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Abstract

Industry 4.0 factories become more and more complex with increased
maintenance costs. Reducing costs by cyber-physical (CP) controllers
should ensure the commercialization of the CPS for smart factory project
results. We implement multi-adaptive CP controllers in the following
domains: industrial robot arms, car manufacturing, steel industry, and
assembly lines in general. The main objective is to implement such con-
trollers for these application domains and let the industry partners provide
feedback about the cost reduction potential. In this paper, we describe
the technical infrastructure including deep learning and knowledge acqui-
sition submodules, followed by anomaly detection modules and intelligent
user interfaces in the IoT (Internet of Things) paradigm. In addition,
we report on three concrete use case implementations of industrial robots
and anomaly modeling, knowledge management and anomaly treatment
in the steel domain, and anomaly detection in the energy domain.

1 Introduction

A tight cooperation of automation and IT vendors should enable sustainable
business models supporting the European manufacturing sector to manage its
increasingly complex, inter-organizational production networks and align them
efficiently with global supply chains. The individual components will be ready
as products or as input for product development. Innovation is supported by
evaluated business models and concrete examples for customer business cases.

This should be realized by integrating a platform which uniquely com-
bines cross-enterprise event management (anomaly treatment via deep learning,
knowledge management via a semantic portal, intelligent user interfaces) with
digital product memory technology and smart object virtualization.

In this chapter, we report on our three milestones of the CPS for smart
factories activity at EIT Digital, funded by the EU.1 The three milestones can
be summarized as

1. CPS Knowledge engineering: understanding the formal requirements of
application cases and their formalization;

2. Implementation of software modules and tuning formal models and rules
to test scenarios of anomaly detection in physical environments. This in-
cludes functional programming with deep learning capacity, and ontology
creation/manipulation/extension via a semantic portal infrastructure and
intelligent user interfaces [28];

3. Transfer of modules into industrial settings, first evaluations, and business
modeling.

1See http://dfki.de/smartfactories.
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2 Technical Infrastructure

The over-arching challenge to address is to combine cyber-physical system (CPS)
safety and performance. CPS is to be understood as a network of interacting
elements with physical input and output, forming a system of collaborating
computational elements controlling physical entities such as Industry 4.0 fac-
tories. While addressing safety challenges, the outcomes include models of the
behavior of loops with human operators, in particular how to ensure safety. Be-
yond failures in the robotic system, humans can also make mistakes, and thus
a special desired outcome is a model which accounts for humans as produc-
ing anomalies by reacting to predictable maintenance tasks and unpredictable
events. Technical advancements include, most notably:

1. a GPU-based deep learning machine learning infrastructure for anomaly
treatment and data mining;

2. a smart factories knowledge portal infrastructure for an anomaly instance
base (knowledge acquisition and management);

3. model-based predictions with anomaly detection followed by workflow
management, including real-time verification and, possibly, machine learn-
ing fostering earlier anomaly detection;

4. intelligent user interfaces for expert knowledge acquisition, human be-
haviour input, and human-robot interaction by using, e.g., vision sensors.

These components are built into an architecture and are to be extended with
the characterization of a human collaborator who is also in the loop and may also
exhibit anomalous behavior. Cyber-physical systems are implemented in human
environments. The software/hardware outcome package consists of an anomaly
management system, including controllers for smart factories. We focus on both
open and closed-loop controllers in the robot domain and reporting/maintenance
domain in manufacturing.

The work plan for future Industry 4.0 factories comprises business models
for Industry 4.0 technology in order to tackle “unmodeled” anomalies that need
to be counteracted. That may happen in diverse ways: the first task is the
detection and clustering of the anomaly, followed by modeling by means of hu-
man expert domain knowledge, and finally, the computer-assisted optimization,
including the extension of the ontology or anomaly dictionary and the related
(automated) cost-saving workflow management.

