
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
SVG-based Knowledge

Visualization

DIPLOMA THESIS

Miloš Kaláb

Brno, spring 2012

Declaration

Hereby I declare, that this paper is my original authorial work, which I
have worked out by my own. All sources, references and literature used or
excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

Advisor: RNDr. Tomáš Gregar Ph.D.

ii

Acknowledgement

I would like to thank RNDr. Tomáš Gregar Ph.D. for supervising the thesis.
His opinions, comments and advising helped me a lot with accomplishing
this work. I would also like to thank to Dr. Daniel Sonntag from DFKI GmbH.
Saarbrücken, Germany, for the opportunity to work for him on the Medico
project and for his supervising of the thesis during my erasmus exchange
in Germany. Big thanks also to Jochen Setz from Dr. Sonntag’s team who
worked on the server background used by my visualization. Last but not
least, I would like to thank to my family and friends for being extraordinary
supportive.

iii

Abstract

The aim of this thesis is to analyze the visualization of semantic data and sug-
gest an approach to general visualization into the SVG format. Afterwards,
the approach is to be implemented in a visualizer allowing user to customize
the visualization according to the nature of the data. The visualizer was
integrated as an extension of Fresnel Editor.

iv

Keywords

Semantic knowledge, SVG, Visualization, JavaScript, Java, XML, Fresnel,
XSLT

v

Contents

Introduction . 3
1 Brief Introduction to the Related Technologies 5

1.1 XML – Extensible Markup Language 5
1.1.1 XSLT – Extensible Stylesheet Lang. Transformations . 6

1.2 RDF – Resource Description Framework 8
1.3 Fresnel . 8

1.3.1 Fresnel Selector Language for RDF 9
1.3.2 Display Vocabulary for RDF 9
1.3.3 Fresnel Rendering Process 10

2 SVG – Scalable Vector Graphics . 11
2.1 Vector vs. raster . 12
2.2 SVG Support among Web Browsers 14
2.3 Styling of SVG . 16

2.3.1 Presentation Attributes and Styling with XSL 16
2.3.2 Styling with CSS . 18
2.3.3 Accessibility of Styles 19

2.4 Representation of Text Content in SVG 19
2.5 Interactivity of SVG Content 20

2.5.1 Events in SVG . 21
2.5.2 Scripting in SVG . 22

3 Fresnel Editor . 25
3.1 Architecture of Fresnel Editor 25
3.2 The Visualization Process . 27
3.3 Issues and the Current State of Fresnel Editor 29

4 Batik SVG Toolkit . 30
4.1 The Core Modules of Batik . 32
4.2 Real World Projects Using Batik 34

5 Data Visualization Approaches . 36
5.1 Generating of an SVG Document 37

5.1.1 Transforming of an Intermediate XML Document . . 37
5.1.2 Building a Document via DOM API 42

6 SVG Visualization in Fresnel Editor 43

1

6.1 XSL Transformation into the SVG Format 43
6.2 Preprocessor . 46

6.2.1 Design . 46
6.2.1.1 User Roles 46
6.2.1.2 Use Cases . 47
6.2.1.3 State machine diagrams 52
6.2.1.4 Class diagram 54

6.2.2 Implementation . 54
6.3 Displaying of the SVG Image 56

7 SVG Tool for Image Annotation 58
7.1 The RadSpeech Project . 58

7.1.1 Exhibit-based Facetted Visualization 60
7.1.2 SVG-based Visualization for Image Annotation 61
7.1.3 Benefits And Constraints of the SVG Tool 65

Conclusion . 67
A Content of the Attached CD . 76

2

Introduction

The major challenge of today’s development is to provide information to
users in an easy, understable manner. There are many ways for data presen-
tation; one of the most efficient is to give the data a visual representation.

In case of semantic data is the visualization rather difficult, because of
relatively high cardinality of the semantic information set (knowledge base)
as well as the number of interrelations per its elements. The problem, how
to select and visualize the sematic data has been tackled by proprietary
metodologies, which raise the cost for the data presentation – even though
the visualization provides more or less similar output, the tools created by
different organizations are rarely interoperable, thus (almost) no reusability
is possible. The World Wide Web Consortium (W3C) recognized a need for
an unified method for the semantic data selection and visualization and
introduced the Fresnel language as a solution.

In 2009, Fresnel Editor was developed as a response to a need for an au-
thoring tool for Fresnel Lenses and Formats and visualizing RDF data which
was still missing. The tool presented the data in a simple (X)HTML format. In
the pursuit for extending Fresnel Editor with additional visualizations, SVG
was considered as an output format. SVG provides many useful features
and its utilization may be valuable in situations, where (X)HTML format
would have proven itself unsufficient. Therefore, the main task for the thesis
was to extend the Fresnel Editor with an SVG visualization module.

Firstly, an analysis of the domain was carried out and the technologies
were explored. This revealed possible issues to deal with and helped to
define the tasks to accomplish. The analysis was followed by a design of the
module and later on, by its development.

While I was working on the thesis, an opportunity to develop a tool
for anotating medical images arose. Also in this case seemed SVG as a
reasonable format to use, thus it was possible to profit from the experience
gained during the thesis related research and extend it even further.

On the following pages is firstly provided an overview of the technolo-
gies used within the projects, emphasizing SVG, Fresnel Editor and Batik
SVG Toolkit. Later are discussed issues brought up by the visualization

3

into the SVG format, accompanied with suggestions of the possible solu-
tions, which are implemented in the projects. The description of the projects
development deliverables follows.

4

Chapter 1

Brief Introduction to the Related Technologies

In the very beginning is provided a short decription of the fundamental
languages – XML, XSLT, RDF and Fresnel – that are closely connected to the
thesis. In this chapter, readers are briefly acquainted with these languages,
thus the following chapters can build on the basic knowledge.

1.1 XML – Extensible Markup Language

Extensible Markup Language (XML) is a markup language for storing struc-
tured data in both human-readable and machine-readable way. XML was
derived from Standard Generalized Markup Language (SGML, ISO 8879)
which aimed on large-scale electronic publishing and was not well suitable
for the need of the World Wide Web and other Internet services. Many fea-
tures stayed unchanged – the separation of logical and physical structures,
the Document Type Definition (DTD) allowing validation, the separation
of data and metadata, the separation of processing instructions from data
representation and syntax. Removed were the SGML Declaration. XML was
influenced by Text Encoding Initiative (TEI) and the language HTML. [1]
The final version of recommendation – XML 1.0 – was released on the 10th
of February 1998.

Currently, there are two versions of XML. The version XML 1.0 is nowa-
days available as its fifth edition (released on the 26th of November 2008)
and is recommended for general use. [2] The second version – XML 1.1 –
was released on the 16th of August 2006. The main differences lies in re-
quirements for characters used in element, attribute names and identifiers
and restriction-permission policy for name definition. [3] Regarding future
versions, only unofficial notions of XML 2.0 exist.

Generally, the XML specification defines an XML document as well-
formed (i.e. the document satisfies syntax rules provided in the specifica-
tion). Unlike other computer languages, XML does not offer set of fixed,
predefined tags; the tags are defined according to individual needs. The

5

1. BRIEF INTRODUCTION TO THE RELATED TECHNOLOGIES

schema describing the structure of an XML file is stored in various formats –
DTD, XML Schema and others. The XML schema is used by XML parsers to
validate the structure of XML data.

The flexibility of XML led to creating of its extensions: XHTML, SVG,
MathML, XSL, RDF, OWL, Atom etc. The primary aim of such formats is to
represent text; however, the necessity for accommodation of other data types,
such as video, music, vector graphics or web services is growing. XML also
brings the opportunity to combine multiple markup languages into single
profiles, for example XHTML + MathML + SVG. In such cases, vocabularies
of each language are distinguished using the namespace mechanism [4] that
provides uniquely named elements and attributes in an XML document.

Namespaces mentioned in the previous paragraph stand for one member
of the very broad family of XML markup languages, which also includes
XPath, XLink, XQuery, XSLT or XBase etc. Many of them are defined by W3C
and belong to essential technology standards.

1.1.1 XSLT – Extensible Stylesheet Language Transformations

Previously various derivatives of XML were mentioned. One of them, XSLT,
plays an important role in the SVG Visualizer that will be described later in
the thesis. This language was created as one part of Extensible Stylesheet
Language (XSL) which eventually split into XSLT, XSL Formatting Objects
(XSL-FO) and XML Path Language (XPath). [5] The W3C recommendation
XSLT 1.0 was released on 16th of November 1999 and is still used alongside
the newer version XSLT 2.0, which reached the recommendation status on
the 23th of January 2007. The changes between versions can be found in the
XSL Transformations (XSLT) Version 2.0 (under section J – Changes from
XSLT 1.0). [6]

We now turn to the purpose of XSLT. It is a declarative language for
transforming XML documents. The principal idea of XSLT is to separate the
content of information from its presentation; this means that a structured
text document recorded in XML can be transformed into (X)HTML docu-
ment/web page, output for printing (PDF or PostScript) or video display
etc. XSLT can be used for transforming XML documents with different XML
schemas as well as to make changes in a document itself; in fact, XSLT is
able to perform computations together with manipulation or combination
of data from different sources. [7]

6

1. BRIEF INTRODUCTION TO THE RELATED TECHNOLOGIES

Parser SerializerXSLT Processor

Source
Document

Result
Document

Stylesheet

Figure 1.1: Schematic view on the transformation process [7]

There are several approaches to transform a document:

• the result document may be generated dynamically either on server
or on client side (both the source XML document and the XSLT
transformation are accessed when the result document is requested)

• it may be generated during the publishing process (the result docu-
ment is published directly).

On the figure 1.1 is illustrated the transformation process:

1. The source XML document is parsed to produce an input tree struc-
ture and the XSLT processor reads the XSLT style sheet and prepares
template rules.

2. The XSLT processor applies the template rules on nodes of the input
tree. The root node of input tree is processed first and evaluates the
content according to the best-matched template.

3. Instructions in each template either process other nodes from the
input tree or generate nodes in an output tree.

4. The output tree structure is finally serialized into a result (XML)
document. [8]

7

1. BRIEF INTRODUCTION TO THE RELATED TECHNOLOGIES

1.2 RDF – Resource Description Framework

RDF is a standard for representing semantic knowledge in an implemen-
tation independent manner. Although data can be represented in the XML
format, its expressiveness is not strong enough to store all the data semantics.

The RDF format is based on several projects that aimed on the semantic
representation: Meta Content Framework, Dublin Core and Platform for
Internet Content Selection. The RDF specification became a W3C recommen-
dation on the 22 of February 1999 but later was revised (the latest version of
the specification was released on the 10 of February 2004. [9]

The basic concept of the RDF format are statements, so called triplets:
subject→ predicate→ object. The subject represents a resource, the predi-
cate its property or the relationship between the subject and an object. Object
represents the value of the property or another resource. As an example
might serve: “The sky is (=has color) blue”. In the environment of the Inter-
net, the decribed entities are usually specified by online available unique
Uniform Resource Identifiers (URI).[10]

RDF data models are commonly stored using the RDF/XML syntax or
the N3 notation. For their (usual) vastness, the RDF data models required
means to query a specific resource to eliminate unnecessary information. For
this purpose were created many query languages, such as SPARQL, RDQL,
Versa, RQL, or Fresnel.

1.3 Fresnel

When the semantic data stored in the RDF format are to be visualized, two
issues have to be addressed to provide a human-readable output. Firstly, it
is necessary to specify what information should be presented, and secondly,
how to present the selected piece of information. The mechanisms and
vocabularies for presenting RDF data differs between each tool facing this
challenge. Consequently, the differences prevent sharing and reusing of the
RDF knowledge presentation. This was the reason why W3C created Fresnel
language to standardize the selecting mechanism and the vocabulary by
putting forward concepts of lenses, formats and groups. [11]

The Fresnel specification consists of two parts: Fresnel Display Vocabu-
lary for RDF and Fresnel Selector Language for RDF (FSL).

8

1. BRIEF INTRODUCTION TO THE RELATED TECHNOLOGIES

1.3.1 Fresnel Selector Language for RDF

FSL is a language inspired by XPath and its purpose is to model traversal
paths in RDF graph. FSL does not depend on any RDF serialization; it takes
into account RDF models as directed labeled graphs. FSL is compatible with
Fresnel’s Basic Selectors as they are contained in the display vocabulary part,
however FSL is more expressive. [12] The authors of Fresnel summarize the
principles of FSL as follows: “An FSL expression represents a path from a
node or arc to another node or arc, passing by an arbitrary number of other
nodes and arcs. FSL paths explicitly represent both nodes and arcs as steps
on the path, as it is desirable to be able to constrain the type of arcs a path
should traverse.” [11]

1.3.2 Display Vocabulary for RDF

Let us turn to the Display Vocabulary for RDF. It consists of two modules,
each of them consists of both lens and format part:

Fresnel Core Vocabulary

Lens-Core: the basic vocabulary for defining and relating lenses

Format-Core: the basic vocabulary for specifying formats

Fresnel Extended Vocabulary Lens-Extended: additional terms for relat-
ing lenses and for using lens inheritance

Format-Extended: advanced format selector, media type and format
purpose vocabularies [13]

To achieve its goal – the interoperability – it is required from all browsers
aiming at Fresnel support to implement the complete core vocabulary. They
should also try to implement the extended vocabulary or at least parts of it
for the additional functionality to be available.

Lenses define properties of an RDF resource to be displayed, and their
order. The selection is carried out by selectors that represent queries in any of
the supported query languages; basic selectors based on RDF names (simple
test for a resource type), FSL selectors or SPARQL selectors.

