

7th December 2007 SAMT, Genova, Italy

A Constraint-Based Graph Visualisation Architecture for Mobile Semantic Web Interfaces

Daniel Sonntag and Philipp Heim

German Research Center for Artificial Intelligence 66123 Saarbruecken, Germany

daniel.sonntag@dfki.de

Agenda

SmartWeb and Multimodal HCI

Constraint-based RDF Visualisation

- Semantic Navigation
- Graph Visualisation Architecture
- User Evaluation

Conclusions and Outlook

Who was world champion in 1990 ?

Question Answering Functionality

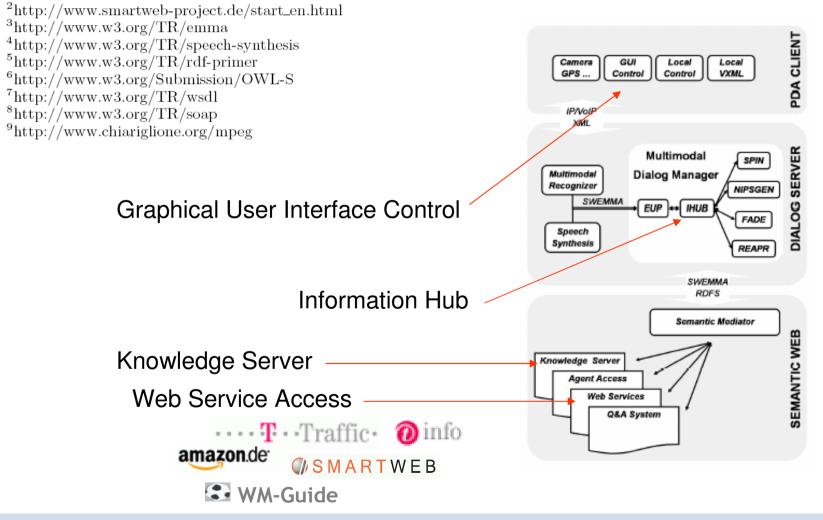
S M A R T W E B

- Intuitive multimodal access to a rich selection of Web-based information services.
- HCI and dialogue system goals:
 - Provide concise and correct multimedia answers in a multimodal way.
 - Show how knowledge retrieval from ontologies and Web Services can be combined with advanced dialogical interaction, e.g., system clarifications.
 - Provide ontology-based integration of verbal and non-verbal system input (fusion) and output (reaction/presentation).

The SmartWeb Consortium

Application Scenarios

Personal guide at the FIFA Worldcup 2006

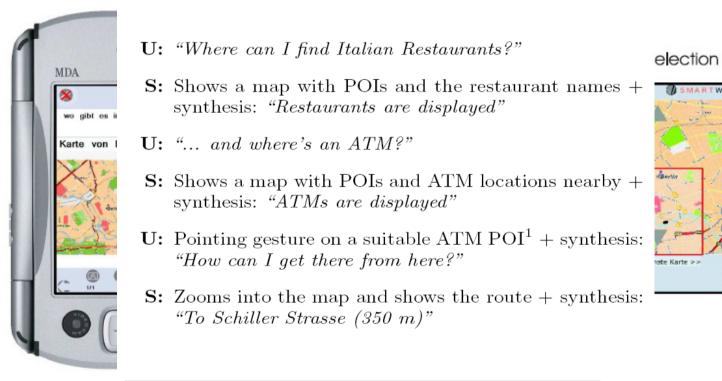

Answer football related and navigation related questions.