2.1 Deep Learning

Based on recent research results, we exploit deep neural networks for the rep-
resentation and dimensionality reduction of complex sensory data. Neural net-
works are often understood as the universal approximators studied in the late
1980s and early 1990s, having a few layers of hidden sigmoidal units. It has been
shown that the training of such shallow networks is NP-complete [17]. Deep



Sonntag et al. 5

networks (or deep belief networks) have the structure of the above-mentioned
neural networks but a larger number of hidden layers; typically, this may go
beyond 100 [10]. Efficient methods have been introduced recently, see, e.g., [14]
and [25]. The new generation of deep neural networks can do more than associ-
ating outputs to inputs; they can work in reverse and can generate inputs from
representations, see [5] for a survey. Such networks are called autoencoders.
They have representational and generalization capabilities far beyond that of
many others. Generalization capabilities are excellent, but still: the larger and
richer the database, the better is the performance for most application cases.
The resurrection of neural networks was caused by three important factors:

– the development of deep learning, including the solutions for the vanishing
gradient problem by Restricted Boltzmann Machines [14, 5, 25];

– the increase of data set sizes via crowdsourcing;

– the use of graphics processors (GPUs) in computation, leading to process-
ing speed increase of up to two orders of magnitude. This increase allows
for serious hyper-parameter searches even in large data sets, eventually
leading to better optimization.

It must be stressed that there is still an important dichotomy between neural
network and Bayesian machine learning. For a large part, Bayesian analysis does
not apply to nonlinear neural networks and a rigorous mathematical analysis
of methods or results is not yet within our possibilities. This used to be the
case for deep learning, too, but recent developments provide provable bounds
for some networks types [2]. Probabilistic neural networks have been developed
[4, 3] and are in wide use. Furthermore, variational approximations that exploit
the autoencoder concept gained momentum recently [18, 16].

2.2 Knowledge Acquisition

Production controllers and their contextualization demand for a real-time se-
mantic layer for, e.g., the assembly lines in automotive factories, the steel pro-
duction domain, or the energy domain with smart meter and smart grid ana-
lytics applications.

In order to comply with the underlying logic of the daily business operations,
we rely on a dedicated semantic model supporting longitudinal access across
heterogeneous data sources. The semantic model, including the semantic portal
implementations and human-in-the-loop knowledge acquisition, will establish
the basis for seamless data integration of all production applications.

For the steel production use case, a semantic mediawiki2 architecture has
been implemented. A major goal of this architecture was to combine static fa-
cility models to be stored in an RDF triple store and made accessible to the user
via semantically enriched MediaWiki pages with dynamically executed business
process models in a largely seamless way. In this specific system architecture of

2https://semantic-mediawiki.org
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the hot rolling mill (steel usecase) there are two sources of information: a digital
pen (or pen based interaction on a corresponding smart phone application) and
the Object Memory Server (OMS) [13] for accessing an OMS memory that can
be stored in simple and cheap RFID labels. This information is then shared
with the semantic mediawiki to provide sensor data from the hot rolling mill
parts or the production line parts in real-time. The goal of this knowledge por-
tal development is the realization of a situation-specific adaption of production
steps, i.e., process parameters, because of certain potential anomaly events dur-
ing the manufacturing process. The dynamic behavior of smart machines was
realized by a knowledge-based decision making component. The component
decides on the actions to be taken in the production process based on informa-
tion about product variants and machine capabilities described in specifically
designed ontologies.

As a foundation of semantic product memories for the internet of things and
this smart factories project, see [35]. The development of low-cost, compact
digital storage, sensor and radio modules allows us to embed digital memo-
ries into products to record those anomaly key events. Such computationally
enhanced products can perceive and control their environment, analyze their ob-
servations, and communicate with other smart objects and human users. The
RFID and semantic portal infrastructure supports the interaction with digital
product memories [19] and controlled interaction with digital product memories
[12] during an assembly process. In addition, user input data is forwarded to
the corresponding servers on which additional handwriting and gesture recogni-
tion (active user input) or sensor checking procedures (automatic passive sensor
input) are executed. These results (e.g., documented anomalies) are stored in
the respective XML documents of the semantic MediaWiki (see Figure 1).

2.3 Anomaly Detection

Models are required for describing and controlling the dynamic behavior of non-
linear plants. Typically, such models are not sufficiently rich, especially if the
plant has many degrees of freedom or high-dimensional sensors, or when it is
embedded into a complex environment like robotic systems, intelligent vehicles,
or any other modern actor-sensor system that we depend on. In such cases,
the quality of fault detection deteriorates: too many false positives (i.e., false
alarms) make the fault detection useless, while too many false negatives (i.e.,
unobserved faults) may harm the system. Rather than fully trusting incomplete
models, we have put forth a methodology which creates a probabilistic vector
time series model of the system from the recorded data and detects outliers,
also called anomalies with respect to this learned model. This type of detection
is notoriously difficult as it is an ill-posed problem. First, the notion of anomaly
strongly depends on the domain. Then, the boundary between “normal” and
“anomalous” might not be precise and might evolve over time. Also, anomalies
might appear normal or be obscured by noise. Finally, collecting anomalous
data is very difficult, and labeling them is even more so [9].

