
Java for Advanced Programmers
Inheritance: Details

Bernd Kiefer
Jörg Steffen

November 24, 2022

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 1 / 7



Excursion: References

▶ Java distinguishes two categories of data types
▶ primitive types: int,char,double,...
▶ reference types: all classes, interfaces, arrays

▶ Variables for POD types contain the value itself

▶ Variables of reference types contain
a reference to an object somewhere in memory

▶ The same holds for method parameters and fields

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 1 / 7



Special References

▶ The null reference signals that a variable / field does not point to
any object

▶ In every method, there is a special reference this

▶ this always refers to the object the method was called with

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 2 / 7



Special References

▶ The null reference signals that a variable / field does not point to
any object

▶ In every method, there is a special reference this

class Hero {
int x, y;

void move(int dx, int dy) { x += dx; y += dy; }
void rest() { move(0,0); }

}

▶ this always refers to the object the method was called with

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 2 / 7



Special References

▶ The null reference signals that a variable / field does not point to
any object

▶ In every method, there is a special reference this

class Hero {
int x, y;

void move(int dx, int dy) { this.x += dx; this.y += dy; }
void rest() { this.move(0,0); }

}

▶ this always refers to the object the method was called with

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 2 / 7



Special References

▶ The null reference signals that a variable / field does not point to
any object

▶ In every method, there is a special reference this

class Hero {
int x, y;

void move(int dx, int dy) { this.x += dx; this.y += dy; }
void rest() { this.move(0,0); }

}
▶ this always refers to the object the method was called with

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 2 / 7



Special References and Casts

▶ There is also a special reference super, which references the same
object, as if it were the superclass

▶ Since every class has a superclass (minimally Object), super is
always available

▶ super allows you to force the call of a superclass method

▶ Alternatively, you can use a cast, with which you can explicitely
change the compile time type:

Tile t = new WallTile(0, 0);

WallTile w = (WallTile)t;

▶ super behaves like ((DirectSuperClass)this)

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 3 / 7



Inheritance: Constructors

Constructors are not inherited
Tile.java

WallTile.java

Tile(int x, int y){...}

(none defined)? Compile ErrorWallTile(){...};WallTile(int x, int y){...};WallTile(int x, int y){ super(x,y); };

▶ Superclass defines constructor with arguments
→ subclass must define one (not necessarily same arguments)

▶ We would like to avoid duplication of code, but how?

▶ this(...) and super(...) come in handy

▶ Only allowed as first statement in a constructor

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 4 / 7



Inheritance: Constructors

Constructors are not inherited
Tile.java

WallTile.java

Tile(int x, int y){...}

(none defined)

? Compile ErrorWallTile(){...};WallTile(int x, int y){...};WallTile(int x, int y){ super(x,y); };

▶ Superclass defines constructor with arguments
→ subclass must define one (not necessarily same arguments)

▶ We would like to avoid duplication of code, but how?

▶ this(...) and super(...) come in handy

▶ Only allowed as first statement in a constructor

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 4 / 7



Inheritance: Constructors

Constructors are not inherited
Tile.java

WallTile.java

Tile(int x, int y){...}

(none defined)

? Compile Error

WallTile(){...};WallTile(int x, int y){...};WallTile(int x, int y){ super(x,y); };

▶ Superclass defines constructor with arguments
→ subclass must define one (not necessarily same arguments)

▶ We would like to avoid duplication of code, but how?

▶ this(...) and super(...) come in handy

▶ Only allowed as first statement in a constructor

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 4 / 7



Inheritance: Constructors

Constructors are not inherited
Tile.java

WallTile.java

Tile(int x, int y){...}

(none defined)? Compile Error

WallTile(){...};

WallTile(int x, int y){...};WallTile(int x, int y){ super(x,y); };

▶ Superclass defines constructor with arguments
→ subclass must define one (not necessarily same arguments)

▶ We would like to avoid duplication of code, but how?

▶ this(...) and super(...) come in handy

▶ Only allowed as first statement in a constructor

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 4 / 7



Inheritance: Constructors

Constructors are not inherited
Tile.java

WallTile.java

Tile(int x, int y){...}

(none defined)? Compile ErrorWallTile(){...};

WallTile(int x, int y){...};

WallTile(int x, int y){ super(x,y); };

▶ Superclass defines constructor with arguments
→ subclass must define one (not necessarily same arguments)

▶ We would like to avoid duplication of code, but how?

▶ this(...) and super(...) come in handy

▶ Only allowed as first statement in a constructor

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 4 / 7



Inheritance: Constructors

Constructors are not inherited
Tile.java

WallTile.java

Tile(int x, int y){...}

(none defined)? Compile ErrorWallTile(){...};WallTile(int x, int y){...};

WallTile(int x, int y){ super(x,y); };

▶ Superclass defines constructor with arguments
→ subclass must define one (not necessarily same arguments)

▶ We would like to avoid duplication of code, but how?

▶ this(...) and super(...) come in handy

▶ Only allowed as first statement in a constructor

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 4 / 7



Access Control

▶ Up to now: default access for class members (fields and methods)
▶ All members with default access can be accessed by

▶ all classes in the same package
▶ all subclasses of a class

▶ Other access modifiers (put modifier keyword in front of member)
▶ public all classes can access the member
▶ protected all subclasses can access the member
▶ private only other members of the same class have access

▶ All methods in an interface are (always) public (and abstract)

Access Hierarchy

public > protected > default > private

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 5 / 7



Why Access Restriction

▶ Hide implementation, only access to API (contract)

▶ Avoid tampering with internals (inconsistent state)

▶ Most important:
Allows modifying implementation keeping usage unaffected

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 6 / 7



The String Class: A Special Form of Protection

▶ You’ve already used the String class (e.g.m for the toString
method)

▶ You most likely did something like

String result = this.firstName + ” ” + this.lastName;

▶ Strings are immutable, meaning: you can not change the Object

▶ Appending to a string, e.g. using s += " "; will always create a copy

▶ To make sure nobody can change this behaviour, you can not inherit
from the String class, it is marked as final

Bernd Kiefer Jörg Steffen JfAP - Subclassing November 24, 2022 7 / 7


