
TOWARDS A PROCESS OF BUILDING SEMANTIC MULTIMODAL
DIALOGUE DEMONSTRATORS

Daniel Sonntag and Norbert Reithinger
German Research Center for AI (DFKI), Stuhlsatzenhausweg 3, 66123 Saarbruecken

sonntag@dfki.de, reithinger@dfki.de

Keywords: User/Machine Dialogue, Semantic Data Model, Multimodal Interaction, Prototype Development, Usability
Planes

Abstract: A generic integration framework should allow us to build practical dialogue systems for specific use case
scenarios. While domain-specific dialogue systems are simpler to achieve than more general, open-domain
conversational dialogue systems, the integration into usecases and demonstration scenarios requires a lot of
difficult integration work, especially in multimodal settings where different user devices such as touchscreens
and PDAs are used. The challenges for those systems include,apart from the dialogue modelling task, the
integration modelling for specific use case and demonstration scenarios. This paper reports on dialogue system
prototype development based on ontology communication structures and we draw special attention to the
process of how to build demonstration systems that include atask-oriented, information-seeking, or advice-
giving dialogue as an important fragment of practical dialogue system development.

1 INTRODUCTION

Over the last several years, powerful commercial
off-the-shelf solutions for speech recognition (ASR)
or speech synthesis (TTS) have been produced. Even
entire voice user interface platforms have become
available. The German Voice Award tested about 120
systems with system-controlled functionality between
2005 and 2009. However, more complex semantic
discourse and dialogue infrastructures, where the user
can for example interrupt the system, have only mod-
erate success so far in the entertainment or indus-
trial sectors. There are several reasons for this. For
example, a user-initiative dialogue system is a com-
plex AI system that cannot be easily constructed since
many natural language processing components have
to be integrated into a common framework. This and
similar problems have been addressed by distributed
dialogue system integration frameworks. Prominent
examples of research integration platforms include
OOA (Martin et al., 1999), TRIPS (Allen et al., 2000),
and Galaxy Communicator (Seneff et al., 1999); these
infrastructures mainly address the interconnection of
heterogeneous software components. The W3C con-

sortium also proposes inter-module communication
standards like the Voice Extensible Markup Language
VoiceXML1 or the Extensible MultiModal Annota-
tion markup language EMMA2, with products from
industry supporting these standards3.

We tried to make the interaction and demonstra-
tion most attractive and effective (dialogue and task
performance) when considering the short implemen-
tation cycles in large-scale development and demon-
stration projects especially for multimodal systems.
Thereby, hub-and-spoke dialogue frameworks play a
major role (Reithinger and Sonntag, 2005). Over the
last years, we have adhered strictly to the developed
rule “No presentation without representation.” The
idea is to implement a generic, and semantic, dia-
logue shell that can be configured for and applied to
domain-specific dialogue applications. All messages
transferred between internal and external components
are based on RDF data structures which are modelled
in a discourse ontology (also cf. (Sonntag, 2010)).

1http://www.w3.org/TR/voicexml20/
2http://www.w3.org/TR/emma/
3http://www.voicexml.org



2 DIALOGUE FRAMEWORK

The main architectural challenges we encountered
in implementing a new dialogue application for a new
domain can be summarised as follows:

• providing a common basis for task-specific pro-
cessing;

• accessing the entire application backend via a lay-
ered approach.

In our experience, these challenges can be solved
by implementing the core of a dialogue runtime en-
vironment, anontology dialogue platform(ODP)
framework and its platform API (the SemVox spin-
off company offers a commercial version), as well as
providing configurable adaptor components. These
translate between conventional answer data structures
and ontology-based representations (in the case of,
e.g., a SPARQL backend repository)—ranging from
simple HTTP-based REST services to Semantic Web
Services, driven by declarative specifications. The di-
alogue framework essentially addresses the first prob-
lem of how to integrate and harmonise different natu-
ral language processing (NLP) components and third-
party components for ASR and TTS.

Using a dialogue framework for the implementa-
tion of domain dialogue requires domain extensions
and the adaptation of functional modules while im-
plementing a new dialogue for a new domain or use
case. Hence, an integrated workbench or toolbox is
required, as depicted in figure 1 (right). The ODP
workbench builds upon the industry standard Eclipse
and also integrates other established open source soft-
ware development tools to support dialogue applica-
tion development, automated testing, and interactive
debugging. A distinguishing feature of the toolbox
is the built-in support for eTFS (extended Typed Fea-
ture Structures), the optimised ODP-internal data rep-
resentation for knowledge structures. This enables
ontology-aware tools for the knowledge engineer and
application developer to develop use case and demon-
stration specific prototypes. Hence, the automated
dialogue application testing tools play a major role.
In this paper, we will focus on the top-down con-
ceptual workflow with which the application evalu-
ation/testing step is integrated, the prototype develop-
ment process (section 3).