Formats are used to assign visual information to RDF resources and
properties selected by lenses. The format vocabulary defines how a property
is labeled, how property values are displayed and references to CSS classes
which define various styling attributes.

Groups are the last of Fresnel basic concepts. They organize lenses and
formats so it is easy to determine which lenses and formats work together.

9

1. BRIEF INTRODUCTION TO THE RELATED TECHNOLOGIES

Groups also provide a way to define CSS classes that should apply on every
lens and format belonging to the group. [14]

1.3.3 Fresnel Rendering Process

Lens

Lens Lens

Format

Format
Format

CSS class

CSS class

CSS class

Fresnel Lens

Content
selection and

ordering

Fresnel Format

Content formating
and additional

content

Cascading Style Sheet

Styling instructions
for fonts, colors and

borders

Figure 1.2: Content selection, formatting and styling with Fresnel [13]

Fresnel strictly separate selection and formatting (see figure 1.2). The render-
ing process can be decomposed into these steps:

1. The Fresnel lenses are applied on a source RDF graph. The result is
an ordered tree of RDF nodes without any formatting information

2. The formatting information and hooks to CSS classes are added to
nodes of the result tree by applying Fresnel formats

3. The result created in the second step is rendered into an output
format (for example HTML, SVG, XML, PDF, plain text documents
etc.)[13]

10

Chapter 2

SVG – Scalable Vector Graphics

SVG is XML-based language developed by W3C for describing 2D graphics
in the vector format. It is not only the difference between vector and raster
graphics that distinguish SVG from other graphical formats. SVG capabilities
are still slightly underrated, therefore the usability of it has not been fully
explored. Later in the text are discussed possible use cases, where SVG
features might be very useful.

Initially, SVG was influenced by PGML1 and VML2 as well as by previous
experience with CSS, HTML or XLink. [15] SVG is being developed since
1999 and the SVG 1.0 recommendation was released on the 4th of September
2001. The most recent version – SVG 1.1 – was released on the 16th August
2011 [16] and was developed in parallel with SVG 1.2, which has still status
of working draft. [17] On the 14th of January 2003 was released SVG Mobile
recommendation which incorporate two simplified profiles: SVG Tiny and
SVG Basic. These lightweighted profiles are aimed for use on devices with
reduced computational and display capabilities; the first is defined to be
suitable for cellphones, the second for PDAs. [18]

Three types of objects are allowed in SVG: vector graphic, images (in
other words raster graphic) and text. Objects included in SVG documents can
be grouped, styled, transformed and composited into previously rendered
objects; this provides an ability to create not only static drawings but also
animated, interactive or both. SVG feature set also includes alpha masks, fil-
ter effects, template objects, nested transformations and clipping paths. [16]
Nevertheless, one feature of formats offering visual presentation is missing –
z-index. The drawing order is not separated from the document order. It
means that an element overlaps all the elements written in the source code
before. However, it is considered to enable this feature in SVG 1.2 because
of many requests made in that matter. [17] SVG has a very broad range of

1. Precision Graphics Markup Language – a proposal for a vector graphic format inspired
by Adobe’s PostScript and Portable Document Format
2. Vector Markup Language – developed from Rich Text Format (RTF) and implemented
by a group around Microsoft

11

2. SVG – SCALABLE VECTOR GRAPHICS

features many of which are beyond the scope of this thesis; only the relevant
features are described later in the sections 2.3, 2.4 and 2.5.

2.1 Vector vs. raster

At this point it would be appropriate to offer a short explanation about
graphic formats. Is vector format better than bitmaps? Are they universal or
is each rather suitable for specific purposes?

In vector graphics, the image is described by geometrical primitives
such as points, lines, curves and polygons which are based on mathematical
expressions. Each of these primitives has so called control point(s) with a
definite coordinate in the image; the x- and y-axes position is relative. If a
vector is resized by scaling, the primitives are recalculated and displayed
with no loss of data or detail. The information about visual style is assigned
to every element. The size of a vector image depends on complexity of the
drawing, not on its resolution.

BITMAP
.jpeg .gif .png

OUTLINE
.svg

Figure 2.1: Demonstration of the difference between raster image and
SVG [19]

Raster graphic image (also known as bitmap) is a two-dimensional grid
of dots – pixels. A pixel is a single point bearing information about its color
addressable by specific coordinates. The number of pixels in the meaning of

12

2. SVG – SCALABLE VECTOR GRAPHICS

width and height represents the image’s resolution. The quality and size of
the picture are proportional; the higher resolution and the color depth3, the
finer details will be distinguishable and the larger the size of the image will
be . When is a raster image resized, every pixel is spread over a larger area
on the display device which results in the loss of detail and clarity.

HTML5 Canvas SVG

+ High performance for drawing in
2D

+ Performance independent on what
is drawn; however, resolution in-
crease can cause performance degra-
dation

+ Result can be save as a raster image
(.png or .jpg)

+ Suits well for creating raster graph-
ics, editing images and for pixel-
level operations

− Absence of DOM nodes for the
drawing, only pixels

− Absence of API for animation – it
is necessary to use timers and other
events to update the canvas

− Bad capability to render texts

− Canvas turns everything drawn into
a matrix of pixels – accessibility
problem

− Canvas does not offer dynamic be-
havior – it shows statically the result
of user’s interaction. That is the rea-
son why it is not suitable for user in-
terfaces

+ Resolution independence – good for
scaling for any screen resolution

+ Animation support – directly via
SVG syntax or via scripting

+ Control over each element via SVG
DOM API in scripting language

+ XML origin of SVG makes the ac-
cessibility of SVG documents better
comparing to canvas

− The rendering slows proportionally
with the increased complexity.

− SVG does not suit certain applica-
tions, for example games

Table 2.1: Advantages and disadvantages of HTML5 Canvas and SVG [20]

Which format is better depends on a particular use. The vector format
is suitable for drawings, where is vital to have a lossless quality (such as
technical drawings and sketches or logos) or for resolution-independent
interfaces. The raster format is used for photographs and scanned pictures,
image analysis, rendering game graphics etc.

3. The number of bits used to represent the color of a single pixel

13

2. SVG – SCALABLE VECTOR GRAPHICS

With HTML54 establishing itself in the field of web development, the
raster format has gotten a new use. The HTML5 brings a concept of a
drawing canvas, which allows creating a 2D or a 3D graphics5 inside the
web browser. The output format for its 2D drawings is a raster image. The
same functionality can be provided by SVG. Even though they both do the
same, they do not do it equally. [20]

2.2 SVG Support among Web Browsers

The major problem of SVG nowadays is the legacy support of Internet
Explorer, which only in the version 9.0 and upcoming 10.0 implemented
partial SVG support. Despite the fact that the popularity of Internet Explorer
is rapidly decreasing, it is still used by approximately one third of users6.
However, many web sites provide both raster format and SVG and let the
user (or more precisely the browser) to choose the image file.

IE Firefox Chrome Safari Opera
iOS
Safari

Opera
Mini

Opera
Mobile

Android
Browser

10.0 2.1
3.6 3.2 11.0 2.2

7.0 9.0 4.0–4.1 11.1 2.3
8.0 10.0 16.0 4.2–4.3 11.5 3.0

Current 9.0 11.0 17.0 5.1 11.6 5.0 5.0–6.0 12.0 4.0
Near future 10.0 12.0 18.0 6.0 12.0

Supported Not supported

Table 2.2: SVG support in browsers (relevant are only features from SVG 1.1
recommendation) [23]

On the basis of the table 2.2 it might seem that SVG is now supported7

among the major browsers and as soon as the older version of Internet
Explorer will be abandoned, the SVG will be used widely. However, the
situation is not so simple as the support is often incomplete or differs in
nuances.

4. HTML5 is still under development, the latest working draft was released on the 25th
of May 2011. [21] Nevertheless, all major desktop and mobile browsers support HTML5 to
some extent. [22]
5. 2D drawing context is relatively well established in browsers whereas 3D drawing
context is still in the early stage of definition and development
6. According to statistics published to February 2012 at http://gs.statcounter.
com/, versions of IE held 35,75% users
7. Green color marks (at least partial) support of SVG

14

http://gs.statcounter.com/
http://gs.statcounter.com/

2. SVG – SCALABLE VECTOR GRAPHICS

Internet Explorer: partial native support available since Internet Explorer 9
which was released in March 2011. Before was possible to use Adobe
SVG Viewer plugin.

Gecko based browsers (Firefox): incomplete support for SVG 1.1 Full spec-
ification since 2005. The support is being improved ever since.

WebKit based browsers (Chrome, Safari): complete support for SVG 1.1
Full specification since 2006.

Opera: since Opera 8.0 was supporting SVG 1.1 Tiny, since Opera 9 SVG 1.1
Basic and partial SVG 1.1 Full. Since Opera 9.5 is partially supported
even SVG 1.2 Tiny.8

IE Firefox Chrome Safari Opera
iOS
Safari

Opera
Mini

Opera
Mobile

Android
Browser

10.0:
100% 2.1: 0%

3.6:
50%

3.2:
69%

11.0:
100% 2.2: 0%

7.0:
0%

9.0:
75%

4.0–4.1:
69%

11.1:
100% 2.3: 0%

8.0:
0%

10.0:
75%

16.0:
100%

4.2–4.3:
69%

11.5:
100%

3.0:
75%

Current
9.0:
25%

11.0:
75%

17.0:
100%

5.1:
75%

11.6:
100%

5.0:
75%

5.0–6.0:
50%

12.0:
100%

4.0:
75%

Near future
10.0:
50%

12.0:
75%

18.0:
100%

6.0:
100%

12.0:
100%

100%–86%
support

85%–71%
support

70%–56%
support

55%–41%
support

40%–26%
support

>25% sup-
port

Table 2.3: SVG support of following features: SMIL animation, filters, fonts
(all belong to SVG recommendation) [23]

Data presented in table 2.2 and table 2.3 are based on statistics available
on http://caniuse.com. The criterion for including the browser in the
overviews was browser usage higher than 3%9. [23]

8. Precise information about support in each browsers can be found on following websites:
http://blogs.msdn.com/b/ie/archive/2010/03/18/svg-in-ie9-roadmap.
aspx, https://developer.mozilla.org/En/SVG_in_Firefox, http://www.
webkit.org/projects/svg/status.xml, http://www.opera.com/docs/specs/
9. Statistics are based on data from http://gs.statcounter.com/ for February 2012

15

http://caniuse.com
http://blogs.msdn.com/b/ie/archive/2010/03/18/svg-in-ie9-roadmap.aspx
http://blogs.msdn.com/b/ie/archive/2010/03/18/svg-in-ie9-roadmap.aspx
https://developer.mozilla.org/En/SVG_in_Firefox
http://www.webkit.org/projects/svg/status.xml
http://www.webkit.org/projects/svg/status.xml
http://www.opera.com/docs/specs/
http://gs.statcounter.com/

2. SVG – SCALABLE VECTOR GRAPHICS

2.3 Styling of SVG

Let us return to the features of SVG; there are three of them to be introduced
more thoroughly. The first one is styling of SVG.

For defining the visual style, according to which is the SVG document
rendered, are used styling properties. The styling incorporates parameters
affecting visual appearance (fill, color, stroke-width etc.), text styling
(font-family, font-size etc.) and parameters influencing the rendering
of graphical elements (clip-path, marker, filter etc.). Many of SVG
style attributes are shared with CSS and XSL and are defined in the CSS2
specification10. The full list of styling properties can be found in chapter
Styling of the SVG specification. The common scenarios for using SVG
styling are following:

SVG content as an exchange format: to ensure interoperability across soft-
ware tools where the support for a particular style sheet language is
not guaranteed, the SVG content has to be fully specifiable without
using a style sheet language

SVG content as the output from XSLT: XML data can be transformed with
XSLT transformation into an SVG document to provide a graphical
representation of the data. The generated output of the transforma-
tion has to be a fully specified SVG content.

CSS styled SVG content: CSS is widely used styling language and is for its
features very suitable for SVG, thus CSS styling has to be possible to
apply on an SVG content [16]

There are two ways how to assign styling properties. Either using pre-
sentation attributes or CSS style sheets.

2.3.1 Presentation Attributes and Styling with XSL

Each styling property defined in SVG specification has a corresponding
XML (so called “presentation“) attribute with the same name. For example:
SVG stroke property (defining the color of a line that is painted along the
outline of the given graphical element) has a presentation attribute stroke
that is used to specify the property.

10. Cascading Style Sheets, level 2 is a style sheet language developed by W3C, recommen-
dation since the 12th May 1998 [24]

16

2. SVG – SCALABLE VECTOR GRAPHICS

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="200" height="100">
<circle cx="50" cy="50" r="40" fill="red"/>
<circle cx="150" cy="50" r="40" stroke="black"

stroke-width="2" fill="none"/>
</svg>

Figure 2.2: Presentation attributes example

The presentation attributes are simple, widely supported by interpreters
and viewers, allow restyling by using XSLT or by adding CSS style to over-
ride presentation attributes. They are also easy to use for content generation
using XSLT. On the other hand, they bring some limitations: the file size may
increase; the styling is attached to the content which makes restyling diffi-
cult; the styling rules cannot be abstracted and attached to groups matching
specific pattern. Lastly, if an SVG content is embedded into other CSS-styled
document, the presentation attributes may collide with the styling defined in
the CSS sheet and thus the graphical presentation of the SVG content can de-
teriorate. They have also the lowest priority while rendering in applications
supporting CSS. [16]

While styling with XSL, the presentation attributes are used in the same
way as described above. The only differences are that the XSL style sheet con-
tains templates matching the structure of a source and that the presentation
attribute is defined with an XSL construction (see figure 2.3).