Two observations are important to make: (i) anomalies are sparse by their
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Figure 1: Example of an automatically generated incident report (anomaly)
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Figure 2: Frame series of the assistant hitting the robot arm

very nature, and (ii) in a high-dimensional real-world scenario, it will not be
possible to rigorously define “normal” and “anomalous” regions of the data
space. We therefore designed an unsupervised approach together with a data
collection machinery by using either human interactions (Figure 2) or machine
generated “anomalies” (Figure 3.)

Figure 2: In one step of the data generation process, a probabilistic vector
time series model of the system’s data is created, and (patterns of) samples
that do not fit in the model were conjectured to be the anomalies. We found
that searches for anomalies can be made robust by means of Robust Principal
Component Analysis [8] if it is combined with group fused Lasso techniques [7]
and sparse event filtering [22].

Figure 3: The seven measured joint angle trajectories are plotted in different
colors. The arrival of a new desired configuration for the robot arm is visual-
ized by a thin vertical black line. A trajectory segment from the current to the
desired configuration is computed and executed. Upon arrival at the desired
configuration, a new desired configuration is sampled. In each of the 10 seg-
ments there is a probability of 15% that an anomaly is introduced, visualized by
a vertical, light colored bar matching the color of the joint the anomaly was in-
duced on. In this example, the anomaly in joint w1 is clearly visible as an indent
in the sequence ranging from about 14 s to 15 s. For an anomaly-free sample,
the plot would look the same except that there would be no “command” in the
sequence.

Although sparse methods are efficient, they are also slow. In order to over-
come this critical issue, we developed an architecture that fits the deep learning
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Figure 3: Exemplary anomalous sample.

scheme that we call “Columnar Machine” [20]; this machine can take advantage
of the group structure (if present) as in the above-mentioned robust anomaly
detection scheme.

Both workflow management and verification require a modular structure and
goal-oriented optimization techniques. We developed a theoretical framework
for cyber-physical systems with learnable stochastic models of the environment
for risk management [32]. The framework meets the constraints of functional
programming [21], a desired feature in software development, testing, and veri-
fication.

2.4 Intelligent User Interfaces

Internet of Things (IoT) is mainly about connected devices embedded in our
everyday environment. Typically, ”interaction” in the context of IoT means
interfaces which allow people to either monitor or configure IoT devices. Some
examples include mobile applications and embedded touchscreens for control of
various functions (e.g., lights or control buttons) in environments such as smart
factories. In our application cases, humans are an explicit part of the scenario.
Traditional graphical interfaces often lead to a clumsy co-existence of human and
IoT devices (consider a tablet for remote-controlling a robot arm). Thus, there
is a need to investigate what kinds of interaction techniques could provide IoT to
be more human-oriented, what role automation and interaction has to play, and
how human-originated data (sensor data for physiological computing) can be
used in IoT [33]. Figure 4 shows our intelligent user interface IoT architecture
including the semantic mediawiki, the industrial Baxter robot, and the object-
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Figure 4: Intelligent User Interface Architecture

detection based anomaly detection.
In many scenarios in modern work practices where robots improve traditional

industrial work flows, the co-operation of robots with human workers plays
a central role. In this project we focus on direct human-robot-interaction in
scenarios where humans and robots interact with the same object (workpiece
or tool). Thereby, we address the mutual identification of an object through
the human and the robot. It is easy to inform the user about which object the
robot is addressing (e.g., by pointing, synthesized speech, explicit action). One
of the challenges is to inform the robot about the object the human is attending
to without interrupting and affecting the execution of the manual task of the
human worker. Figure 5 illustrates the scenario. For the purpose of detecting
human intentions automatically, and support activity recognition in general, we
developed an eye-tracking system capable of analyzing human eye movements
and interpreting specific movement patterns and fixations as eye gestures that
were sent to the robot’s control system.