German Telekom Mobility and Navigation Scenario

http://smartweb.dfki.de/SmartWeb_FlashDemo_eng_v09.exe

Technical Design

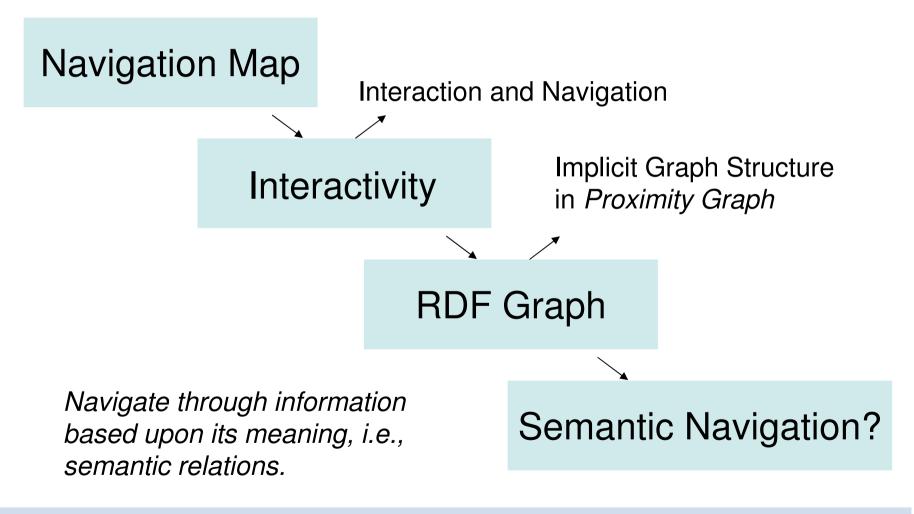
07/12/2007



Multimodal Interaction Guidelines

- Multimodality: More modalities allow for more natural communication.
- Encapsulation: Encapsulate user interface proper from the rest of the application.
- Standards: Re-use own and others resources.
- Representation: A common ontological knowledge base eases data flow, avoids transformations, and provide a basis for processing natural language dialogue phenomena.
 - Principles:
 - No presentation without representation
 - No interaction without representation
 - An Ontology is
 - an explicit specification of a conceptualization [Gruber 93].
 - (language) concepts and facts in relation to each other.

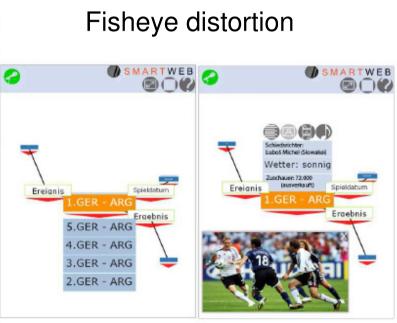
Interactive Result Presentation



Use graphical surface to indicate narrowed dialogue context.

Use graphical screen transitions as system dialogue act.

Towards Semantic Navigation



07/12/2007

Mobile Semantic Navigation

Automatic graph node placement

66000

RDF Introduction

WorldCup1974Match06-30 GER-SWE

- RDF consists of two parts:
 - RDF model: a set of triples
 - RDF syntax: different serialisations, mainly XML (but not exclusively)
 - RDF Schema: definition of taxonomic vocabularies
 - simple ontology for RDF and using RDF
- Statement: "This match (GER-SWE) has 66000 spectators."
- Structure:
 - Resource (subject)
 - http://www.smartweb.de/WorldCup1974Match06-30 GER-SWE

kb:matchResult

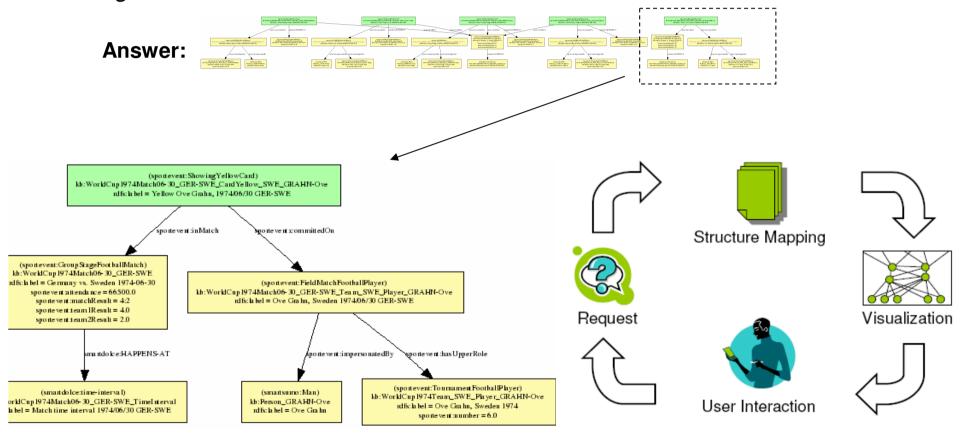
- Property (predicate / relation)
 - http://www.smartweb.de/#matchResult
- Value (object)
 - String "66000" or Integer 66000

Proximity Graph

Question: How many yellow cards have been shown in the match Germany against Sweden?