...
<xsl:template match="svg:rect">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:attribute name="fill">red</xsl:attribute>
<xsl:attribute name="stroke">blue</xsl:attribute>
<xsl:attribute name="stroke-width">3</xsl:attribute>

</xsl:copy>
</xsl:template>
...

Figure 2.3: Example of XSL styling

17

2. SVG – SCALABLE VECTOR GRAPHICS

2.3.2 Styling with CSS

SVG implementation supporting CSS is required to support external CSS
style sheets, internal CSS style sheets and inline style. The declaration or
style sheet rules has to conform to the specification of Cascading Style Sheets,
level 2.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="200" height="100">
<defs>
<style type="text/css"><![CDATA[
circle {
fill: red;
stroke: black;
stroke-width: 2

}
]]></style>

</defs>
<circle cx="50" cy="50" r="40"/>
<circle cx="150" cy="50" r="40"/>

</svg>

Figure 2.4: Internal CSS style sheet example

Note in the example (vide figure 2.4) that both circles are styled with
one CSS rule – the opportunity to style according to a data model is missing
within presentation attributes styling method.

The difference between internal and external style sheet is that in case
the external style sheet is used, the reference to the CSS style sheet, for exam-
ple: <?xml-stylesheet href="foo.css" type="text/css"?> has
to be placed in the preamble of the SVG document. The referred style sheet
contains only CSS rules. In the case when internal style sheet is used, the
styling rules are strongly recommended to be surrounded with CDATA con-
struct (i.e. <![CDATA[...]]>). This is necessary as the style sheet rules
may contain characters that conflict with XML parsing.

The last method is inlined CSS styles. The rules are declared as pairs
“property-name:value” in semicolon-separated list placed in a style at-
tribute of an element – the same method that can be used in (X)HTML.

CSS selectors works in SVG similarly to (X)HTML as well. Rules can be
attached to SVG element node types or elements with the attribute class
or id assigned. Use of contextual CSS selectors is available as well. For more
information about selectors see the CSS2 specifications. [16]

18

2. SVG – SCALABLE VECTOR GRAPHICS

2.3.3 Accessibility of Styles

The use-case scenario of an SVG document can differ and so can the scope
where a style sheet is available.

Stand-alone SVG document: any style sheet defined within the document
in any way noted in the preceding sections is available across the
entire document.

Stand-alone SVG document embedded by reference to a file11: both refer-
encing and referenced documents see only their own style sheet. To
achieve the same styling, both documents have to be linked to the
same style sheet.

Stand-alone SVG content directly included in XML document: the style
sheet of the XML document implicitly affect the included SVG con-
tent, even though the content use different namespace than the rest
of the document. To get different styling for the SVG part, the style
attribute should be used. It is also possible to define id attribute on
the <svg> element and then use contextual SVG selectors. [16]

2.4 Representation of Text Content in SVG

The previous section described how to define visual style of an SVG doc-
ument. Using SVG shapes (<rect>, <circle> etc.12) is quite straightfor-
ward, thus it is omitted from this text. However, visualization of text using
SVG created an interesting challenge for this thesis. For this reason, the part
of SVG specification dedicated to text is briefly described.

To include textual content into an SVG document we use the <text>
element in which a string of the text is represented as XML character data13;
this is a great benefit of using text in SVG. Firstly, the text data are readily
accessible to the visually impaired, secondly, the text strings are available to
reach by searching, as well as select and copy to the system clipboard. The
fact that the text content is searchable also enables Web search engines to
search throughout the SVG documents.

All the features applicable on graphic elements affect the <text> ele-
ment as well: coordinate system transformations, painting, clipping and

11. Reference created using img (HTML, XML), object (HTML) or image (SVG) elements
12. The full list and description is to be found in the SVG specification, chapter Basic Shapes
13. The description of the format is given in an XML language specification, chapter Charac-
ter Data and Markup

19

2. SVG – SCALABLE VECTOR GRAPHICS

masking. The obligatory attributes of <text> element are x and y position,
which characterize the position of first glyph of the string. Other attributes
related to <text> are relevant according to the usage context; text is possi-
ble to visualize simply in a straight line or attached to a path. For both, SVG
supports processing features allowing horizontal and vertical orientation of
text and left-to-right or right-to-left text (for example Arabic or Hebrew). [16]

Each <text> element contain a single string of text. Thus, visualizing
multiline text is achieved using one of following methods:

• Pre-computing the line breaks and using multiple <text> elements
(one for each line of text)

• Pre-computing the line breaks and using single <text> element
containing several <tspan> child elements. Note: it is necessary to
define appropriate start positions for each <tspan> element.

• Expressing the text in different language, for example XHTML, which
is embedded inline within a <foreignObject> element14. Even
though this is part of XML 1.1 recommendation, the exact semantics
of this approach is not yet completely defined. [16]

• The text to be rendered is enveloped with <textArea> element. This
approach is new in SVG 1.2 specification. Implicitly, a <textArea>
represents a region that is rectangular; nevertheless, in other profiles
the region may allow a sequence of arbitrary shapes. [17]

However, the support of <textArea> and <foreignObject> by web
browsers is meagre. SVG developers thus face a challenge with the compati-
bility among different browsers.

2.5 Interactivity of SVG Content

Creating of a visualization does not only mean giving the data some graph-
ical representation; this would be possible to achieve by using the raster
format as well. The advantage of SVG is that we may provide very sophisti-
cated interactive user interface, thus add an extra value on the top of the data
presentation simply by exploiting SVG features and/or a scripting language.
The features that can be utilized to provide interactivity are following:

14. The use of <foreignObject> element is described in the chapter Extensibility of the
SVG specification

20

2. SVG – SCALABLE VECTOR GRAPHICS

• triggering execution of scripts or animations by user-initiated actions
(clicking mouse button etc.)

• following hyperlinks to the new Web pages by user-initiated actions

• panning and zooming the SVG content

• changing the cursor according to the movement of a pointing de-
vice [16]

2.5.1 Events in SVG

In the list above were mentioned user-initiated actions which are represented
by events. An DOM2 event listener15 can be registered using the SVG DOM;
when a registered event occurs, scripts or animations can be invoked/ended.
SVG also includes event attributes which associate a script to be executed
when a given event occurs to an element which owns the event attribute. [16]

The complete set of events available in SVG is listed in DOM and SVG
specifications under the chapter Interactivity; events presented in the spec-
ifications include document events, pointer events, but there are no key
events provided, however, it is planned to include them in future version
of the DOM and SVG specifications. It is important to emphasize that the
event model used in SVG has slight differences to the model used in HTML;
furthermore some events commonly used in HTML are not implemented in
SVG (for example double-click event). Also touch-input devices may create
a challenge – device specific events may prevent the use of certain pointer
events. A pointer event is a representation of an action performed on a
pointer device. At any rate, the interfaces of mobile devices are being rapidly
developed and the current situation can change in the near future.

The group of pointer events provides a mechanism to emulate the be-
havior of a pointer device. Each pointer event determines its target element,
an element that is the topmost graphics element whose content is under the
pointer at the time the event occurs. Interaction behaviors may be either
dependent on the type of target element or set explicitly (scripted event
listeners, CSS pseudo-classes matches or declarative animation triggered by
events. The behavior of pointer events can be more precisely specified using
a pointer-events property. [16]

15. Document Object Model Level 2 Events Specification is W3C recommendation defining
an interface that provides a generic event system to programs and scripts [25]

21

2. SVG – SCALABLE VECTOR GRAPHICS

2.5.2 Scripting in SVG

Scripting over SVG content provides a possibility to create a very inter-
active environment. The default scripting language used in SVG is EC-
MAScript16, although it is possible to specify another scripting language
using contentScriptType attribute on the <svg> element, or by speci-
fying type attribute on the <script> element. <script> used in SVG is
equivalent to the same element used in (X)HTML, therefore the scripts are
placed within. The scope of such scripts is “global”, i.e. they are applicable
throughout the entire document. [16]

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="200" height="100">

<script type="application/ecmascript"> <![CDATA[
function circle_click(evt) {
var circle = evt.target;
if (circle.getAttribute("cx")==50)

circle.setAttribute("cx", 150);
else

circle.setAttribute("cx", 50);
}

]]> </script>
<rect x="5" y="5" height="90" width="190" stroke="black" stroke-width="1"

fill="none"/>
<circle cx="50" cy="50" r="40" fill="red" onclick="circle_click(evt)"/>
</svg>

Figure 2.5: The pictures show the change after a click on the circle is per-
formed

The figure 2.5 shows, how a simple script is used within the <script>.
Note that the construct CDATA appears again; the reason for its use is ex-
plained in the section 2.3.2. The function circleclick from the script is
triggered by firing the click user-interface event via onclick event attribute
on the <circle> element. <script> can contain a reference to an external
file containing scripts; for scripts holds the same as for style sheets: the
CDATA construct has to envelope scripts only if they are directly in the SVG
document. [16]

16. ECMAScript is the scripting language standardized in ECMA-262 specification and
ISO/IEC 16262. [26] Its dialect JavaScript is extensively used for client-side scripting on web

22

2. SVG – SCALABLE VECTOR GRAPHICS

Above were mentioned event attributes which facilitate one method of
event handling. Their use is not universal, thus they are grouped into:

Document-level event attributes: specify scripts to run when a particular
document-wide event occurs

Graphical event attributes: specify scripts to execute on firing a particular
user interaction event

Animation event attributes: specify scripts to run for a particular animation-
related event

onload event attribute: stands a bit aside as it can be specified on all ani-
mation elements and most of the graphical and container elements.
The event specifies scripts to run when an SVGLoad event is fired on
the element where onload is specified on.

The full list of event attributes that can be used to provide an SVG
graphics with interactivity follows:

• onload • onmousedown • onunload • onzoom
• onfocusin • onmouseup • onabort • onbegin
• onfocusout • onmouseover • onerror • onend
• onactivate • onmousemove • onresize • onrepeat
• onclick • onmouseout • onscroll [16]

While developing an SVG interactive application, apart of event at-
tributes, developers can utilize event listeners described in the DOM specifi-
cation. For associating an execution of a script with a certain user-interface
event, an event listener is registered on a desired element. After the event,
for which the event listener was registered occurred, the script is invoked.
To allow the registration, DOM introduced and set of interfaces:

EventTarget: is implemented by all nodes in SVG. Using binding-specific
casting methods (addEventListener, removeEventListener
and dispatchEvent) can be EventListener accessed.

EventListener: handles the event itself – after its invoking, a script at-
tached by addEventListener method is executed.

Event: provides contextual information about an event to the event handler,
for example: Event.target, Event.timeStamp etc. [25]

23

2. SVG – SCALABLE VECTOR GRAPHICS

DOM Level 2 Event Model allows the definition of new event modules
according to requirements. These can be assigned to an element thanks to the
event listeners. For the purpose of interoperability, DOM defines a module
of user interface events. [25]

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"

width="200" height="100" onload="initialize(evt)">

<script type="application/ecmascript"> <![CDATA[
function initialize(evt){
var circle= document.getElementsByTagName("circle")[0];
circle.addEventListener("click",circle_click, false);

}
function circle_click(evt){

var circle = evt.target;
if (circle.getAttribute("cx")==50)
circle.setAttribute("cx", 150);

else
circle.setAttribute("cx", 50);

}
]]> </script>

<rect x="5" y="5" height="90" width="190" stroke="black"
stroke-width="1" fill="none"/>

<circle cx="50" cy="50" r="40" fill="red"/>
</svg>

Figure 2.6: The example from the figure 2.5 implemented with event listeners

24

Chapter 3

Fresnel Editor

As the Fresnel language was specified, its implementations emerged, though,
not many of them. There are two types of tools: browsers, for example
Longwell, Horus or IsaViz, and authoring tools like Cardovan (an internal
IBM tool).1 In December 2008 at the Faculty of Informatics of Masaryk
University, Brno a project called Fresnel Editor was started as a part of a
lightweight semantic framework. Fresnel Editor is an open source GUI-based
tool offering an ability of authoring all Fresnel Core Vocabulary elements
for a visualization of RDF data. The focus was given on modularity, to
offer an easy way for extending the project with plugins. [27] The intention
of this chapter is to introduce Fresnel Editor to a reader unaware of its
existence. As a consequence, the description of the SVG visualization module
implementation will be easier to follow later in the text.

3.1 Architecture of Fresnel Editor

The whole project is written in Java, more specifically using the Spring
framework and for creating the GUI was used the Swing framework. The
core libraries used for developing Fresnel Editor are:

Sesame2: providing a local RDF data repository and a support for SPARQL
queries.

JFresnel3: is used for loading the Fresnel configuration (Lenses, Formats
and Groups) from the RDF repository.

1. The development of the tools seems to be suspended recently. The last updates on
projects’ web sites are from years 2007 – 2009
2. Sesame is being developed by Aduna, current version 2.6.4 was released on the 14th
March 2012 [28]
3. JFresnel current version is 0.3.2 released on the 18th May 2010. Its development runs
under INRIA, one of the authors is E. Pietriga, a co-author of Fresnel specification [29]. Some
parts were created by students of the Faculty of Informatic at Masaryk University, Brno,
namely M. Warchil and J. Horváth

25

3. FRESNEL EDITOR

The authors of Fresnel Editor, M. Warchil and I. Zemský divided the
whole project according to requirements into the following modules:

Fresnel Lens
module

Fresnel
Format mod.

Fresnel Group
module

Visualization
module

RDF data
repository

Fresnel
data rep.

Fresnel Editor Core

 Plug-in mod. framework
Sesame repository DAO

Figure 3.1: Schema of the architecture of Fresnel Editor [27]

Core module: represented by fresnel-editor-model and fresnel-editor-common
sub-modules. The first one encapsulates the access to a semantic
repository, the second contains the logical and user-interface core,
including the interfaces providing the extensibility of Fresnel Editor

Lens module: represented by fresnel-editor-gui-mod-lens sub-module, which
provides GUI components for easy and straightforward creation or
editing the Fresnel Lenses.

