
Java for Advanced Programmers
Design Patterns

Bernd Kiefer
Jörg Steffen

January 6, 2023

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 1 / 23



History

▶ 1960ies and before: dark age of programming: ALGOL, COBOL,
FORTRAN, . . .

▶ 1970ies: structured programming paradigm: use subroutines, data
types: Pascal, Modula

▶ 1980ies: object-oriented programming (OOP) paradigm:
(additionally) use objects, inheritance, encapsulation, polymorphism:
Smalltalk, C++

▶ 1990ies: there are recurring patterns in OOP that one should be
aware of when designing new code

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 1 / 23



The Gang of Four

▶ 1977: Christopher Alexander et al: A Pattern Language (architecture,
not computer science!)

▶ 1995: Gamma, Helm, Johnson and Vlissides: Design Patterns –
Elements of Reusable Software (“Gang of Four” / GoF book)

▶ describe most frequent patterns, their purpose, define basic methods,
classes, structures, dependencies

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 2 / 23



Design Patterns

▶ “Design patterns are recurring solutions to design problems you see
over and over.” (Alpert et al. ’98)

▶ “Design patterns constitute a set of rules describing how to
accomplish certain tasks in the realm of software development.”
(Pree, ’94)

▶ “Design patterns describe how objects communicate without become
entangled in each other’s data models and methods.” (Cooper, ’98)

▶ “A pattern addresses a recurring design problem that arises in specific
design situations and presents a solution to it.”(Buschmann, et. al.
1996)

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 3 / 23



Design Patterns

▶ today, hundreds of patterns have been proposed

▶ ranging from very simple to very complex ones

▶ no ’standard’, only common sense

▶ independent of a programming language

▶ most patterns are not part of a programming language unlike
structured programming or OOP

▶ pattern implementations differ depending on programming language

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 4 / 23



Design Patterns

Pattern ̸= Class (in general)

▶ some are trivial (single method)

▶ some are part of the programming language

▶ for some patterns holds: pattern = class (or interface)

▶ some can be implemented as independent class library

▶ some require complex teamplay of multiple classes

▶ names of methods and classes may differ (e.g. according to
application context)

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 5 / 23



Patterns we already know

▶ Interface: part of Java language

▶ Iterator: e.g. in the java.util.Collection interface

▶ Strategy

▶ Factory / FactoryMethod

▶ Prototype

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 6 / 23



Singleton Pattern

▶ purpose: guarantee existence of a single object, e.g., a server, window
manager, printer spooler

▶ declare constructor private to prevent it from being called (may throw
exception instead)

▶ define getInstance() to return instance

▶ may be extended to create a limited number of instances (“Fewton”,
“Oligoton”)

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 7 / 23



Singleton Example

public class Singleton {

private static Singleton instance = null;

public static Singleton getInstance() {

if (instance == null) {

// lazy (late) initialization

instance = new Singleton();

}

return instance;

}

private Singleton() { } // hide constructor

}

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 8 / 23



Immutable Pattern

▶ purpose: guarantee that an object cannot be modified
▶ when threads should not concurrently modify an object
▶ share the same object in multiple references, example:

java.lang.String

▶ may be declared final to prevent modification by methods
introduced in subclasses

▶ see also the Collections methods unmodifiableList,
unmodifiableSet, etc.

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 9 / 23



Immutable Pattern – Example

public class Immutable { // make it final to be safe

private int value1;

private String[] value2; // hide

public Immutable(int value1, String[] value2) {

this.value1 = value1; // doesn’t need to be cloned

this.value2 = (String[]) value2.clone();

}

public int getValue1() { return value1; }

public String getValue2(int index) { return value2[index]; }

}

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 10 / 23



Factory / Factory Method Pattern

Delegate object creation to subclasses, let them decide which object
to return and how to create it

Creator

factoryMethod()

ConcreteCreator

factoryMethod()

Product

ConcreteProduct
instantiates

Product

ConcreteProductA ConcreteProductB

Factory

factoryMethod(arguments)

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 11 / 23



Factory Pattern – Example

▶ generate complex objects from a configuration
(parameters; e.g. color, engine, wheel type of a car)

▶ return potentially different instances

▶ provide, but hide multiple implementations

public class Icon {

private Icon() { } // hide constructor

public static Icon loadFromFile(String name) {

Icon ret = null;

if (name.endsWith(”.gif”)) ret = new GifIcon(name);

else if (name.endsWith(”.jpg”)) ret = new JpegIcon(name);

else if (name.endsWith(”.png”)) ret = new PngIcon(name);

return ret;

}

}

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 12 / 23



Factory Example

Programmable Calculator / Spreadsheet

f(x) := x * (2 + x) - g(x)

▶ (abstract) Expression class with subclasses Mul, Add, Funcall, . . .