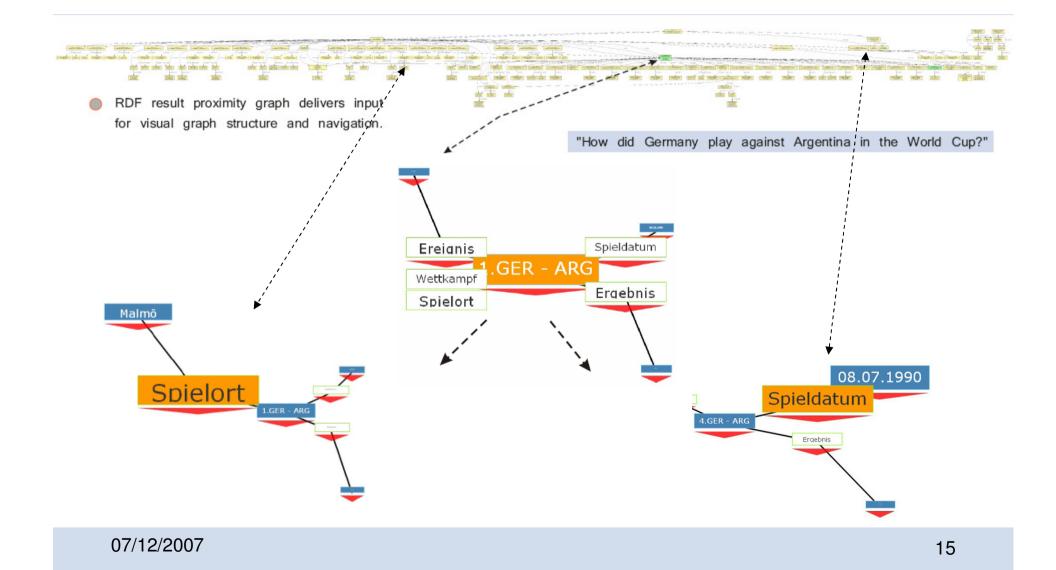
Answer: <u>99 RDF triples</u>:

<kb:Person_GRAHN-Ove>, <rdf:type>, <smartsumo:Man>.


<kb:Person_JONSON-Mattias>, <rdf:type>, <smartsumo:Man>.

- <kb:WorldCup1974Match06-30_GER-SWE>, <sportevent:matchResult>, "4:2".
- <kb:WorldCup2006Match06-24_GER-SWE_Team_SWE_Player_JONSON-Mattias>, <sportevent:impersonatedBy>, <kb:Person_JONSON-Mattias>.
- <kb:2006-06-24_GER-SWE_TimeOffset48>, <rdf:type>, <sportevent:MatchTimePointRelative>.
- <kb:WorldCup2006Match06-24_GER-SWE_CardYellow_SWE_LUCIC-Teddy>, <rdf:type>,
 - <sportevent:ShowingYellowCard>.
- <kb:Person_GRAHN-Ove>, <rdfs:label>, "Ove Grahn".
- <kb:WorldCup2006Match06-24_GER-SWE_CardYellow_SWE_LUCIC-Teddy>, <rdfs:label>, "Yellow Teddy Lucic, 2006/06/24 GER-SWE".
- <kb:WorldCup2006Team_SWE_Player_JONSON-Mattias>, <rdf:type>, <sportevent:TournamentFootballPlayer>.
- <kb:WorldCup2006Match06-24_GER-SWE>, <sportevent:attendance>, 66000.0.
- <kb:WorldCup1974Match06-30_GER-SWE>, <sportevent:team2Result>, 2.0.
- <kb:2006-06-24_GER-SWE_TimeOffset48>, <rdfs:label>, "Match minute 48 2006/06/24 GER-SWE".