Format module: represented by fresnel-editor-gui-mod-format sub-module.
This part has basicly the same purpose as Lens module but aims on
the Fresnel Formats.

Group module: represented by fresnel-editor-gui-mod-group sub-module.
Again the same purpose as the previous two modules but aimed on
the Fresnel Groups.

Visualization module: uses the structures defined in previous three mod-
ules, facilitates algorithms for rendering thumbnails and methods for

26

3. FRESNEL EDITOR

the visualization of RDF data from the repository. It is represented
by fresnel-editor-gui-mod-vis sub-module. [14]

Deeper insight into the implementation of Fresnel Editor is possible to
gain in the master theses of M. Warchil [14] and I. Zemský [30].

3.2 The Visualization Process

A visualization of the RDF data is among the main goals of Fresnel Editor.
The visualization module listed above encapsulates the necessary function-
ality. There are two manners of the visualization process:

• either all the Fresnel elements from the Fresnel repository are applied
on the data stored in the data repository, thus completed visualization
is produced

• or only a thumbnail is created while a Lens or Format is edited.
Both visualizations means share the same algorithm, but in case of
thumbnails preparation steps are necessary. [14]

In the former version of Fresnel Editor, the authors aimed the application
at users well aware of the specifications of Fresnel and RDF. Therefore
defining the lenses and formats was quite difficult. In 2010, J. Horváth
provided Fresnel Editor with an alternative module for defining lenses and
formats to simplify use of the tool. However, the visualization algorithm
was not changed [31]

RDF data
repository

Fresnel
data rep.

Group

RDF
Visualizer

RDF
Visualizer

Final
XHTML

CSS
Stylesheet

XSL
Stylesheet

Intermediate
XML

Figure 3.2: Schematic view on the visualization process [30]

27

3. FRESNEL EDITOR

1. Classes and their properties that are to be visualized are selected.
The properties are ordered and everything forms an RDF node tree.
So far, no visual formatting was associated.

2. Visual formatting rules are applied on the RDF node tree. All the
selected sources and their properties, together with the visual infor-
mation are serialized into an intermediate XML document.

3. The intermediate XML document is transformed into the XHTML
format using an XSLT transformation style sheet

4. A frame of an internal web browser is instantiated and then navi-
gated onto the previously created XHTML document. During the
rendering phase, the associated CSS style sheet is applied on the
appropriate elements and the result is displayed in the web browser
frame. [14] [31]

Let us take a closer look on the transformation step. In the former version
of Fresnel Editor, only transformation to XHTML is mentioned; however, the
plan of RNDr. Tomáš Gregar Ph.D. who advised the Fresnel Editor project,
was to develop more XSLT style sheets and thus offer more output formats.
During the 2010 spring semester course, PB138 – Modern Markup Lan-
guages and Their Applications, that was held at the Faculty of Informatics
of Masaryk University, Brno, several style sheets were developed as part of
the course project. Additional style sheets were also created by S. Petrová
within the work on her bachelor thesis [32] – eventually Fresnel Editor can
produce for example RDFa, microformats, HTML5 and SVG (the last will
be described in this thesis). Besides, the ability to output more formats than
XHTML has raised an additional problem concerning the display phase.

The displaying of processed data itself happens in an internal browser;
for this purpose the authors of Fresnel Editor used the Lobo browser. It
is a pure Java open-source web browser which targets HTML4, JavaScript
and CSS standards. The last version of Lobo was published on the 18th of
January 2009. [33] At this moment, Fresnel Editor faces one major issue: it is
not able to visualize any other format than (X)HTML. From the fact that the
most recent update of The Lobo Project web site was in October 2009, we
can assume there is no activity, thus the chance for expanding the ability of
the Lobo browser is small. Drawing on the bachelor thesis by S. Petrová, the
Lobo browser has also discrepancy in rendering CSS styles comparing to the
major web browsers. [32]

28

3. FRESNEL EDITOR

3.3 Issues and the Current State of Fresnel Editor

Fresnel Editor, a project of the theses of M. Warchil [14] and I. Zemský [30]
was not released as a stable version. For the project management was used
Apache Maven, a very useful tool when it is well set up and when the Maven
library repositories do not change their location. Due to the fact that both
authors left the project after finishing their theses, nobody administrated
the maven configuration for some time and the Maven management system
went out of date; repositories were relocated and some libraries become
obsolete.

Additional errors and exceptions are listed in the bachelor theses of
S. Petrová [32] and J. Horváth [31], who conducted thorough testing and
fixed the errors found.

The most recent official version of Fresnel Editor (published on Source-
forge project website4) from the 20th of June 2011 is 1.0. [34]. Separately
from the Sourceforge website of the project, J. Horváth maintains a GIT
repository5 with his development version of the Fresnel Editor project. This
version was forked for the purpose of this thesis.

Although the Fresnel Editor is currently in a working state, being main-
tained and slowly extended, the project would deserve a major cleanup and
possibly a reconsideration of the design folowed by a reimplementation;
actually the Fresnel Editor advisor – RNDr. Tomáš Gregar Ph.D – had such a
vision for the future of the project.

4. http://sourceforge.net/projects/fresnel-editor/
5. https://github.com/nodrock/fresnel-editor

29

http://sourceforge.net/projects/fresnel-editor/
https://github.com/nodrock/fresnel-editor

Chapter 4

Batik SVG Toolkit

The need for an SVG visualizer originated in the inability of Fresnel Editor
to display a result SVG image. As Fresnel Editor is written in Java, a need
for a Java-based tool or library capable of working with SVG emerged. That
is where Batik SVG Toolkit (shortly Batik) has proved to be useful – the
SVG visualization module of Fresnel Editor is built utilizing Batik’s modules.
What does the tool actually offer? This chapter provides a description of
Batik and its components.

Batik is Java-based framework (i.e. a set of libraries) that facilitates the
handling of SVG documents; the modules can be used for generating, manip-
ulating and transcoding SVG images. The current version – 1.7, released on
the 10th of January 2008 – implements almost 94% of SVG 1.1 specification1

and some parts of SVG 1.2, which makes Batik one of the most conformant
implementation of the SVG recommendation. [35]

The modules contained in the Batik’s distribution are logically separated
into three layers (see the figure 4.1):

Applications: illustrate how it is possible to use the core modules. It let
users evaluate and experiment with Batik’s features.

Core modules: are the libraries developers can use in their projects. These
modules provide the main functionality; via them the developers can
manipulate, generate, create, convert, render and view SVG content.

Low level modules: are used by core modules. They are rarely used directly
for a development.

1. The information is based on the Batik’s implementation status available on http://
xmlgraphics.apache.org/batik/status.html

30

http://xmlgraphics.apache.org/batik/status.html
http://xmlgraphics.apache.org/batik/status.html

4. BATIK SVG TOOLKIT

SVG
Browser

SVG
Rasterizer

SVG Font
Converter

SVG pretty
printer

UI
Component

Transcoder
SVG

Generator

BridgeSVGDOM

GVT Renderer SVG Parser

Applications

Core
Modules

Low Level
Modules

Figure 4.1: The architecture of Batik SVG Toolkit [26]

The application layer contains four ready-to-use tools. The Squiggle SVG
Browser (in the figure 4.1 it is refered to as SVG Browser) shows capabili-
ties of the transcoder (represented by a class called ImageTranscoders)
and UI (JSVGCanvas) components; therefore a user can view, zoom, pan
or rotate SVG documents and convert them into raster formats. The SVG
rasterizer also uses transcoder API, allowing conversions from and to SVG
format. Next, the SVG Font Converter is used to convert any True Type
Font to an SVG font which are useful in SVG documents. The last one, the
SVG pretty printer, helps to tidy and organize potentially disorganized SVG
files. [35] These tools should more or less demonstrate the strength of Batik;
for further information see the Batik’s web page2.

The low level layer contains modules that are not usually directly used
for a development. That is the reason why they are mentioned only briefly.
The module labeled in the figure 4.1 as GVT is the Graphic Vector Toolkit
module. It represents the DOM tree in a more suitable way for the rendering
and event handling purposes. The module represents the DOM tree as a tree
of Java graphical objects. Next is the Renderer module which is responsible
for rendering a GVT tree and related tasks. Finally, the SVG parser module
facilitates parsing of complex SVG attributes, like transform. [35]

The core modules are described in a higher detail in the next section.

2. http://xmlgraphics.apache.org/batik/

31

http://xmlgraphics.apache.org/batik/

4. BATIK SVG TOOLKIT

4.1 The Core Modules of Batik

The most interesting part for developers is without doubts the core modules
layer of Batik. In the upcoming paragraphs, the basics of each module are
presented. Despite their importance, the description and examples provided
in Batik documentation [35] are relatively short; the readers who would like
to learn more should refer to a course by Cameron McCormack [36] and
Batik Wiki. Another sources are Mailing List [37] administrated by Apache
Software Foundation, as well as the Batik’s Javadoc API [38] (however, the
Javadoc provides merely the raw structure of the source packages).

Firstly we will examine the SVG generator module, which can be used
in applications and applets for converting graphics to the SVG format. In
fact, the SVG generator refers to SVGGraphics2D class; it is an implemen-
tation of standard Java Graphics2D abstract class accommodated to the
generating of the SVG content. SVGGraphics2D allows exporting graph-
ics into the SVG format without the necessity of any modification of the
graphics code. Other feature it has is the ability to use the DOM API for
manipulating the generated content. The principle, how the SVG generator
module works is following: it manages a tree of DOM objects representing
the SVG content according to the rendering calls coming from the instance
of SVGGraphics2D. This provides the programmer an ability to access the
DOM tree for further manipulation (see below) or writing it directly to an
output stream. If it is needed, the module provide a possibility to customize
the generation process – from defining the generator context, through style
handling to storing the result images. [35]

The DOM API defines an interface DOMImplementation, the purpose
of which is to bootstrap a particular implementation of an XML DOM. In
other words to provide a method to create an org.w3c.dom.Document
class instance. Then, the particular XML is represented by the Document
which also acts like a factory for the various DOM objects (Element, Attr
etc.). For the purpose of SVG, Batik introduces an implementation of that
interface named SVGDOMImplementation; thus developer can cast a doc-
ument as an SVGDocument class instance. However, it is not necessary to
represent an SVG document using the SVGDocument class because an SVG
document can be built using DOM Level2 Core methods [39]. SVGDocument
is used by Swing and transcoder modules to render an SVG Document. [35]

The task of the thesis was to create an SVG visualizer for Fresnel Editor.
The user interface was programmed using the Batik Swing component rep-
resented by JSVGCanvas class. The Swing component allows displaying
the SVG content from a URI or a DOM tree and manipulating it (for example

32

4. BATIK SVG TOOLKIT

zooming, panning etc.). [26] The JSVGCanvas class is built according to the
Swing design rules which made the the class thread unsafe. Thus any usage
of that class should be concurrency aware. The class is also a JavaBean3,
so it can be used in visual application builders. During its runtime, when
a JSVGCanvas instance displays an SVG content, it performs specific op-
erations, such as parsing, building and rendering or updating. To notify
about these operations it is possible to implement a set of listeners that track
appropriate events:

SVGDocumentLoaderListener: describes the loading phase: construct-
ing an SVG DOM tree using SVG file.

GVTTreeBuilderListener: notifies about the building phase. In this
phase a GVT tree is constructed from the SVG DOM tree. The GVT
tree is then used to render the document.

SVGLoadEventDispatcherListener: can be used when processing dy-
namic documents, where the DOM SVGLoad event can be dispatched

GVTTreeRendererListener: describes constructing an image using a
GVT tree – the rendering phase. (This event is fired only once for the
initial rendering in dynamic documents)

UpdateManagerListener: notifies about the running phase. It follows
the changes of a state of an update manager and tracks the updates
on graphics. This event is triggered in dynamic documents only.

For every listener class listed above, there is an adapter class available
to ease the creation of a new listener. JSVGCanvas also provides built-in
interactors that let the users manipulate the displayed document by catching
the user input to the JSVGCanvas component and translating it according
to the performed actions.

The next module is the bridge module. Bridge is in control of creating and
maintaining objects corresponding to SVG elements; to carry out this task,
the bridge translates an SVG document into the Batik internal representation
for graphics – Graphic Vector Toolkit (GVT). This module is only seldom
used directly.

Lastly, there is the transcoder module providing a generic API for transcod-
ing an input to an output. The transcoder module defines five major classes
for its task:

3. JavaBeans are reusable software components written in Java conforming to a particular
convention. It encapsulates many objects into the bean which can be used as a single unit

33

4. BATIK SVG TOOLKIT

Transcoder: defines the transcode method, which is used for transcod-
ing a specific input into a specific output.

TranscoderInput: handles the input of a transcoder. The default imple-
mentation uses org.w3c.dom.Document, Reader, InputStream,
org.xml.sax.XMLReader or a URI, nevertheless the list can be ex-
tended by implementing this interface.

TranscoderOutput: represents the output of a transcoder. The most com-
mon ways to create an output are using org.w3c.dom.Document,
Writer, OutputStream, org.xml.sax.XMLFilter or a URI. As
well as with the input above, other can be added.

TranscoderHints: contains hints that can be used to control the options
(parameters) of a transcoder

ErrorHandler: through this class it is possible to get errors and warnings
that might occur during the transcoding process. [35]

4.2 Real World Projects Using Batik

So far, we have seen that Batik may be a very powerful tool. In this section
some projects that use the Batik libraries are listed .