▶ When an expression is parsed , call ExprFactory with operator
symbol to get back an object of the proper Expression subtype

▶ Work out “programmable calculator with functions” as example

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 13 / 23



Abstract Factory Pattern (’Toolkit’)

Add one level of abstraction to Factory (Window toolkit)

AbstractProductA

AbstractProductB

AbstractFactory

CreateProductA()
CreateProductB()

Factory2

CreateProductA()
CreateProductB()

Factory1

CreateProductA()
CreateProductB()

Client

ProductA1 ProductA2

ProductB1 ProductB2

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 14 / 23



Observer Pattern

Notify other objects of changes, e.g. updating GUI elements

Subject

register(Observer)
unregister(Observer)
notify()

ConcreteSubject

getState()
setState()

Observer

update()

ConcreteObserver

update()

forall(o: observers)

o->update()

observers

subject

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 15 / 23



Visitor Pattern

Encapsulate operations on elements in an object

Element

accept(Visitor)

ConcreteEltA

accept(Visitor)

ConcreteEltB

accept(Visitor)

ConcreteEltC

accept(Visitor)

Visitor

visit(Element)
visit(ConcreteEltA)
visit(ConcreteEltB)

ConcreteVisitor

visit(Element)
visit(ConcreteEltA)
visit(ConcreteEltB)

calls

calls

calls

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 16 / 23



Pattern Types

▶ Creational Patterns

▶ Structural Patterns

▶ Behavioral Patterns

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 17 / 23



Creational Patterns

help creating objects – adding flexibility in deciding which objects
need to be created for a given case

▶ Factory method, (Abstract)Factory

▶ Singleton

▶ Prototype: construct by copying example object (’Chinese factory’)

▶ Builder: separate construction of a complex object from its
representation (same builder can produce different representations)

▶ Object Pool: manage the reuse of objects when creation is expensive
or only a limited number of objects can be created. A generic
implementation can be found in
http://commons.apache.org/pool/

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 18 / 23

http://commons.apache.org/pool/


Structural Patterns

Composing groups of objects into larger structures

▶ Adapter: change the interface of one class to that of another one
(e.g. javax.xml.transform.Source)

▶ Composite: collection of objects (recursively)

▶ Decorator: modify the behavior of individual objects without having
to create a new derived class

▶ Facade: provide a simple interface hiding different complex interfaces
(e.g., ODBC/JDBC)

▶ Proxy: control an object by a representative (surrogat)

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 19 / 23



Behaviorial Patterns (1)

define communication between objects and how the flow is controlled
in a complex program

▶ Command: encapsulate commands in objects

▶ Observer: define the way a number of classes can be notified of a
change

▶ Visitor: encapsulate operations on elements of an object as another
object

▶ Mediator: simplify communication between objects by introducing
another object that keeps coupling

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 20 / 23



Behaviorial Patterns (2)

define communication between objects and how the flow is controlled
in a complex program

▶ Strategy: abstract from algorithms (e.g., in a context), make them
interchangeable (cf. AWT Layout Manager, Swing Look & Feel,
Sorting algorithms)

▶ Chain of Responsibility: pass requests not directly to the recipient,
but through a chain of requests from object to object, until an
appropriate recipient is found. A generic implementation can be
found in http://commons.apache.org/chain/

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 21 / 23

http://commons.apache.org/chain/


Using Design Patterns

▶ how to know which design pattern(s) to use?
▶ experience
▶ intuition
▶ discussion
▶ (re-)implementation

▶ design patterns provide a common language when discussing software
design and implementation with co-developers

▶ help to prevent (design) errors

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 22 / 23



Literature

▶ Gamma, Helm, Johnson, Vlissides: Design-Patterns – Elements of
Reusable Object-Oriented Software (“GoF book”)

▶ Chapter 11.4 in Krüger & Hansen: Handbuch der
Java-Programmierung (http://www.javabuch.de) (*diagrams)

▶ Cooper: The Design Patterns Java Companion (PDF downloadable),
with many Swing examples

▶ Grand: Patterns in Java (additional patterns)

▶ Design Patterns in Java – Reference and Example site

▶ Wikipedia: http://en.wikipedia.org/w/index.php?title=
Design_pattern_(computer_science)

Bernd Kiefer Jörg Steffen JfAP - Design Patterns January 6, 2023 23 / 23

http://www.javabuch.de
http://en.wikipedia.org/w/index.php?title=Design_pattern_(computer_science)
http://en.wikipedia.org/w/index.php?title=Design_pattern_(computer_science)

