
Java for Advanced Programmers
Object-Oriented Programming Basics

Bernd Kiefer
Jörg Steffen

November 9, 2022

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 1 / 11

The Idea behind OO Programming

Objects: The central abstraction

It encapsulates:

▶ Object properties

: data fields

▶ Object behaviours

: methods

▶ An object is a chunk of memory in a running system

Classes: Blueprints

▶ A class defines the shape and behavior of objects

▶ In Java, every object is an instance of some class

▶ The class it belongs to is the datatype of an object

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 1 / 11

The Idea behind OO Programming

Objects: The central abstraction

It encapsulates:

▶ Object properties: data fields

▶ Object behaviours: methods

▶ An object is a chunk of memory in a running system

Classes: Blueprints

▶ A class defines the shape and behavior of objects

▶ In Java, every object is an instance of some class

▶ The class it belongs to is the datatype of an object

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 1 / 11

The Idea behind OO Programming

Objects: The central abstraction

It encapsulates:

▶ Object properties: data fields

▶ Object behaviours: methods

▶ An object is a chunk of memory in a running system

Classes: Blueprints

▶ A class defines the shape and behavior of objects

▶ In Java, every object is an instance of some class

▶ The class it belongs to is the datatype of an object

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 1 / 11

Our running example

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 2 / 11

Our Hero Class

class Hero {

Role r;

int x, y;

/** Change my position by the given vector

* of length <= sqrt(2)

* @param deltaX the x component of the vector

* @param deltaY the y component of the vector

* @return true if this movement is possible

*/

boolean moveTo(int deltaX, int deltaY) {

...

}

...

}

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 3 / 11

Creating Objects: Constructors

▶ Special methods: no return type, name equal to class name

▶ If none is specified, there is always the empty constructor: Hero()

▶ The default constructor sets all fields to default values

▶ You can create your own constructors (as many as you want)

Hero() { x = -1; y = -1; }

Hero(Role myRole, int startX, int startY) {

r = myRole; x = startX; y = startY;

}

▶ If you specify a non-empty constructor, the empty constructor is not
created automatically

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 4 / 11

Creating Objects: new

▶ Objects are independent blocks of memory
▶ for every field
▶ plus overhead for class information

▶ Create a new object (reserve memory) with the new keyword:

Hero r1 = new Hero();

Hero r2 = new Hero(new Rogue(), 0, 0);

▶ Object lifetime:
▶ Alife as long as there is some variable or life object pointing to it
▶ Otherwise, their memory is freed for reuse
▶ Beware: creating and freeing many objects comes at a cost!

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 5 / 11

Specifying Methods

▶ A method is defined by its signature

boolean moveTo(int deltaX, int deltaY)

result type type argument 1 type argument 2

▶ Methods returning no value get void as return type

▶ Non-void method must have at least one return statement followed
by an expression of the right type:

return Math.abs(deltaX) + Math.abs(deltaY) <= 2;

▶ void methods may be exited using simply return;

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 6 / 11

Specifying Methods

▶ A method is defined by its signature

boolean moveTo(int deltaX, int deltaY)

result type type argument 1 type argument 2

▶ Methods returning no value get void as return type

▶ Non-void method must have at least one return statement followed
by an expression of the right type:

return Math.abs(deltaX) + Math.abs(deltaY) <= 2;

▶ void methods may be exited using simply return;

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 6 / 11

Method Polymorphism

Multiple methods with the same name, but different signature

boolean moveTo(int deltaX, int deltaY)

boolean moveTo(double deltaX, double deltaY)

Restriction: Compiler can decide which to call at compile time

▶ No methods differing only in return type

▶ No methods where, e.g., one argument type is a subclass:

void encounter(Hero h) ...

void encounter(Rogue h) ...

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 7 / 11

Method Polymorphism

Multiple methods with the same name, but different signature

boolean moveTo(int deltaX, int deltaY)

boolean moveTo(double deltaX, double deltaY)

Restriction: Compiler can decide which to call at compile time

▶ No methods differing only in return type

▶ No methods where, e.g., one argument type is a subclass:

void encounter(Hero h) ...

void encounter(Rogue h) ...

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 7 / 11

Guidelines for Classes

Intuitive

▶ Size of methods (˜ max 1 page)

▶ Number of fields

▶ Little/No Duplication of code

▶ Hide internals: fields and implementation

Textbook

▶ Single Responsibility Principle

▶ Design by Contract / Implementation by Design

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 8 / 11

Guidelines for Classes

Intuitive

▶ Size of methods (˜ max 1 page)

▶ Number of fields

▶ Little/No Duplication of code

▶ Hide internals: fields and implementation

Textbook

▶ Single Responsibility Principle

▶ Design by Contract / Implementation by Design

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 8 / 11

Project setup

▶ Packages are used to structure projects

▶ Analogous to folder structure on file systems

▶ The java compiler and class loader will search sub-folders accordingly

▶ Our default package structure:

src/main/java

de

unisaar

jfap

App.java

Hero.java

target

de

unisaar

jfap

App.class

Hero.class

▶ First line in front of all other code:
package de.unisaar.jfap;

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 9 / 11

Test-driven development

▶ First write tests that check the designed functionality

▶ Then: implement the class until all tests succeed

▶ We will do the non-fundamentalist version

Unit Tests

▶ Purpose: test isolated, atomic aspects of a class

▶ Tests must be independent, i.e., running test B must work without
test A running first

▶ Benefit: Sleep better if you have to change innards of a class that is
used in a zillion different places

▶ Limitations: Hard to test complex situations/classes

▶ Test coverage hints on how much of your code is tested

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 10 / 11

Test-driven development

▶ First write tests that check the designed functionality

▶ Then: implement the class until all tests succeed

▶ We will do the non-fundamentalist version

Unit Tests

▶ Purpose: test isolated, atomic aspects of a class

▶ Tests must be independent, i.e., running test B must work without
test A running first

▶ Benefit: Sleep better if you have to change innards of a class that is
used in a zillion different places

▶ Limitations: Hard to test complex situations/classes

▶ Test coverage hints on how much of your code is tested

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 10 / 11

Test-driven development

▶ First write tests that check the designed functionality

▶ Then: implement the class until all tests succeed

▶ We will do the non-fundamentalist version

Unit Tests

▶ Purpose: test isolated, atomic aspects of a class

▶ Tests must be independent, i.e., running test B must work without
test A running first

▶ Benefit: Sleep better if you have to change innards of a class that is
used in a zillion different places

▶ Limitations: Hard to test complex situations/classes

▶ Test coverage hints on how much of your code is tested

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 10 / 11

Test Class Example

import static org.junit.Assert.*;

import org.junit.Test;

class TestHero {

/** Test if the hero moves according to the specs */

@Test

public void testMoveTo() {

Hero h = new Hero(0,0);

h.moveTo(1,1);

assertEquals(1, h.x);

assertEquals(1, h.y);

}

...

}

Bernd Kiefer Jörg Steffen JfAP - OO Basics November 9, 2022 11 / 11