Apache Cocoon: a component-based web development framework. It uses
Batik to rasterize SVG images.

Apache FOP: a Java application for rendering documents in various formats
(including SVG). It employs Batik to handle SVG images and to
convert them to the PDF format.

GLIPS Graffiti: is a full feature native SVG editor built on Batik.

Lagoon: is an XML-based web-site maintenance framework. Batik is used
to render SVG as raster graphics for the purpose of web publishing.

Luxor XUL: is an XML User Interface Language toolkit written in Java.
It lets developers to build user interfaces using XML. Luxor also
includes an ultra-lightweight multi-threaded web server, a portal
engine, a template engine, a scripting interpreter etc.

34

4. BATIK SVG TOOLKIT

jDeveloper: is a free development environment created by Oracle for Java-
based SOA applications and user interfaces with support for a full
development life cycle. It uses batik to export class diagrams into
SVG images.

35

Chapter 5

Data Visualization Approaches

In case of the semantic data, the need for a data presentation in a human
readable form is strong. The problem lies in the possible complexity of
relations amongst the data; Fresnel provides one way how to solve it. The
capability of Fresnel was explored in the Fresnel Editor project, although only
the visualization to the XHTML format was delivered with the first version.
Together with XHTML as the most common method for data presentation,
the SVG format was considered as it might have brought a completely
different user experience. It is worth to note that due to the ability of SVG to
be interactive, we are able to add an extra value to the visualization. In other
words we can develop complex applications allowing users to view the data
in context and/or manipulate them.

However, automated generating of SVG graphics has, unlike XHTML,
some constraints. According to my experience gained within the domain,
the problems are the positioning of the elements, the layout design of the
graphics and the text representation.

To explain the issues, let us start with the positioning. The majority of
visual elements in SVG (<rect>, <text> etc.) must have the x- and y-
coordinates and dimensions defined. The value of the coordinates (and
lengths as well) can be expressed either by units or by percentages. The units
are represented by px, em, ex, pt, pc, cm, mm and in; all of them has precise
values. On the other hand, when coordinates and lengths are represented in
percentage, the value is relative to the nearest containing viewport. [16] For
the purpose of the visualization, px were chosen as the basic unit to keep
the layout of elements, in case the viewports would change (for example by
resizing the viewer). But this brought the following problem: when the SVG
document is generated, it is necessary to know the width and the height
to be able to count the coordinates of the visual elements; the dimensions
were omitted as we can assume that the measurements of shapes will not
change during the generation process. Having a previously selected finite
set of data without endless recurrences helps to compute the coordinates
and the dimensions of the SVG document using XPath expressions.

36

5. DATA VISUALIZATION APPROACHES

Very closely bound with the previous problem is the layout design issue.
In cases when we can assume the structure of the data but not their con-
tent in advance, it is difficult to put forward an user friendly and comely
graphical representation of the data. Either the format must be very simple
(for example a tree), or the desired data must be selected and their visual
semantics defined prior the vizualization process starts.

The last difficulty mentioned above emerges from the fact that even
though SVG can visualize text, its capabilities are not very convenient. To
overcome this inconvenience, the data to be visualized are given to a prepro-
cessor which adds an information on the basis of the text length.

5.1 Generating of an SVG Document

There are two methods how to produce an SVG document from the data.
Assuming we have preselected the data and serialized them in a given
format, we can either use an XSLT transformation or build the SVG document
using DOM API. Both methods have their advantages and disadvantages;
their use depends also on the platform which will be used to view the data
and on the visualization purpose.

5.1.1 Transforming of an Intermediate XML Document

For the purpose of Fresnel Editor, the first approach was chosen on the basis
of the data flow (see figure 1.2) introduced by Fresnel Editor authors.

The constraints of the visualization were listed in the introduction to
the chapter. Fresnel Editor’s ability to work over general data disables the
possibility of the data preselection where would be omitted unimportant or
unnecessary data; therefore the visualization has to be general.

At first, the naive idea of the SVG visualization process was to provide
only an alternative XSLT transformation, which would simply substitute
XHTML elements for appropriate SVG shapes.

Coming from RDF, the structure of the data to be visualized is a set
of triplets: subject → predicate → object; hence a tree built from left side,
where the subject is represented by the root of the tree, predicates by edges
and objects by leafs, was selected for visualization of general data in SVG.

37

5. DATA VISUALIZATION APPROACHES

Figure 5.1: An example of basic XHTML visualization

Figure 5.2: An example of basic SVG visualization

In the figure 5.2 only a few pieces of information about the depicted entity
are visible. Furthermore, all of them are very simple. In cases with long texts
as a value of property, <foreignObject> is used to envelope a piece of
HTML code which allows the text to be easily wrapped.1 Even though
the SVG recommendation suggests using of several <tspan> elements for

1. <foreignObject> was preferred over <textArea>, since my testing showed better
support among browsers

38

5. DATA VISUALIZATION APPROACHES

breaking long text [16], this approach was abandoned after a consultation
with the thesis advisor, because the text wrapping problem is solved in
the draft of next SVG specification [17]. Despite the fact that the long texts
are handled by using the <foreignObject> element, it is necessary to
determine what a long text is. Such a requirement led to changes in the data
flow of the visualization process and incorporating a preprocessor of the
intermediate data. A detailed description of this component, including the
XSL transformation itself, is provided in the chapter 6.

Above, in the list of constraints is stated that the set of the data to be
visualized must not contain endless recurrences, which is true. However, a
situation where a given entity can be linked with another entity may exist.
In such cases, the second entity stands for a value of a property of the first
entity (see figure 5.3).

Figure 5.3: An example of SVG visualization with nested resources

Regarding such data structure, it was necessary to change the definition
of parameters to make the recurrent matching of entity elements possible
(ie. a resource node is present as a value of another resource’s property,
thus the template rule is matched reccurently). For the purposes that were
stated earlier, it is necessary to pre-count the coordinates of all the visual
SVG elements; this, in combination with the possible recurrent matching (in
cases of multiple nested entities), may cause clarity loss of the resulting SVG
graphics (see in the figure 5.4). Another example of the clarity loss happens
when too many properties with too many values is visualized (see in the
figure 5.5

39

5. DATA VISUALIZATION APPROACHES

Figure 5.4: Example of the loss of clarity due to nesting of entities

40

5. DATA VISUALIZATION APPROACHES

Figure 5.5: Example of the loss of clarity due to displaying too many proper-
ties and values

41

5. DATA VISUALIZATION APPROACHES

5.1.2 Building a Document via DOM API

Another way to create an SVG document given a set of data is to use a
toolkit allowing us to manipulate the DOM tree: the Batik toolkit’s DOM
API interface or some JavaScript library providing such a functionality, for
example jQuery-SVG or Raphaël. 2

The XSLT recommendation states: “XSLT does not provide an equivalent
to the Java assignment operator x = "value"; because this would make
it harder to create an implementation that processes a document other than
in a batch-like way, starting at the beginning and continuing through to
the end.” [5] Using Java or JavaScript to build an SVG document gives us
the advantage of side-effects3 and also the possibility to access the data in
an order that is more convenient for us. Actually, if a result SVG image
outputted from the transformation process is interactive, scripts providing
the interactivity usually modify the DOM tree as well.

Whether to use Java or JavaScript matters only on the delivery method
of the visualization. If the data is to be viewed in a web browser, using
JavaScript library seems more natural because of the JavaScript support
among the browsers (including mobile platform). Although it is reasonable
to use Batik’s DOM API module to generate the SVG content, it might not
serve in terms of cross platform compatibility, as Java applets may not work
in certain web browsers. Finally, although it is possible to equip both Batik
toolkit and JavaScript for generating and manipulating the SVG document,
this approach might lead to a redundancy; it would be necessary to react to
the same events in Java code as well as in JavaScript.

A rather complex visualization is described later in the chapter about
Medico project (see chapter 7).

2. jQuery-SVG [40] is a jQuery plugin that provides SVG support. Raphaël [41] is a
JavaScript framework that allows interaction with SVG
3. the ability to change the values stored in fields of objects or elements

42

Chapter 6

SVG Visualization in Fresnel Editor

The previous chapter suggested the necessity to preprocess the visualized
data. In the context of Fresnel Editor it means to add one additional step
after the intermediate XML document is produced as a result from Fresnel
lenses.

RDF data
repository

Fresnel
data rep.

Group

RDF
Visualizer Preprocessor

RDF
Visualizer

Final
SVG

CSS
Stylesheet

XSL
Stylesheet

Intermediate
XML

Preprocessed
Interm. XML

Figure 6.1: A schema of the visualization process with the preprocessor

In the following sections will be introduced the XSL transformation and
afterwards the way how the preprocessor works and is implemented.

6.1 XSL Transformation into the SVG Format

As it is noted in the previous chapter, the XSL transformation to SVG for-
mat was based on the transformation to XHTML. After the analysis of the
XHTML visualization, it was decided that the tree structure would fulfill
the requirement to visualize general data. The resources and values are
displayed as a text enveloped with a rectangle, the link between the two of
them as a line with a textual description (see the figure 5.3. It seems to be a
very simple structure on the first look but the features of SVG created a few
challenges.

43

6. SVG VISUALIZATION IN FRESNEL EDITOR

The XSL transformation process matches the template rules on the nodes
in an input tree structure starting with the root element, the result tree
structure is generated the same way. [8] Firstly, the root (<svg>) element is
created; within this element, it is necessary to state the height and width
of the document – how to do it when the content of the source document is
yet unknown?

These measurements, together with other parameters are computed prior
the matching phase of the transformation. Some parameters describe the
dimensions of the rectangle, font size, length of lines and various distances
between visualized elements, other holds an information about the number
of resources, properties and values to be displayed, acquired by XPath
queries. The number of the available parameters is relatively high and should
contain all the measurements that can influence the final appearance of the
result SVG image. Nevertheless, to prevent confusion, only a smaller set
can be directly changed by users in the preprocessor; the less important
parameters are customizable in the XSL transformation file.

The height attribute was simple to count – the number of values mul-
tiplied by their heights and indents. However, the width attribute is more
difficult to compute; counting of resource nodes would not help as XPath
would not recognize which resource is nested and which not. Unfortunately,
the implemented solution is not completely universal; its issue is that the
XPath queries are limited at the moment on maximally four nested resources
with their properties and values. The solution of nesting of resources raised
the complexity of formulas for counting the coordinates.

A set of XPath queries is evaluated not only at the beginning of the whole
transformation, but on the beginning of (almost) every template rule, count-
ing how many of each type of source element have already been processed.
The obtained parameters help to count the exact x- and y- coordinates.

Although the styling attributes of SVG visual elements are provided in an
external CSS style sheet, one exception was made: the font-size attribute.
The reason for such an exception is the use of the <foreingObject> ele-
ment with embedded XHTML code. The styling rule didn’t apply on the
XHTML code, therefore every <text> element has its own font-size pre-
sentation attribute, and the XHTML code has it defined in a style attribute.
Eventually, this exception simplified the font size setting in the preprocessor.

The representing of long texts with the <foreingObject> element
solves the word wrapping, yet, it provides a different challenge in return:
assuming the height of the value rectangle with long text. The processing
of the text will be explained in the following sections; however, a part of
the solution does take place in the XSL transformation. When the value of

44

6. SVG VISUALIZATION IN FRESNEL EDITOR

a property is matched with a template rule, the source element is tested
for a long-text-rows attribute. If the value of the attribute is 1, then an
ordinary <rect> and <text> elements are used, <foreingObject> with
XHTML code otherwise. Still, to avoid big, barely empty rectangles with
only two lines of text (for example) in the result SVG image, the height of
the <foreingObject> is preset to four different lengths of the text. The
right height is chosen also according to the value of the long-text-rows
attribute.

Predefined cases to visualize general text do not provide the ultimate
solution. The problem lies in the transformation approach (and SVG text
content visualization at all). Building the SVG result image in an imperative
programming language like Java would definitely simplify the computing of
x- and y- coordinates of elements as well as their width. However, the DOM
API lacks a function that would compute the height of <foreingObject>
(or <textArea>) element; at least in the current version of Batik SVG
Toolkit.

Output
rendered
in Mozilla
Firefox

Output
rendered
in Fresnel
Editor

Figure 6.2: The comparison how a fragment of the same SVG document is
rendered by Mozilla Firefox and Fresnel Editor

At last it is necessary to note that an issue regarding the displaying
of long texts was discovered during the implementation phase. Neither
<foreingObject> nor <textArea> works well in Batik SVG Toolkit. The

45

6. SVG VISUALIZATION IN FRESNEL EDITOR

first one does not render the HTML content of the element whereas the other
is not part of the SVG 1.1 specification, thus it is not supported in the current
version. On the other hand, if the SVG document is saved and then opened
in a web browser, the long text is rendered as it should be.

6.2 Preprocessor

The reasons for the text preprocessing were explained earlier in the text: for
each text to be visualized in SVG format it is necessary to decide whether it
would overflow its rectangle and if it would, how high the rectangle needs
to be to envelope the text. Another functionality of the preprocessor is to
allow a user to specify (some) parameters of the visualization.

XML
Parser

Resource

Property

Value

Text
Processor

XSL
Stylesheet

Intermediate
XML

Preprocessed
intermediate

XML

User

Instances in
memory

Obtain viz.
params.

Set viz.
params.

Serialize to
XML

Figure 6.3: Schematic view on the work flow of the preprocessor

6.2.1 Design

Following the analysis of the SVG visualization requirements for the Fres-
nel Editor, its design was carried out. In the subsections below, there are
summarized use cases and other diagrams.

