (cognitive semantics), and its intended conceptualization (cognitive semantics), and its communication setting (pragmatics).

Evaluation in Semiotic Levels
Our semiotic-based ontology evaluation tool (S-OntoEval) makes use of an unique evaluation framework (Dividino, 2007) which allows to assess the quality of ontologies by drawing upon semiotics.

It consists of three main modules (structural, functional and usability) each of them responsible for the assessment of the ontology in one semiotic dimension.

S-OntoEval makes use of a Semantic Web framework (Java/Jena), which provides a programming environment for parsing and interpreting RDF(S) and OWL documents.

S-OntoEval
Basically, the S-OntoEval’s UI is composed of three tab windows for the evaluation at three semiotic levels, respectively.

Evaluation of SWIntO Use Case
We present the semiotic-based evaluation of the SWIntO ontology (Obitera et al., 2007) developed in the SmartWeb project (Wahlster, 2007).

SWIntO integrates a selection of specific domain and task specific ontologies (navigation, sport, discourse, etc.) with a core ontology.

We evaluated two metrics at the structural level:

- **maximum depth**: provides the number of nodes that lie on the longest path of the ontology’s tree.
- **consistency checking**: checks logical adequacy of the ontology model, i.e., lack of contradiction of the ontology (none of the facts deducible from the model contradict one another).

The structural evaluation below follows the consistency checking approach.

The task-based evaluation approach is a gold standard-based method which involves the creation of a validated corpus of answers for a certain task. The gold standard is used as a reference for checking the performance of an ontology driven system.

At the usability level, S-OntoEval implements the annotation analysis metric.

The annotation analysis consists of quantifying the number of ontology elements linked to the tag rdf:comment.

Conclusion
We looked at existing ontology evaluation methods and implemented a semiotic based evaluation tool (S-OntoEval) from the perspective of their integration into a single framework. This is achieved by basically three steps:

- firstly, the quality assessment of ontology syntax by making use of methods assessing the ontology’s topological dimension and formal semantics (logical dimension);
- secondly, the semantic dimension by measuring the accuracy of the ontology with respect to its conceptualization (or intended use);
- and finally, its usability dimension by adopting approaches addressing the quality level of the set of annotations about the ontology and its elements.

In the evaluation example, we choose four metrics among others (depth, consistency checking, task-based, and annotation analysis) which we believe to be representative in any ontology evaluation process.

The S-OntoEval tool allows to combine different evaluation scores which we plan to extend to more user-specific personalized combinations. After using S-OntoEval on the SWIntO ontology, an optimized version could be deployed for usage in the project THESEUS.

References
Yao et al., 2005... and Technology under the grant number 01MQ07016 (THESEUS). The responsibility for this publication lies with the authors.