It is important to point out that the architectural
decisions are based on customisation and prototype
development issues that arise when dealing with end-
to-end dialogue-based interaction systems for indus-
trial dissemination or demonstration scenarios. We
use an RDF store (Jena TDB4) with the RDF ver-

4http://jena.sourceforge.net/TDB/

Figure 2: The prototype development process works best if
done in partnership with representatives from the use cases
for the evaluation step before deployment.

sion of Yago (Suchanek et al., 2007) which is a
structured representation of Wikipedia contents for
answering domain-specific or domain-independent
questions, respectively. As an intermediate query rep-
resentation language, a syntax based on the SPARQL
Inferencing Notation (SPIN5) is used. This is in ef-
fect a structured version of SPARQL, the RDF query
language. SPARQL originally uses a custom plain-
text/string query syntax similar to SQL. The SPIN
format instead uses an RDFS vocabulary to represent
the individual SPARQL terms. The RDF(S) struc-
tured syntax allows us to use rule engines and other
RDF(S)-based tools to modify the actual eTFS query
to build a backend-specific SPARQL query.

3 PROTOTYPE DEVELOPMENT
PROCESS

Figure 2 shows a typical software development
process which takes usability issues into account. It
is a process with iterative steps, meaning the cycle
is repeated but in a cumulative fashion. Please note
that in our recommended form, theanalysis & design
and implementationsteps, and theevaluation/testing
andrequirementssteps timely overlap (work in each
step is finished before work in the next step can fin-
ish instead of finishing the steps before the next step
starts). The deployment step is often performed when
the internalevaluation/testingcycle stops. A better
approach is to involve representatives from the use
cases for the evaluation/testing steps before the sys-
tem is deployed at their organisation for testing. We
will use this cycle as an abstract view of our proto-
type development process and focus on theanalysis
& designanddeploymentstages.

5http://spinrdf.org/



Figure 1: Conceptual architecture of the ontology-based dialogue platform (ODP) and our Eclipse workbench/toolbox. The
workbench is used to specify the semantic dialogue management models and processing logic for specific demonstrator
scenarios.

3.1 Analysis & Design

The analysis and design step of the prototype develop-
ment process assumes the existence of several univer-
sal principles of design and a usability strategy which
supports the iterative software development process.

Design Principles. We use design principles be-
cause demonstrator systems are mysteriously tied to
the subconscious instincts and perceptions of the test
user. We identified at least four such principles which
we think apply to the prototype development process:

1. the 80/20 rule;

2. broad accessibility;

3. aesthetic effect;

4. alignment.

(1) The80/20 ruleis a principal design rule which
originally stated that eighty percent of the effects in
large systems are caused by twenty percent of the
variables, which suggest a link to normally distributed
events (Juran, 1993). When applied to our demon-
stration scenarios, the rule means that 80 percent of a
demonstrator’s usage involves only 20 percent of the
provided (dialogical) interaction competence or inter-
face features. Accordingly, a semantic model should
highlight the important features in specific usage con-
texts. (2) The principle ofBroad accessibilityas-
serts that research and demonstrator systems should
be accessible and usable by people of diverse abili-
ties and backgrounds. Hence, a global semantic user
model can be used, and adaptations or modifications

can be generally avoided. Of course, this principle
cannot be applied generally without a certain con-
troversy especially when designing business applica-
tions. Therefore, the accessibility concept has been
extended to four standard characteristics of accessi-
ble designs: perceptibility, operability, simplicity, and
forgiveness.6 Interestingly, the perceptibility charac-
teristic plays a major role when a trained presenter
gives the presentation to a group of system evaluators;
redundant presentation methods (e.g., textual, graph-
ical and iconic) enhance the transparency of the sys-
tem process. Likewise, forgiveness is implemented
by ways to prevent usage errors (e.g., control buttons
can only be used in the correct way) or by means to
undo an action (e.g., an undo button or the speech
command “Please go back to ...”). This characteristic
is particularly welcome in situations where the pro-
totype is presented to a greater audience, e.g., when
exhibited at a fair. (3) Theaesthetic effectdescribes
the phenomenon that aesthetic designs are (subcon-
sciously) more easily perceived and more effective at
fostering a positive attitude toward the demonstrator
system (also cf. works on apparent usability, as, e.g.,
in (Kurosu and Kashimura, 1995)). (4) Finally, the
alignmentprinciple concerns the relative placement
of visual affordances on a graphical screen according
to a semantic spatial model. Broadly speaking, re-
lated elements in the design should be aligned with
related elements to create a sense of unity, cohesion
or semantic relatedness (as is, for example, the case
with medical pictures of body regions which exhibit

6Also cf. the Web Content Accessibility Guidelines 1.0,
available at http://www.w3.org/TR/WCAG10/.



a semantically grounded spatial relationship accord-
ing to the distribution of organs in a body). All prin-
ciples should help to diminish the degree of misuse
and misunderstanding based on the described factors
while allowing for flexible presentation forms.