Proximity Graph Visualisation


Question: How many yellow cards have been shown in the match Germany against Sweden?

07/12/2007

Structure Mapping Example

Visualisation by Constraint Satisfaction

Constraints for Graph Structure and Content

- All vertices must be within fixed space on handheld.
- Vertices must not overlap.
- Related vertices must be placed next to each other.
- Aesthetic criteria (Soft Constraints)
 - Avoid edge crossings.
 - Keep edge length uniformly.
 - Conform to user expectations.

Constraint Satisfaction Problems

CSP: set of variables and constraints on values.

 $X_1, X_2, ..., X_n$ $C_1, C_2, ..., C_m$

- CSP state and complete assignment: $\{X_i = v_i, X_j = v_j, ...\}$
- Refinement model:

Variables are initially unconstrained; constraints are added as the computation unfolds, progressively refining the permissible values of the variables (reducing domain) until solution is found (forward checking + backtracking).

- Refinement model Java API:
 - Choco Constraint Programming System

http://www.choco-solver.net

CSP Formulation Example

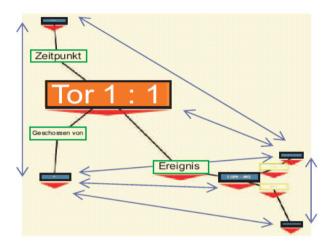
Suitable representations for vertexes and constraints

- Co-ordinates: (x_1, x_2) (y_1, y_2) .
- Discrete values according to fixed space on handheld (480x600)
- Euclidian Distance Measure: $distance = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$

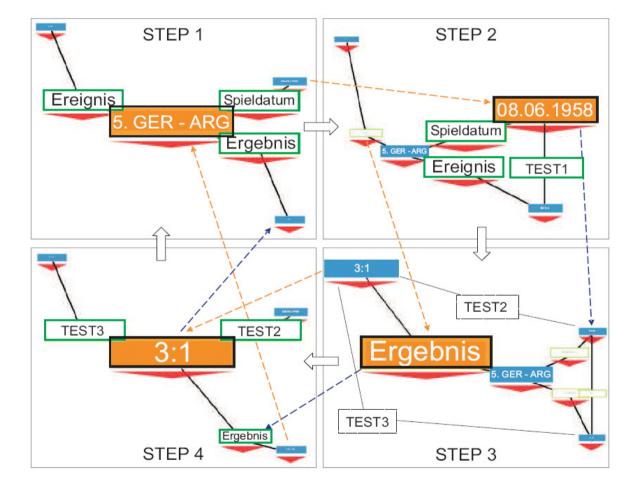
Approximation by elementary calculation types:

- No power/radial, no absolute values (perf. & API options)
- Manhattan Distance (L1 Norm): $distance = |x_1 x_2| + |y_1 y_2|$
- Algebraic minimisation constraint for node distance:

 $(|x_1 - x_2| > dist) \lor (|y_1 - y_2| > dist)$ reformulated to:

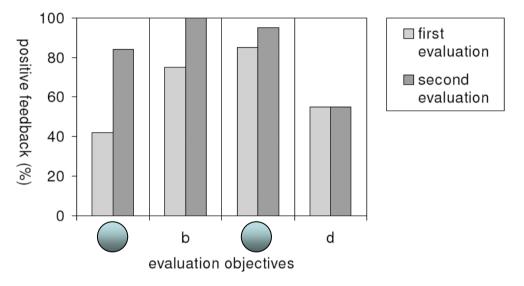

 $((x_1 - x_2) < -dist) \lor ((x_1 - x_2) > dist) \quad \dots$

DF


Soft Constraints and Limits

- No edge crossings, uniform edge length works.
- We can avoid inconsistent layouts by reducing the number of active instances, but sometimes no CSP solution exists.
- Smooth transitions between consecutive displays are hard to implement.