To build a base system for experiments leading to such a functionality, it
was necessary to develop an operating software for a commercial eye-tracking
hardware. Available standard software lacks important features like network
transport of gaze points and objects the user gazes at. Also the support of cloud
based databases for visual object features that are important in co-operative in-
dustrial applications was typically missing in commercial eye-tracking systems.
Therefore the distributed service architecture of the project was extended by
components around an object- and eye-gesture-recognition service. This system
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Figure 5: Overview of the co-operation of robots with human workers

uses an object database for storing visual feature vectors of given objects, an-
alyzes the user’s eye movements, extracts the gaze coordinates, and identifies
different eye gestures. The extracted information is then sent to a client via an
efficient low level network protocol. The lower part of figure 4 visualizes the
described components of the system architecture based on [29, 30, 27, 31].

In order to allow for vision-based object and activity recognition, we im-
plemented a 3D video annotation tool to provide supervised learning material
for the deep learning and anomaly detection infrastructure. [11] present an
overview of the state-of-the-art in image and video annotation tools. Two new
directions are prominent for Industry 4.0 CPS: first, recent work leverages on
highly capable devices such as smartphones and tablets that embrace novel
interaction paradigms, for example, touch, gesture-based or physical content
interaction [26]; we generalize this to multimodal multisensor annotation in
the smart factory context. Second, our own previous development LabelMovie,
a semi-supervised machine annotation tool with quality assurance and crowd-
sourcing options, has been opted for videos (spatio-temporal annotation) [23].
The annotation tool provides a special graphical user interface for multimodal
multisensor data and connectors to commercially available sensor systems (e.g.,
Intel RealSense F200 3D camera, Leap Motion, and Myo). The collected videos
are used to learn hand movement for activity recognition in the joint interaction
space of a human and a robot.
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3 Use Cases

The tight cooperation of automation, cyber-physical systems in production en-
gineering, and IT vendors should enable sustainable business models supporting
the European manufacturing and smart grid sector to manage its increasingly
complex, inter-organizational production networks and align them efficiently
with global supply chains. The individual components of the technical architec-
ture should be made ready as service products or as input for product develop-
ment. Innovation is supported by evaluated business models and concrete cus-
tomer business cases, e.g., online anomaly-detection methods in a welding-based
production scenario. Recent technological developments include breakthroughs
in object memories (smart meter data), big data analysis, and controller soft-
ware.3 4

We include new methods for finding and treating anomalies such as deep
neural networks and the semantic portal that can host instance bases of anoma-
lies.

3.1 Industrial Robots and Anomaly Modeling

We exploit online anomaly-detection methods in production scenarios. Qual-
ity control in a production scenario is an important attainable goal, and our
methodologies carry the potential of obtaining that by combining deep learning
with sparse representations [22].

Human-robot interaction requires the detection, interpretation, and predic-
tion of human body movements within context, including hand, arm, head, face,
and eye movements that reveal information about the manipulations and thus
about the ongoing activity, including the intentions. We have been developing
a novel database for hand pose tracking and exploit deep-learning methods for
the estimations. The tool is under testing and the data set can be extended
if needed. In this project, we use a hand model (libhand, [34]), 3D cameras
of different kinds, and a SmartGlove5. After initial evaluation it can be said
that only the combination of SmartGlove and libhand suits our goals (precise
measurements). Data collected with SmartGlove are transferred to libhand and
different 3D views are collected. In current work, we explore robotic motion
together with facial expression and human body distance (which is required for
safety reasons). A facial expression estimation tool is also available to us, based
on [15]. Head pose estimation is very precise, the gaze estimation tool has only
about 2 degrees of uncertainty, but requires a high-resolution input video.

In many scenarios in modern work practices where robots improve traditional
industrial work flows, the co-operation of robots with human workers plays a
central role. For human-robot interaction, we developed a Unity3D serious game
in order to model realistic scenarios. This game examines human behavior in
tasks of divided attention. The game was implemented for the 3D virtual reality

3http://sites.tcs.com/big-data-study/return-on-investment-in-big-data/
4http://www.greentechmedia.com/research/report/the-soft-grid-2013
5http://www.neofect.com/en/smartglove
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headset Oculus Rift, equipped with hand pose estimation 3D camera and the
SMI tool for gaze direction estimation. Serious games scripts can be run. The
game of the use case was carefully chosen out of many dozens of other games,
the main point being to develop a user model, where WCET (worst case execu-
tion time) distribution can be estimated. In this game, the need for workflow
management becomes straightforward, since attended regions and possibly in-
tentions can be estimated from gaze, together with the registration of the simple
manipulation tasks. This is a model for a controller room, where divided at-
tention can be measured under various conditions, including adjustable stress
levels. In turn, these games provide a high quality model for CPS with human-
in-the-loop problems. A further goal beyond the quantification of the behavior
of the human participant is to find methods for proper robotic help in case of
anomalies. A number of experiments have been conducted with 10 people and
in about 10 sessions. Estimation of WCET is in progress. As a result, this game
goes beyond the problem of human-robot collaboration.