6.2.1.1 User Roles

The user roles have two layers depending on the scope that is taken into the
consideration. If is Fresnel Editor considered as a single system, then we can
distinguish:

• User

• System (Fresnel Editor)

46

6. SVG VISUALIZATION IN FRESNEL EDITOR

In a closer look on Fresnel Editor the whole system can be diferentiated
further:

• Data selector – covers Lens, Formats and Group module, more de-
tailed description is beyond the scope of the thesis

• SVG Preprocessor

• XSL style sheet handler

• XML handler

• XML transformer

• JSVGCanvas – a component to display the visualized data

6.2.1.2 Use Cases

Use Case 1 Visualizing data into SVG format

Level: User-Goal

Primary Actor: User, Fresnel Editor

Goal in context: To set the parameters for the visualization and run
the visualization process

Preconditions: The SVG Visualization tab in Fresnel Editor is opened

Postconditions: User sees the data visualized to the SVG format

Scenario:

1. User selects a group to be visualized

2. User sets parameters of items in the SVG vi-
sualization (optional, user can let the default
setting)

3. User specifies the CSS style sheet to be used
for styling the SVG visualization (optional, if
not set, the default CSS style sheet is used)

47

6. SVG VISUALIZATION IN FRESNEL EDITOR

4. User specifies output file path where the result
SVG image will be saved (optional, if not set,
the result is stored in a temporary file)

5. User starts the visualization process by click-
ing the Visualize RDF data button

6. Fresnel Editor process the data and generates
the visualization – see Use Case 2

7. Fresnel Editor displays a panel with the gen-
erated SVG image

Exceptions:

5.a No group is selected for the visualization

1. An error message is displayed

2. User returns to the step 1

5.b Invalid parametres set – letters or negative
values as an input:

1. An error message is displayed

2. The part with SVG visualization parame-
ters is highlighted

3. User returns to step 2

5.c An unfitting CSS style sheet is selected:

1. SVG visualization will not display cor-
rectly

Priority: Critical

Frequency of Oc-
currence:

Frequent

48

6. SVG VISUALIZATION IN FRESNEL EDITOR

Use Case 2 Processing of the visualization

Level: Subfunction

Primary Actor: Data selector, SVG Preprocessor, XSL style sheet han-
dler, XML handler, XML transformer, JSVGCanvas

Goal in context: To generate a visualization according to the parame-
ters provided in Use Case 1

Preconditions: The Visualize RDF data button was clicked and no
exception occurred

Postconditions: Fresnel Editor generates an SVG image

Scenario:

1. User selects a group to be visualized

2. Data selector selects data to visualize accord-
ing to the selected group from Use Case 1 –
Step 1

3. Data selector serializes the data into a tempo-
rary XML document

4. SVG preprocessor is started and instantiated
its XSL style sheet handler and XML handler

5. The XSL style sheet handler changes the pa-
rameters passed from Fresnel Editor’s GUI in
the XSL transformation

6. The XML handler parses the temporary XML
document creating in-memory object repre-
sentation of the data

7. The SVG preprocessor computes the lenght
for every string that is going to be visualized
as a text

49

6. SVG VISUALIZATION IN FRESNEL EDITOR

8. The SVG preprocessor compares the com-
puted length with the parameters of the XSL
style sheet and an auxiliary parameter is set
to determine the length of the text in rows

9. The SVG preprocessor shortens the text be-
longing to instances with certain attributes
that requires only a single-line item in the re-
sult image

10. The SVG preprocessor serializes the in-
memory objects into a pre-processed XML
document

11. The XML transformer transforms the pre-
processed XML document using the XSL style
sheet from Step 2

12. The result SVG document is rendered by
JSVGCanvas

Exceptions:

10.a The temporary XML, thus also the pre-
processed XML document contains data that
JSVGCanvas class cannot display

1. An exception is thrown and logged

2. An error message is displayed

3. The visualization stops

Priority: Critical

Frequency of Oc-
currence:

Frequent

50

6. SVG VISUALIZATION IN FRESNEL EDITOR

Use Case 3 Text augmentation

Level: User-Goal

Primary Actor: User, Fresnel Editor

Goal in context: To show a full text of visualized resource, property or
value

Preconditions: The SVG visualization is displayed in Fresnel Editor

Postconditions: A dialog window with a full text of visualized re-
source, property or value is displayed

Scenario:

1. User clicks on a text on the displayed SVG
image

2. Fresnel Editor pops up a dialog window with
the full text

Priority: Moderate

Frequency of Oc-
currence:

occasional

51

6. SVG VISUALIZATION IN FRESNEL EDITOR

6.2.1.3 State machine diagrams

Fresnel EditorUser

Fresnel group selected

SVG visualization parametres defined

CSS style sheet specified

File path for output specified

Visualization started

Visualization is processed

Output is displayed

[optional]

[optional]

[optional]

SVG visualization
pane is opened

Figure 6.4: The overall SVG visualization scenario

52

6. SVG VISUALIZATION IN FRESNEL EDITOR

SVG preprocessorFresnel Editor engine

Data selected according to the selected group

Data serialized into an intermediate XML

Intermediate XML parsed

Parametres of SVG visualization obtained

Objects created from the data

Parametres set in the XSL style sheet

Objects processed

Objects serialized into a prep. interm. XML

SVG output generated

SVG output saved as a fileSVG output is displayed

CSS style sheet is obtained

[optional]

Visualize RDF Data
button is clicked

Figure 6.5: Inner states the SVG visualization scenario

53

6. SVG VISUALIZATION IN FRESNEL EDITOR

6.2.1.4 Class diagram

-resourceId : int
-resourceUri
-resourceLabel
-originalResourceLabel
-properties :
<unspecified><Property>
-longTextRowNumber : int
-hasParent

Resource
-propertyId : int
-propertyClass
-propertyUri
-propertyLabel
-propertyLabelClass
-originalPropertyLabel
-values : <unspecified><AbstractValue>
-longTextRowNumber : int

Property

+getBoundResourceId() : int

-boundResourceId : int

ResourceValue

-valueOutputType
-valueContent
-originalValueContent
-longTextRowNumber : int

SimpleValue

-valueId : int
-valueClass
-valueOutputType

AbstractValue

1 0..*1 0..*

+getInstance() : TempXMLParser
+incrementResourceId()
+incrementPropertyId()
+incrementValueId()
+parse()
+serializeToOutput() : <unspecified>

-instance : TempXMLParser
-resourceId : int
-propertyId : int
-valueId : int
-resourceMap : <unspecified><Integer, Resource>
-stringToParse

TempXMLParser

+characters(in ...)
+startElement(in ...)
+endElement(in ...)
+startDocument(in)
+endDocument()

-content
-currentQName
-helpValueClass
-helpValueClassOutputType
-lastQName
-parser : TempXMLParser
-tempProperty : Property
-tempResource : Resource
-tempValue : AbstractValue

TempXMLHandler

1

1

+getInstance() : Utils
+computeTextLenght(in text, in fontSize : int) : float
+countRows(in text, in lenght : int) : int
+shortenText(in text, in lenght : int) : <unspecified>

-instance : Utils

Utils

+processXMLForSVG(in doc : Document)

-xslSet : XSLStylesheetSettings

SVGPreprocessor

+changeXSLSettings()

-XSLNAMESPACE : Namespace
-fontSize : int
-picHeight : int
-rectWidth : int
-propLine1Lenght : int
-propLine2Lenght : int

XSLStylesheetSettings

1
1

0..*

1

0..*

1

1

1

0..*

1

0..*

1

1

0

1

*

Figure 6.6: Simplified class diagram of the preprocessor

6.2.2 Implementation

The authors of Fresnel Editor expected that the intermediate XML file might
be necessary to modify for a various reasons and prepared a method where
the change should happen. However, to pass the user’s input from GUI of

54

6. SVG VISUALIZATION IN FRESNEL EDITOR

Fresnel Editor, a few minor changes had to be made in the original source
code.

One visible change was made in the GUI – a SVG visualization parame-
ters frame was added to the SVG visualization tab. After the visualization
process is invoked, the parameters are checked and in case they are invalid,
the user is prompted to correct them. When is everything all right, the pa-
rameters are passed along together with other concerning the visualization.

Figure 6.7: SVG visualization parameters panel was added to the SVG visu-
alization tab

When the data to be visualized are selected and serialized into the in-
termediate XML document, the modifyXMLdocument() method is called
and the SVGPreprocessor class is instantiated; consequently, instances
of an XSL style sheet handler and an XML parser/handler are obtained.
The parameters passed from the GUI are set to the XSL style sheet which is
used later on. The temporary XML document is parsed and resources, their
properties and values are represented by instances of appropriate classes.

To be able to compute the length of the text, it was necessary to initialize
the SVG and CSS interfaces first. Secondly, simple SVG <text> elements
with the text to be processed are temporarily created. Only then it is possible

55

6. SVG VISUALIZATION IN FRESNEL EDITOR

to count the length of the texts and determine how many lines will the text
need. In cases, where it is not possible to provide more than single-line visual
element for the text, the text is shortened. In order not to lose the former
information, an auxiliary attribute holding the copy of the original string is
defined. The whole structure is then serialized back to the XML document.

Afterwards, the pre-processed XML is transformed according to the
XSL style sheet into an SVG document which is passed to the component
responsible for its rendering and displaying.

6.3 Displaying of the SVG Image

The displaying of the generated SVG image utilize Batik Swing component –
the SVG rendering is handled by the SvgShowJPanel swing component
that is attached to the SVG visualization tab of Fresnel Editor. Implementing
such a component was originally part of the thesis project, none the less the
component was created in paralel as a part of a course project at the Faculty
of Informatics at Masaryk University, Brno. At the time the preprocessor has
been integrated to the Fresnel Editor, the component for displaying SVG
images was already integrated. Therefore I have decided not to integrate
other, practically identical solution.

In the visualization component that I had prepared for integrating with
Fresnel Editor was a method to display the whole text of a visualized re-
source, property or value. After a click on a text, a dialog window appears
with the text. This feature was added to the SvgShowJPanel in Fresnel
Editor.

The interaction with SvgShowJPanel is performed in the following
manner: a general EventListener reacting on onclick event is attached
to all text elements in rendered SVGDocument. The important part is that
the attachment happens when SvgShowJPanel is informed that the GVT
tree building is finished, which is performed by GVTTreeBuilderEvent.
Otherwise the attachment would fail.

Originally, with the idea of creating the component for displaying the
SVG contnent, we intedted to provide users with an ability to change the
CSS style sheet directly using the graphical interface in a similar way as for
displaying the dialog window a with full text of a visualized entity. However,
this task has not been fulfilled; problems occurred during the attempts to
interact with CSS style sheet utilizing the Batik CSS interface. Unfortunately,
the documentation of Batik SVG Toolkit is poor and provided little or no
help during the development.

56

6. SVG VISUALIZATION IN FRESNEL EDITOR

Figure 6.8: The content of the sample project visualized as a SVG image

57

Chapter 7

SVG Tool for Image Annotation

Earlier in the text were suggested two methods, how can be performed an
SVG visualization of semantic data. In Fresnel Editor was used the XSL
transformation; a detailed description of the method together with remarks
about its implementation within the Fresnel Editor were provided in the
previous chapter.

In the year 2011 I got the opportunity to use the knowledge gathered
during the research for this thesis and develop a tool for medical images
annotating and presenting semantic data. The important fact is that the tool
basicly uses DOM API to build SVG documents, which is the second possible
approach for SVG visualization.

The project is a part of my cooperation with DFKI GmbH1, which is the
leading research institute working on innovative software technology in
Germany. It is rated among the most recognized “Centers of Excellence“. [42]
My position is a research assistant, working with Dr. Daniel Sonntag’s team
on the RadSpeech project which is a part of Theseus-Medico project.

Theseus-Medico is funded by the Federal Ministry of Economics and
Technology in Germany. Project’s aim is to facilitate the work of doctors
and other healthcare workers by deriving information from image- and
text-based findings, putting the relevant pieces together in an intelligent
manner. [43] My task is to analyze the possibility to exploit and utilize the
SVG format for annotation of medical images. Consequently, the annotation
tool is to be developed and attached with an already existing visualization.

7.1 The RadSpeech Project

The RadSpeech project aims to design and implement a multimodal dia-
logue system for radiologists. The system should provide a dialogue-based
semantic image retrieval, which should help in a computer aided diagno-

1. the abbreviation stands for Deutsches Forschungszentrum für Künstliche Intelligenz,
literally translated The German Research Center for Artificial Intelligence

58

7. SVG TOOL FOR IMAGE ANNOTATION

sis and the related decision making process. The knowledge gained from
ontology repositories is used also for the complex natural language under-
standing and dialogue management process. Semantic information can also
help to provide different views on the medical data. The RadSpeech system
should eventually streamline the medical finding process and achieve more
structured finding reports including semantic image annotations. [44]

RadSpeech allows clinicians to directly annotate images that comes from
radiology, CT or MRI; the former approach was to capture the images,
provide the content of the annotations (for example by recording on a tape
recorder), then assign the annotations to the images. Given the fact that
the amount of images is extensive, the task takes a non-trivial amount
of time. Methods for creating annotations include also speech input (the
annotation is transformed to text by speech-to-text analysis) or ”intelligent“
pen (handwriting is directly transformed into text using OCR techniques).
The project provides also ”traditional“ user interfaces, in which can users
explore patient data. A requirement from the clinicians was to have an ability
to view the patient data in the context with other (similar) cases. This should
help them with the diagnostic process and treatment decision. [44]

Linked Data Linked Data Linked Data

Interactive Semantic Mediator

Sesame/SPARQL Retrieval Engine

IUI, Multimodal Dialogue System Dialogue Manager, GUI:
Query by images, text, speech

Dynamic
Knowledge
Base Layer

Query Model/
Semantic

Search Layer

Application
Layer

Concept
Query

Dialogue
Module

Figure 7.1: Three tier architecture of RadSpeech [45]

The RadSpeech project uses three tier architecture (see the figure 7.1)
to query, mediate, retrieve and present the data to users. However, the
background of the data selection is beyond the scope of this thesis.