Usability Strategy. General usability guidelines
express that a usable product is easy to learn, efficient
to use, provides quick recovery from errors, is easy
to remember, enjoyable to use, and visually pleasing.
While these guidelines provide a nice abstract list of
optimisation parameters, experience shows they are
only seldom used to go through the prototype devel-
opment cycle, as (Cronholm, 2009) points out. The
analysis and design principles described in the previ-
ous paragraph offer more technical advice when fol-
lowing the development cycle. We used the analysis
and design guidelines in combination with usability
guidelines that consider five different planes (Garrett,
2002) in the development process. Every plane has
its own issues that must be considered. From abstract
to concrete, these are (1) the strategic plane, (2) the
scope plane, (3) the structure plane, (4) the skeleton
plane, and (5) the surface plane. In accordance with
the software development process in figure 2, defining
the users and their needs on the strategic plane is the
first step in the design process. It is also useful to cre-
ate personas that represent a special user group, e.g.,
the representatives of a specific business case. On the
scope plane, then, you have to define the system’s ca-
pacity (e.g., what a user should be able to say when
using a multimodal Internet terminal for music down-
load and exchange) and then the requirements for the
technical dialogue components.

3.2 Deployment

The deployment step is the activity that makes a
demonstrator system available for use in the use cases.
Software deployment activities normally include the
release, the modification of a software system that
has been previously installed, etc. However, we fo-
cus on the deployment process that results in a new
software distribution, demonstrator, or selected demo
event during the project runtime. In large scale inte-
gration projects (i.e., projects with a runtime of three
to five years) the distribution of these events is of par-
ticular interest. The requirements analysis and revised
analysis at the beginning of the development process
is in a timeframe of several months. This allows one
or two runs through the prototype development pro-
cess before revised requirements are specified (also
cf. figure 2).

4 CONCLUSION

We described a specific dialogue system proto-
type development process and drew special attention
to the process of how to build demonstration systems
that include a task-oriented, information-seeking, or
advice-giving dialogue. All implementations fol-
low our ontology-based dialogue system framework
(ODP) in order to provide a common basis for task-
specific semantic-based processing.

The prototype development process includes de-
sign principles and a usability strategy. In our experi-
ence, obeying theaesthetic effectprinciple has a pos-
itive side effect on the implementation of thebroad
accessibilityprinciple. This is particularly welcome
in public demonstration scenarios.

REFERENCES

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu,
L., and Stent, A. (2000). An Architecture for a
Generic Dialogue Shell.Natural Language Engineer-
ing, 6(3):1–16.

Cronholm, S. (2009). The usability of usability guidelines.
In Proceedings of the 19th Australasian conference on
Computer-Human Interaction Conference.

Garrett, J. J. (2002).The Elements of User Experience.
American Institute of Graphic Arts, New York.

Juran, J. M. & Gryna, F. M. (1993).Quality planning
and analysis : from product development through use.
McGraw-Hill, New York.

Kurosu, M. and Kashimura, K. (1995). Apparent usabil-
ity vs. inherent usability: experimental analysis on the
determinants of the apparent usability. InCHI ’95:
Conference companion on Human factors in comput-
ing systems, pages 292–293, New York, NY, USA.
ACM.

Martin, D., Cheyer, A., and Moran, D. (1999). The Open
Agent Architecture: a framework for building dis-
tributed software systems.Applied Artificial Intelli-
gence, 13(1/2):91–128.

Reithinger, N. and Sonntag, D. (2005). An integration
framework for a mobile multimodal dialogue system
accessing the Semantic Web. InProceedings of IN-
TERSPEECH, pages 841–844, Lisbon, Portugal.

Seneff, S., Lau, R., and Polifroni, J. (1999). Organization,
Communication, and Control in the Galaxy-II Con-
versational System. InProceedings of Eurospeech’99,
pages 1271–1274, Budapest, Hungary.

Sonntag, D. (2010).Ontologies and Adaptivity in Dialogue
for Question Answering. AKA and IOS Press, Heidel-
berg.

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007).
Yago: A Core of Semantic Knowledge. In16th inter-
national World Wide Web conference (WWW 2007),
New York, NY, USA. ACM Press.