3.2 Anomaly Treatment in the Steel Domain

The main focus of this use case scenario is to enable a seamless integration of
production and maintenance processes in the context of anomaly treatment.
Proper maintenance of industrial plants is of high relevance. It helps to signif-
icantly reduce operating costs as well as to improve productivity of the plant
operations and the quality of the product. The overall objective of a plant main-
tenance management system is to ensure the reliability of a plant (component)
to perform its functions. Thus, maintenance is seen as any activity that is car-
ried out on a plant or respectively component of a plant in order to ensure that
this plant or component of a plant continues to perform its intended function.

However, as of today, the integration of production and maintenance pro-
cesses and know-how is only addressed and realized in a very limited way. In the
past, when the machines have not been that automated, complex and connected,
employees from the production site included maintenance task into their daily
routines. Only in situations when the handling of the identified failure exceeded
their own expertise, external maintenance supports were requested.

Today, with the increase in automatization and digitalization of plants, more
and more monitoring and maintenance applications are available. Those mon-
itoring applications are primarily designed to track single and isolated com-
ponents or parts. Other frequently used maintenance routines are predictive
maintenance application servicing single parts or components of plants, such
as condition-based monitoring applications for individual plant operations or
plant components. In general, those techniques are complemented with preven-
tive maintenance strategies. For example, on a predetermined periodical basis,
components of the plant are taken off-line in order to inspect them. Based on
the inspection result, repairs are made and the components are put back into
operations or the affected components are replaced. Thus, due to the sheer com-
plexity of the underlying processes and operations, this leads to the situation
that the particular employees having the highest experience with handling the
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machines and plant components are no longer actively involved in the mainte-
nance process. In sum, although various maintenance applications and efforts
are accomplished on different levels, several shortcomings can be observed:

1. many different monitoring applications, such as predictive maintenance
applications, provide important insights about plant components, but do
not produce insights covering the comprehensive perspective on the plant
performance. The maintenance is focused on local aspects but ignores the
plant performance as a whole;

2. the knowledge and expertise of production employees most experienced
in handling the plant components are no longer actively involved in the
maintenance process;

3. the semantic knowledge about the structure and the basic principles of
the plant is not incorporated into the maintenance processes. In partic-
ular, the semantics about how plant components are operating and how
they are connected with each other as input for the interpretation of local
maintenance observations in a global scale is neither available nor used.

In order to overcome the described shortcomings, the general idea of the
extended business use case is to seamlessly align human-generated expert know-
how with machine-generated maintenance know-how in a semantically consis-
tent manner in order to significantly improve the analytics-based maintenance
applications (Figure 6). The main contribution of the described technical in-
frastructure for selected extended business scenario is

1. to seamlessly align the local perspective of the large number of monitoring
applications, such as predictive maintenance applications, as well as the
historical data of the various preventive maintenance strategies into one
global and coherent perspective;

2. to establish means for the seamless integration and processing of expert
knowledge in the production field;

3. to incorporate the structural knowledge about the plant and its operations
by means of a semantic model covering various levels such that the gen-
eral representation of all necessary (pre-processed) data sources becomes
possible; and

4. to use this integrated data source as input for analytics applications aim-
ing to produce new valuable insights as well as to trigger automatically
recommended actions for improved overall plant maintenance processes.

As already indicated above, existing plant monitoring and maintenance ap-
plication can be classified as follows [6]:

– Breakdown maintenance applications; i.e., applications that help to fix
(the component of) a plant when it is broken. This maintenance routine
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is reactive and is only executed when plant equipment needs to be repaired.
It is neither based on an underlying routine maintenance task, nor on a
scheduled maintenance strategy.

– Preventive maintenance applications; i.e., applications that are based on
fixed maintenance schedules in order to replace the affected components
of a plant.