59

7. SVG TOOL FOR IMAGE ANNOTATION

Figure 7.2: An example of the facetted browsing (with already applied filters)

7.1.1 Exhibit-based Facetted Visualization

The visualization part of RadSpeech project is a browser application provid-
ing the clinicians with a set of inter-related views on the data. The views can
be refined by using lenses that contain sets of data and facets that constrain
the number of the datasets (see the figure 7.2).

The visualization is based on the Exhibit API2 (see the figure 7.3) which
provides JavaScript/ Ajax3 API for queries, widgets for views, facets and
lenses. The Exhibit draws the data collection from JSON formatted data,

2. Exhibit is a framework for data-rich interactive web pages developed within the SIMILE
project [46]
3. Asynchronous JavaScript and XML

60

7. SVG TOOL FOR IMAGE ANNOTATION

which are generated by the interactive semantic mediator (see the figure 7.1)
from results of executed SPARQL queries.

Figure 7.3: Screenshot of the of the Exhibit visualization

7.1.2 SVG-based Visualization for Image Annotation

Through the Exhibit visualization we got to the visualization in SVG that
might become a part of the RadSpeech project. Initially it was not absolutely
clear where might be SVG features exploited. Several models were created,
each time with more interactive interface. Currently, the main goal is to pro-
vide a pen-driven annotating tool for the clinicians, where would be possible
to draw directly over an image (for example x-ray image) and accompany
the drawing with some note. The annotations would be immediately added
to the rest of the medical findings in the repository. It would be possible to
retrieve the annotations (as well as the other data) for editing or consulting
purposes.

At first, the visualization was developed above static data – a set of
data that was returned as a result of a SPARQL query on the project-related
SPARQL endpoints. The visual style is analogous to the style used for the
Exhibit visualization (see the figures 7.3 and 7.4) as the two visualizations
are to be connected in later phases of the project. The whole source code of

61

7. SVG TOOL FOR IMAGE ANNOTATION

the scripts was written in JavaScript programming language; to provide the
required functionality, a few open-source libraries were used:

Figure 7.4: Screenshot of the of the SVG visualization

jQuery SVG: a JavaScript library for manipulating with SVG DOM (it is
very similar to the DOM API module of Batik – see chapter 4). The
library is available on http://keith-wood.name/svg.html

Draggable SVG: a library that enable SVG elements to be draggable using
the mouse. To allow an object to be movable, the desired element has
to have defined a drag:enable="true" attribute. The rest (i.e. the
changing of transformation attribute) is handled by the Draggable
SVG library. The author is Jeff Schiller and the source code is available
on http://www.codedread.com/dragsvg.js.

SVG slider object: In the early development phase, zooming of the an-
notated image was performed after a mouse-wheel-rotation event
occurred. Due to a requirement, that the visualization should work
on hand-held appliances (tablets, smart-phones), zooming of the
picture has to be controlled in a different manner. The library has
provided a method to add/remove a slider that is responsive to the
user commands and through which the user can adjust the zoom

62

http://keith-wood.name/svg.html
http://www.codedread.com/dragsvg.js

7. SVG TOOL FOR IMAGE ANNOTATION

of the image. The project Carto.net was found during the research
for examples of interactive SVG documents. Available online on
http://www.carto.net/papers/svg/gui/slider/

SVG textbox object: SVG support of text is not on the level of for example
(X)HTML. The lack of object that would allow inputting text directly
in the SVG document (in (X)HTML for example <textarea> or
<input type=”text“ ...>) led to acquiring the library simulat-
ing the inputbox in SVG. Similarly as the SVG Slider library, the SVG
textbox offers simple way to create and remove an inputbox and read
the input. The library comes from Carto.net project and is available
on http://www.carto.net/papers/svg/gui/textbox/

bundled scripts: for proper work of the scripts originated from Carto.net,
several additional libraries are required: helper_functions.js,
mapApp.js and timer.js. They are accessible from the previously
noted web pages.

After a few prototypes were evaluated and the scenario for the use of
the tool crystallized, the data source was changed. The visualization was
published online (for the purpose of the ongoing development) and a subset
of the data used in Exhibit visualization has been utilized. Unlike the first
phase, this time the data are accessed over GET requests and new/changed
annotations are stored using POST requests and functions available on
the Medico server. Both GET and POST are using AJAX’s asynchronous
processing. The basic scenario of the tool can is shown on the figure 7.5.

In the second phase, the whole library was rewritten using jQuery frame-
work4; the code was shortened considerably and some functionality became
easier to provide. This change was possible as the visualization were aimed
to run in web browsers; the Java based viewer (Batik Squiggle) was rejected
for its possible incompabtility with mobile devices.

4. an open source library for simplified event handling, document traversing and Ajax
interactions. Available on http://jquery.com/

63

http://www.carto.net/papers/svg/gui/slider/
http://www.carto.net/papers/svg/gui/textbox/
http://jquery.com/

7. SVG TOOL FOR IMAGE ANNOTATION

Medico serverMedico SVG toolUser

Patient's data requested

Patient's data displayed

Patient's data returned

New annotation is drawn

The annotation is described

The annotation is finished

The annotation is stored

Medico SVG
tool started

Figure 7.5: State machine diagram of creation of an annotation

In one of the prototypes was explored the possibility of sending an email
directly from the SVG visualization. The clinicians would be able to send
the annotated image to their colleagues for consultation directly after the
annotation was marked. Nevertheless, an email message can contain either
plain text (some clients support also rich text format) or HTML. Despite
attempts to inline SVG content into a message in HTML format, email
clients seem to sanitize it as an unknown and potentially dangerous code.
Therefore, the email consists of an URI of the annotated image (or the set of
related images), which allows the recipient to open the desired image and its
annotations in a new session of the SVG visualization. The desired scenario
is shown in the figure 7.6

The SVG visualization can fulfill another requirement – comparison of
two or more related images. It may serve for such a task as each patient’s
image is displayed in a separate panel inside the SVG image. However, this
use case is under consideration and the visualization would need some
minor alternations. The project is still under development and the final
deliverable might differ from the current version considerably.

64

7. SVG TOOL FOR IMAGE ANNOTATION

User1 Medico SVG
tool User1

Medico serverMedico SVG tool
User2

User2

New annotation created

Email recieved

Email sent

URL of the findings clicked

Patient's data requested

Patient's data returned

Patient's data displaiyed

Email message created

Medico SVG
tool started

Figure 7.6: State machine diagram of sending an annotation via email

7.1.3 Benefits And Constraints of the SVG Tool

There are several reasons why the medical image data were put to the
SVG format. Probably the major benefit is that every drawn annotation is
a separate object. If HMTL5 <canvas> element would be utilized to allow
the user to drawn on medical images, the annotations would be eventually
flattened into an image, indistinguishable one from another (unless an extra
effort to analyze the image content would be made). In SVG, each annotation
is represented by one or more <polyline> elements and a text, that are
bound together by an identificator of the annotation. The text can be easily
versioned, extended with an contextual information (author, timestamp,
version number). The next advantage is the scalability of SVG. However, the
medical image is in the raster format so the scalability is limited by quality

65

7. SVG TOOL FOR IMAGE ANNOTATION

of the annotated image, which can be provided in very high definition
resolution.

As for the disadvantages, the major one is listed in the table 2.1 – the
rendering slows down when an extensive amount of drawings is attached
to an image.

In the list of challenges that are to be faced in the future is providing of
a support of touch devices – the user’s touch interactions are recorded in a
different matter than in the case of mouse handling and the pointing is not
as precise.

66

Conclusion

The main topic of the thesis is a SVG-based knowledge visualization. The
assignment asked to analyze the relevant technology and suggest a method
for visual representation of semantic data. Drawing from the analysis, the
method was implemented as an extension of Fresnel Editor – an authoring
tool for semantic data utilizing Fresnel language.

The analysis revealed several interesting points. Firstly, let us discuss the
SVG standard because providing knowledge to users in a visual manner was
the primary goal. SVG is a very powerfull technology that can be utilized not
only as a format for graphical objects but also as a platform for sofisticated
application development. Nevertheless, in my opinion, SVG is generally
rather underrated and consequently, the public awareness of its features
and capabilities is limited. SVG also suffers from a problematic support in
web browsers and image viewers. Because a research and a development of
technologies is influenced by their acceptance, it seems that the innovation of
SVG has slowed down considerably (SVG 1.2 is still a working draft despite
the first version was published in the year 2002). In case of this thesis, one of
the problem lies in a representation of long text, which is solved well enough
in SVG 1.2, but the feature is badly supported by other tools, viewers and
browsers. The lack of new features or changes in the existing ones according
to the needs of users may cause an SVG fall-off in the future. The chances
are that the situation around SVG will change because of growing use of
HTML5, which supports SVG better.

Secondly, there is the Fresnel language specification that was introduced
by W3C; the lanugage should lead to better interoperability between differ-
ent tools/systems for semantic data visualization. Although the standard
was published in the year 2005, until now there is only a few tools able to use
the language. Furthermore the majority of them seems to be discontinued.
One of the tools using Fresnel is Fresnel Editor which has been extended
and maintained at the Faculty of Informatics at Masaryk University, Brno.
In this thesis was provided a summary about this authoring tool; together
with Fresnel Editor – Knowledge Visualization [27], these are probably the
only articles about Fresel Editor written in English. Regarding the tool itself,

67

7. SVG TOOL FOR IMAGE ANNOTATION

after the first version was delivered, several extensions were provided. The
GUI was simplified to broaden the base of possible users and several output
formats for the visualization of the data were added (one of them is SVG
visualization created in this thesis).

The major challenges of the SVG visualization were the positioning of
visual elements in the output document and the representation of long texts.
Generally there are two approaches to generate an SVG document from the
data:

• The data are serlialized into a specific XML format and then an XSL
transformation is used to transform the source XML to the result
SVG image.

• The data are processed by the visualizer and the result SVG image is
built using the DOM API according to the processed data.

The challenges are tackled in a similar manner in the both approaches;
the positioning of visual elements is computed on the basis of previously
generated elements. The computation of the coordinates is rather easy us-
ing the DOM API (we can simply hold the coordinates and the length of
the last created element in variables), whereas in the transformation, many
attributes has to be computed prior to the transformation itself. Furthermore
the transformation cannot dynamically react on anomalies in the source XML
serialization (actually they can be handled, but the code of the transforma-
tion would grown excessively). As for the long texts, in the transformation
approach, template rules has to be specified to cover the possible cases; none
the less it is impossible to cover all the cases with general data as we do
not know whether the text may contain for example a single word/string
or a whole text of a book. On the other hand, using DOM API alows us
to compute the place necessary for a text element according to the lenght
of the visualized string. In both approaches it is necessary to preprocess
the texts elements either to know the height of the required place or to pro-
vide the transformation with an information which template rule should be
used. Both approaches can tackle the challenges stated above, however, the
transformation approach is not completely universal.

For implementation of the visualization module in Fresnel Editor, the
transformation approach was chosen drawing from the original visualization
process of the tool. Its design and development were straightforward thanks
the architecture of Fresnel Editor. Its authors prepared the tool well for pos-
sible integration of extensions. The visualization process was extended with
a preprocessor which adds a control information about lenghts of visualized

68

7. SVG TOOL FOR IMAGE ANNOTATION

texts. In case a user wants to visualize a set of data to the SVG format, the
data are selected in an ordinary manner, then they are preprocessed, trans-
formed into the SVG format and eventually rendered by Fresnel Editor. The
user is also allowed to specify some parametres of the SVG visualization
and interact with the output.

Even though some parametres can be adjusted by the user, the current
visualization have a firm structure of a tree built from a left side. This
is the prize for visualizing of general data which had to be paid. If the
visualization would be applied on more specific data, the output might be
adjusted according to their character. Such an example can be observed with
the second project included in this thesis.

Paralell to the work on this thesis I was given an opportunity to con-
tribute on a project with a similar goal as the thesis. My supervisor, Dr.
Daniel Sonntag saw prospects in exploiting SVG to create a tool for anno-
tation of medical images – Medico SVG tool. In principle, the Medico SVG
tool is very similar to the Fresnel Editor visualization process: both draws
the visualization on a result set obtained from an RDF repository. The con-
straints are also the same, nevertheless, the Medico SVG tool is aimed rather
on a direct interaction of a user with the visualized data. The main use case
is that the user draws annotations over a medical image and accompany
the drawings with text. Such annotations are afterwards stored for further
use. One of the pursued requirements is to use the tool from web browsers;
more specifically, beside the desktop browsers, it should work on mobile
devices as well. For this reason, the tool is based on SVG and JavaScript –
SVG provides the visual appearance and JavaScript provides the capability
to generate the visualization using DOM API, the logic of the tool and its
interactivity. This project is based on the second visualization technique,
hence complementing the Fresnel Editor visualization.

The fact that the Medico SVG tool should be used by doctors to help
them with diagnosis shows the potential of SVG in praxis. What is more, it
stresses the value of the semantic data visualization, which is still domain
where a lot can be improved. There lies the possibility of a future research:
utilization of existing technologies aimed on an interoperability (for example
Fresnel language) to create a visualization framework that can process both
the general data and domain specific data in an intelligent manner; the
visualization (for example to the SVG format) should take into account
the nature of the data, the requirements for aesthetics and it should be
customizable according to the needs of a user.

69

Bibliography

[1] Jon Bosak. The birth of xml: A personal recollection. Sun Developer
Network, September 2001 [cit. 2012-03-06]. http://java.sun.com/
xml/birth_of_xml.html.

