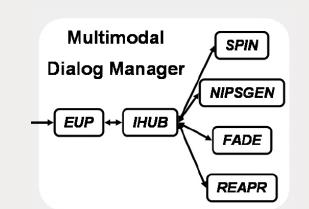


Ralf Engel, Daniel Sonntag


DFKI GmbH, Saarbrücken, Stuhlsatzenhausweg 3, Germany, ralf.engel@dfki.de, daniel.sonntag@dfki.de

Smartweb Requirements

- Multimodal dialogue with question answering functionality.
- Speech is dominant input modality for interaction.
- Multimodal recognition for speech or gestures.
- Result rendering for Semantic Web data content: text, images, videos, graphics, and synthesis of speech.
- Control the message flow in the system.
- Develop a context-aware, mobile, multimodal user interface.
- Use a smartphone as interaction device.

Text Generation

- Generates full utterances for the speech synthesiser and typography-enriched texts and tables presented on the mobile device.
- Generates a semantic paraphrase representing how the system has interpreted the user input in a human readable manner.
- Module called NipsGen is responsible for text generation.
- Input are RDF/S instances based on the SmartWeb ontology (SWintO).
- Interface layer integrates NipsGen into the information hub (IHUB) and translates between SWintO and NipsGen's own internal representation.

Outlook: (1) Tool that generates automatically the types needed for the TAG derivation tree. (2) Multiple alternative texts which are tested against layout and presentation constraints.

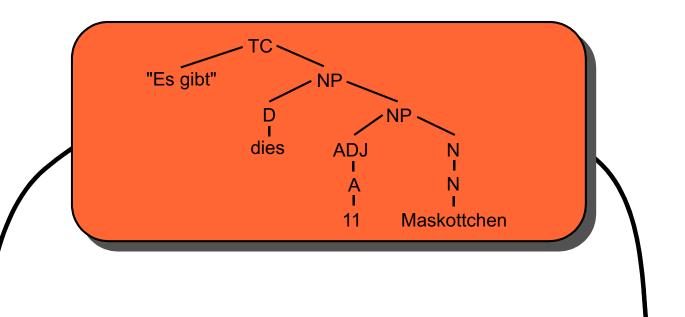
Result(target: synthesis,

number: 11,

type: Mascot(...))

"Show me the mascots of the Football World Cup"

NipsGen module


- Transforms ontology instances into text
- Combines existing components:
- SPIN parser (essentially a rewriting system for TFS)
- a TAG framework for German (based on XTAG)
- Allows combination of dynamically generated and canned text

Es gibt diese 11 Maskottchen.

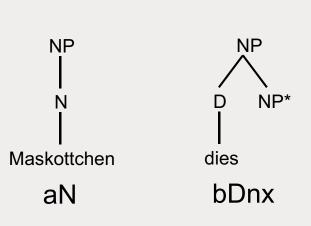
TC(c: ["Es gibt", aN(I_11: Maskottchen, a_0: bDnx(I_11: dies), a_1: bADJnx(I_111: 11), fvp: Fvp(num: pl))])

Step 1: Construction of the intermediate syntactic representation

SPIN rules (exemplary)

Result(target: synthesis, type: \$T)
-> TC(c: ["Es gibt", NP(o: \$T)])

NP(o: Mascot())
-> NP(lex: Maskottchen)


Step 2: Transformation to the extended TAG derivation tree

SPIN rule (exemplary)

Step 3: Construction of the derived TAG tree

Elementary trees of TAG grammar are combined and features are propagated

Elementary trees (exemplary)

Step 4: Morphosyntactic adaptations of the lexical leafs and linearization

- Full form lexicon
- Support for HTML tags with features formatBegin and formatEnd