– Predictive maintenance application; i.e., applications for the condition-
based monitoring of the plant operations / components.

– Proactive maintenance applications; i.e., application that concentrate on
the proactive monitoring of plant operations /components enhanced by
the correction of root causes to component failures.

The maintenance application rely on a high degree of automization and digi-
talization. To the best of our knowledge, there exists no application that allows
to seamlessly integrate and process human-based and factory-based monitor-
ing data to improve the overall performance. There are related working papers
highlighting the need to align maintenance and production processes. However,
besides highlighting the problem scope, those works, e.g., [1], do not provide
any concrete solution on how to address these shortcomings. In addition, there
exist several research approaches that investigate the use of semantics and on-
tologies for improving maintenance processes and intelligent fault diagnoses.
For instance, [36] introduces an ontology-based reasoning framework for intel-
ligent fault diagnosis of wind turbines. However, this approach neither covers
the seamless integration of human-generated data, nor the seamless integration
into related business processes. [24] introduces an approach for modeling the
semantics of a failure context in order to improve the maintenance support for
mobile actors. Although this approach makes use of semantics to formally de-
scribe the failure context, the overall applications scenario does not focus on the
seamless alignment of human- and machine-generated know-how.

The overall idea of our use case scenario is to establish an application that
allows the seamless integration, alignment, processing and analyzing of ma-
chine and human-generated monitoring data in order to produce new insights
with business value. The machine-generated data originates from the various
condition-based monitoring applications or the data repositories of the plan.
The human-generated data is captured by semantic-based / intelligent user in-
teraction applications. In order to realize the extended business scenario, several
components are required (Figure 6):

The plant data repository (our Semantic MediaWiki) encompasses all data
sources produced and stored in the context of the production process. For
instance, the plant data repository collects any historical information about the
accomplished production processes (i.e., all accomplished transformations). The
data sources can be distributed along the process production chain. A set of
monitoring application(s) is needed; these continuously measure the condition of
component in order to assess whether it will fail during some future period. The
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Figure 6: Overview of the steel domain business scenario

data collected in general focus on tracking the condition of particular features,
such as vibration analysis, infra-red thermographs, ultrasonic detection, etc.
Although the recorded data can be utilized to determine the condition of an
isolated component in order to decide about any necessary repairs, the recorded
data about possible anomalies will be seamlessly aligned within the adapted
incident-report model to establish the basis for aligning human and machine-
produced monitoring data for improved plant performance. An intelligent user
interfaces establishes means to acquire human-produced data in an efficient
manner. This semantic data acquisition component, which can be realized as
a smart pen application, is aligned with the underlying working routine of the
experts in order ensure ease-of use. In addition, the intelligent user interface
ensures that all data is captured in semantically annotated form. In general,
this is realized by determining the underlying context of the user-input and
expressing it with corresponding semantic terminology. In this implementation
of the use case scenario, we are using a smart pen application in combination
with a customized incident / anomaly report (paper-based). Figure 7 shows the
incident report document (hot rolling mill) to be filled out by a maintenance
worker in case that an anomaly has been detected.

3.3 Outlook: Anomaly Detection in the Energy Domain

According to related surveys, integrated data analytics in the energy and re-
sources domain promise business impact: in comparison to other industries,
companies in the energy and resources industry are expected to generate, amongst
others, the highest returns on big data investments. In order to make use of
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Figure 7: Incident Report Document
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this wealth of data, we have two challenges to tackle:

1. seamless data integration: how to make disparate and incompatible datasets
usable, interoperable and valuable across enterprises.

2. data analytics for insights into new products.

By aligning existing data discovery technologies and semantic technologies,
new insights in the areas of smart meter and smart grid analytics application
will be investigated and prototypically implemented. The focus will be on seam-
less integration of the Information Technology with the Operational Technology
covering all kind of sensors from for example protection devices, via supervisory
control and data acquisition (SCADA), etc.). The range of analytics applica-
tions in the integrated IT/OT world cover, for instance, voltage map genera-
tion, outage prevention, optimization applications, fuse dimensioning and asset
life, asset performance management, prediction, or fault grid analysis. Poten-
tial business applications range from asset performance management, SCADA
based data analysis, to outage prevention, etc. Through systematic customer
evaluation processes, value propositions will be identified and implemented as
prototypical and advanced functionality.
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