[2] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (xml) 1.0 (fifth edition). Technical
report, W3C, November 2008 [cit. 2012-03-06]. http://www.w3.org/
TR/2008/REC-xml-20081126/.

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François
Yergeau, and John Cowan. Extensible markup language (xml) 1.1
(second edition). Technical report, W3C, August 2006 [cit. 2012-03-
06]. http://www.w3.org/TR/2006/REC-xml11-20060816/.

[4] Leslie F. Sikos. Web Standards – Mastering HTML5, CSS3, and XML.
Apress, 2011. ISBN: 978-1-4302404-2-6.

[5] James Clark. Xsl transformations (xslt). Technical report, W3C,
November 1999 [cit. 2012-03-10]. http://www.w3.org/TR/1999/
REC-xslt-19991116.

[6] Michael Kay. Xsl transformations (xslt) version 2.0. Technical re-
port, W3C, January 2007 [cit. 2012-03-10]. http://www.w3.org/TR/
2007/REC-xslt20-20070123/.

[7] Michael Kay. What kind of language is xslt? IBM Developer
Works, February 2001 [cit. 2012-03-10]. http://www.ibm.com/
developerworks/library/x-xslt/.

[8] Benoit Marchal. How an xslt processor works. IBM Devel-
oper Works, March 2004 [cit. 2012-03-10]. http://www.ibm.com/
developerworks/xml/library/x-xslang/.

[9] Dave Beckett and Brian McBride. Rdf/xml syntax spec-
ification (revised). Technical report, W3C, Frebruary

70

http://java.sun.com/xml/birth_of_xml.html
http://java.sun.com/xml/birth_of_xml.html
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.ibm.com/developerworks/library/x-xslt/
http://www.ibm.com/developerworks/library/x-xslt/
http://www.ibm.com/developerworks/xml/library/x-xslang/
http://www.ibm.com/developerworks/xml/library/x-xslang/

7. SVG TOOL FOR IMAGE ANNOTATION

2004 [cit. 2012-05-21]. http://www.w3.org/TR/2004/
REC-rdf-syntax-grammar-20040210/.

[10] Miloš Kaláb. Sémantická interoperabilita v rámci iniciativ eu, 2009 [cit.
2012-05-21].

[11] Christian Bizer, Ryan Lee, and Emmanuel Pietriga. Fresnel – a browser-
independent presentation vocabulary for rdf. ISWC2006 – 5th In-
ternational Semantic Web Conference, November 2006 [cit. 2012-03-
12]. http://hal.inria.fr/docs/00/05/61/32/PDF/fresnel.
pdf.

[12] Emmanuel Pietriga. Fresnel selector language for rdf (fsl). Technical
report, W3C, November 2005 [cit. 2012-03-12]. http://www.w3.org/
2005/04/fresnel-info/fsl-20050726/.

[13] Christian Bizer, Ryan Lee, and Emmanuel Pietriga. Fresnel –
display vocabulary for rdf. Technical report, W3C, June 2005
[cit. 2012-03-12]. http://www.w3.org/2005/04/fresnel-info/
manual-20050726/.

[14] Miroslav Warchil. Vizualizace dat pomocí stylového jazyka w3c fresnel.
Master thesis, Masaryk university, Brno, Fakulty of Informatics, 2010.

[15] Chris Lilley and Doug Schepers. Secret origin of svg. W3C, November
2010 [cit. 2012-03-14]. http://www.w3.org/Graphics/SVG/WG/
wiki/Secret_Origin_of_SVG.

[16] Erik Dahlström, Patrick Dengler, Anthony Grasso, Chris Lilley,
Cameron McCormack, Doug Schepers, and Jonathan Watt. Scal-
able vector graphics (svg) 1.1 (second edition). Technical report,
W3C, August 2011 [cit. 2012-03-15]. http://www.w3.org/TR/2011/
REC-SVG11-20110816/.

[17] Dean Jackson and Craig Northway. Scalable vector graphics (svg) full
1.2 specification. Technical report, W3C, April 2005 [cit. 2012-03-15].
http://www.w3.org/TR/2005/WD-SVG12-20050413/.

[18] Tolga Capin. Mobile svg profiles: Svg tiny and svg basic. Technical
report, W3C, January 2003 [cit. 2012-03-15]. http://www.w3.org/
TR/2003/REC-SVGMobile-20030114/.

71

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://hal.inria.fr/docs/00/05/61/32/PDF/fresnel.pdf
http://hal.inria.fr/docs/00/05/61/32/PDF/fresnel.pdf
http://www.w3.org/2005/04/fresnel-info/fsl-20050726/
http://www.w3.org/2005/04/fresnel-info/fsl-20050726/
http://www.w3.org/2005/04/fresnel-info/manual-20050726/
http://www.w3.org/2005/04/fresnel-info/manual-20050726/
http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.w3.org/TR/2011/REC-SVG11-20110816/
http://www.w3.org/TR/2011/REC-SVG11-20110816/
http://www.w3.org/TR/2005/WD-SVG12-20050413/
http://www.w3.org/TR/2003/REC-SVGMobile-20030114/
http://www.w3.org/TR/2003/REC-SVGMobile-20030114/

7. SVG TOOL FOR IMAGE ANNOTATION

[19] Yug. http://commons.wikimedia.org, October 2006 [cit. 2012-
03-16]. http://commons.wikimedia.org/wiki/File:Bitmap_
VS_SVG.svg.

[20] Mihai Sucan. Svg or canvas? choosing between
the two. DEV.OPERA, February 2010 [cit. 2012-
03-17]. http://dev.opera.com/articles/view/
svg-or-canvas-choosing-between-the-two/.

[21] Ian Hickson. Html5. Technical report, W3C, May 2011 [cit. 2012-03-17].
http://www.w3.org/TR/2011/WD-html5-20110525/.

[22] Alexis Deveria (Fyrd). http://caniuse.com, March 2012 [cit. 2012-03-17].
http://caniuse.com/#cats=HTML5.

[23] Alexis Deveria (Fyrd). http://caniuse.com, March 2012 [cit. 2012-03-17].
http://caniuse.com/#cats=SVG&statuses=rec.

[24] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading
style sheets, level 2. Technical report, W3C, May 1998 [cit. 2012-03-21].
http://www.w3.org/TR/2008/REC-CSS2-20080411/.

[25] Tom Pixley. Document object model (dom) level 2 events specification.
Technical report, W3C, November 2000 [cit. 2012-03-22]. http://www.
w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/.

[26] Alexander Kolesnikov. Java Drawing with Apache Batik – A Tutorial.
Brainy Software Corp., 2007. ISBN: 978-0-9752128-9-9.

[27] Masaryk University, Brno, Czech Republic. Fresnel Editor – knowledge
visualization, January 2010 [cit. 2012-03-25].

[28] Sesame framework for processing rdf data, 2012 [cit. 2012-03-28]. http:
//www.openrdf.org/.

[29] Jfresnel java library, 2010 [cit. 2012-03-28]. http://jfresnel.
gforge.inria.fr/.

[30] Igor Zemský. Vizualizace rdf dat. Master thesis, Masaryk university,
Brno, Fakulty of Informatics, 2009 [cit. 2012-03-29].

[31] Ján Horváth. Vizuální editor formátů standardu fresnel, 2010 [cit. 2012-
03-29].

[32] Silvie Petrová. Tvorba šablon pro w3c fresnel, 2010 [cit. 2012-03-29].

72

http://commons.wikimedia.org
http://commons.wikimedia.org/wiki/File:Bitmap_VS_SVG.svg
http://commons.wikimedia.org/wiki/File:Bitmap_VS_SVG.svg
http://dev.opera.com/articles/view/svg-or-canvas-choosing-between-the-two/
http://dev.opera.com/articles/view/svg-or-canvas-choosing-between-the-two/
http://www.w3.org/TR/2011/WD-html5-20110525/
http://caniuse.com/#cats=HTML5
http://caniuse.com/#cats=SVG&statuses=rec
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
http://www.openrdf.org/
http://www.openrdf.org/
http://jfresnel.gforge.inria.fr/
http://jfresnel.gforge.inria.fr/

7. SVG TOOL FOR IMAGE ANNOTATION

[33] Java web browser effort (lobo), 2009 [cit. 2012-03-29]. http://
lobobrowser.org/.

[34] Fresnel editor, 2011 [cit. 2012-03-29]. http://sourceforge.net/
projects/fresnel-editor/.

[35] Batik svg toolkit, 2010 [cit. 2012-03-30]. http://xmlgraphics.
apache.org/batik/.

[36] Cameron McCormack. Using the apache batik toolkit for client- and
server-side svg processing, September 2007 [cit. 2012-04-02]. http:
//mcc.id.au/2007/09/batik-course/.

[37] Xml graphics - batik wiki, 2011 [cit. 2012-04-02]. http://wiki.
apache.org/xmlgraphics-batik/.

[38] Apache batik api specification 1.8pre, 2009 [cit. 2012-04-02]. http:
//xmlgraphics.apache.org/batik/javadoc/.

[39] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol,
Jonathan Robie, Mike Champion, and Steve Byrne. Document ob-
ject model (dom) level 2 core specification. Technical report, W3C,
November 2000 [cit. 2012-04-02]. http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113/.

[40] Keith Wood. jquery svg, 2011 [cit. 2012-04-10]. http://keith-wood.
name/svg.html.

[41] Dmitry Baranovskiy. Raphaël–javascript library, 2008 [cit. 2012-04-10].
http://raphaeljs.com/.

[42] Deutsche forschungszentrum für künstliche intelligenz gmbh, [cit. 2012-
04-11]. http://www.dfki.de.

[43] Radspeech (project website), 2012 [cit. 2012-05-24]. http://www.
dfki.de/RadSpeech/.

[44] Daniel Sonntag, Christian Schulz, Christian Reuschling, and Luis
Galarraga. Radspeech’s mobile dialogue system for radiologists,
February 2012 [cit. 2012-04-11]. http://www.dfki.de/RadSpeech/
iui-2012-preprint.pdf.

[45] Daniel Sonntag. Theseus ctc-wp4.4 interactive semantic mediation –
extended linked data access and facetted browsing. Technical report,

73

http://lobobrowser.org/
http://lobobrowser.org/
http://sourceforge.net/projects/fresnel-editor/
http://sourceforge.net/projects/fresnel-editor/
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/
http://mcc.id.au/2007/09/batik-course/
http://mcc.id.au/2007/09/batik-course/
http://wiki.apache.org/xmlgraphics-batik/
http://wiki.apache.org/xmlgraphics-batik/
http://xmlgraphics.apache.org/batik/javadoc/
http://xmlgraphics.apache.org/batik/javadoc/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://keith-wood.name/svg.html
http://keith-wood.name/svg.html
http://raphaeljs.com/
http://www.dfki.de
http://www.dfki.de/RadSpeech/
http://www.dfki.de/RadSpeech/
http://www.dfki.de/RadSpeech/iui-2012-preprint.pdf
http://www.dfki.de/RadSpeech/iui-2012-preprint.pdf

7. SVG TOOL FOR IMAGE ANNOTATION

DFKI GmbH., October 2010 [cit. 2012-04-11]. http://www.w3.org/
Graphics/SVG/WG/wiki/Secret_Origin_of_SVG.

[46] Exhibit – publishing framework for data-rich interactive web
pages, 2009 [cit. 2012-04-12]. http://www.simile-widgets.org/
exhibit/.

74

http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
http://www.simile-widgets.org/exhibit/
http://www.simile-widgets.org/exhibit/

Appendices

75

Appendix A

Content of the Attached CD

• dp.pdf

• dp.tex

• dp.bib

• pictures – a folder containting all the images included in the thesis

• medico_svg (data from JSON) – a folder containing the a current
version of the Medico SVG tool that obtains the data dynamically
from the JSON file

• medico_svg (hardcoded SVG) – a folder containing the an earlier
version of the Medico SVG tool with hardcoded data in the SVG
document

• transformation – a folder with an example of the XSL transformation
and sample data

• fresnel editor – a folder containing the Fresnel Editor with the imple-
mented SVG visualization

76

	Introduction
	Brief Introduction to the Related Technologies
	 XML – Extensible Markup Language
	 XSLT – Extensible Stylesheet Lang. Transformations

	 RDF – Resource Description Framework
	 Fresnel
	 Fresnel Selector Language for RDF
	 Display Vocabulary for RDF
	 Fresnel Rendering Process

	SVG – Scalable Vector Graphics
	 Vector vs. raster
	 SVG Support among Web Browsers
	 Styling of SVG
	 Presentation Attributes and Styling with XSL
	 Styling with CSS
	 Accessibility of Styles

	 Representation of Text Content in SVG
	 Interactivity of SVG Content
	 Events in SVG
	 Scripting in SVG

	Fresnel Editor
	 Architecture of Fresnel Editor
	 The Visualization Process
	 Issues and the Current State of Fresnel Editor

	Batik SVG Toolkit
	 The Core Modules of Batik
	 Real World Projects Using Batik

	Data Visualization Approaches
	 Generating of an SVG Document
	 Transforming of an Intermediate XML Document
	 Building a Document via DOM API

	SVG Visualization in Fresnel Editor
	 XSL Transformation into the SVG Format
	 Preprocessor
	 Design
	 User Roles
	 Use Cases
	 State machine diagrams
	 Class diagram

	 Implementation

	 Displaying of the SVG Image

	SVG Tool for Image Annotation
	 The RadSpeech Project
	 Exhibit-based Facetted Visualization
	 SVG-based Visualization for Image Annotation
	 Benefits And Constraints of the SVG Tool

	Conclusion
	Content of the Attached CD