Handling of Inconsistencies

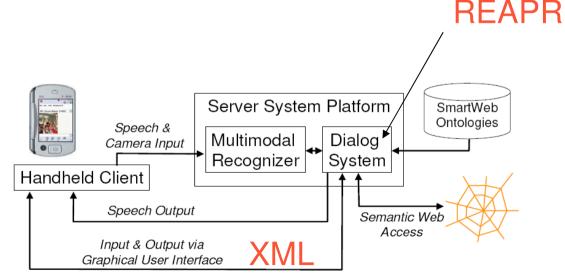


07/12/2007

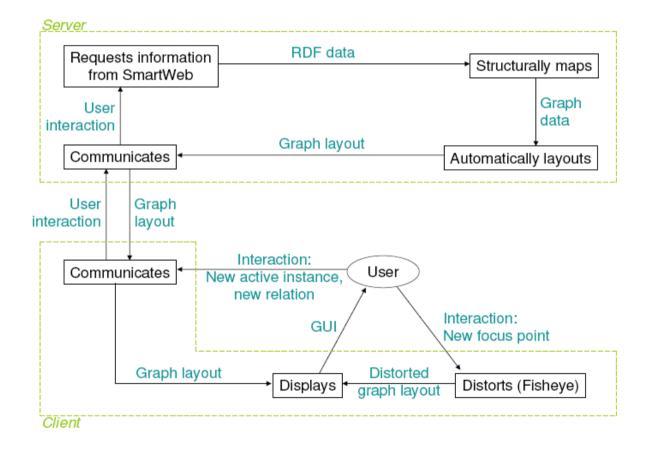
User Evaluation

- Twenty users, two evaluation phases, four evaluation objectives.
- (a): Graph Interaction possibilities easy to understand
- (b): It is possible to extract information from structure and labels.
- (c): One gets the difference between a relation node and an instance node.
- (d): User realises the dependencies between active instances. (Filtering)

85% describe the interaction possibilities as easy to understand


95% easily understand the difference between instance and relation nodes

Dialogue System Integration


- Semantic Navigation is embedded into a Reaction and Presentation component (REAPR).
- REAPR is a dialogue server module.
- Server Communication via XML for graph structure,

node positions, and click events

Integration Architecture

07/12/2007

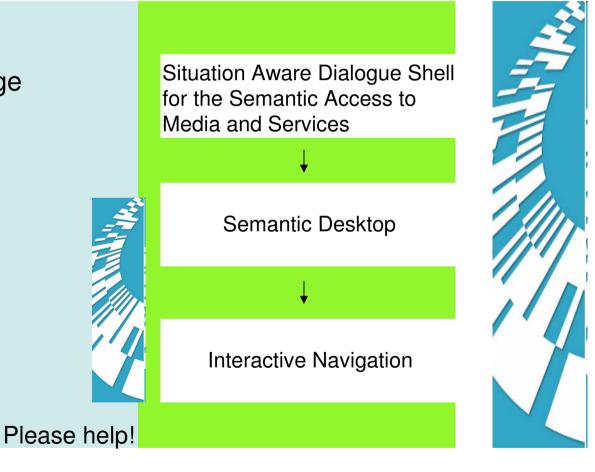
Conlusions

SmartWeb provides a useful distributed architecture for CSP based graph visualisation.

The evaluation suggests that a user gets a more precise understanding of a presented QA + Navigation result in its whole complexity.

Directions

- Symmetric Multimodal Interaction for Semantic Graphs (Speech & Navigation).
 - Editing via concurrent pen and voice
- Information Filtering by User Personalisation
 - Logging click events + navigation events "tells a story":
 - of individual exploration of knowledge space
 - group interests (-> collaborative filtering)
 - -> Individualised Information Presentation:
 - (Semantic) Information Design
 - (Semantic) Presentation Design
 - (Semantic) Interaction Design



Research program for a new Internet-based knowledge infrastructure

http://theseus-programm.de/front

-Individual Semantic Desktop
-Different "conceptual" areas
-Desktop Information Interlinkage (based on RDF - OWL)
-Multiple Focussed Natural Language and Multimedia
Presentations

-Where are suitable (RDF/OWL) APIs for information fusion, ontology mapping (access layer), and multimedia presentation generation (interaction layer)?

