
Java for Advanced Programmers
Design Principles

Bernd Kiefer
Jörg Steffen

January 10, 2023

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 1 / 33



Software Systems Degrade

▶ Most larger systems, even if designed well in the beginning, start to
rot over time

▶ Predominant reason: unforeseen requirements require changes that do
not fit well with the original design

▶ Requirements will always change, so what can we do to prevent our
software from rotting?

▶ Properly manage the dependencies between classes and packages!

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 1 / 33



Design Principles

▶ Software design principles are general rules how to organize your
software to support
▶ Reuseability
▶ Maintainability
▶ Stability

▶ There are five fundamental principles which you should keep in mind
when building software

▶ Design patterns, which we will talk about later, are blueprints that
help you to adhere to the design principles

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 2 / 33



S.O.L.I.D

The five fundamental design principles:

▶ Single Responsibility Principle

▶ Open-Closed Principle

▶ Liskov Substitution Principle

▶ Interface Segregation Principle

▶ Dependency Inversion Principle

There a lot more, but those are the most important ones.

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 3 / 33



S.O.L.I.D

The five fundamental design principles:

▶ Single Responsibility Principle

▶ Open-Closed Principle

▶ Liskov Substitution Principle

▶ Interface Segregation Principle

▶ Dependency Inversion Principle

There a lot more, but those are the most important ones.

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 3 / 33



Single Responsibility Principle

A class should have one, and only one, reason to change.

▶ What’s a “reason to change”? This seems a bit vague

▶ To me: Don’t throw two responsibilities (functionalities) into a class
that do not really belong together

▶ Why so:
▶ Lower reusability: you can’t use one independent of the other
▶ Harder to test and maintain: if you can clearly separate functionality,

each is easier to understand and fix if problems occur

▶ This is similar to the Separation of Concern principle
▶ Another reformulation: Create classes that are

▶ small enough to lower coupling (dependance)
▶ large enough to maximize cohesion (things that will change together

are in the same package / class)

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 4 / 33



Single Responsibility Principle

A class should have one, and only one, reason to change.

▶ What’s a “reason to change”? This seems a bit vague

▶ To me: Don’t throw two responsibilities (functionalities) into a class
that do not really belong together

▶ Why so:
▶ Lower reusability: you can’t use one independent of the other
▶ Harder to test and maintain: if you can clearly separate functionality,

each is easier to understand and fix if problems occur

▶ This is similar to the Separation of Concern principle
▶ Another reformulation: Create classes that are

▶ small enough to lower coupling (dependance)
▶ large enough to maximize cohesion (things that will change together

are in the same package / class)

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 4 / 33



Single Responsibility Principle

A class should have one, and only one, reason to change.

▶ What’s a “reason to change”? This seems a bit vague

▶ To me: Don’t throw two responsibilities (functionalities) into a class
that do not really belong together

▶ Why so:
▶ Lower reusability: you can’t use one independent of the other
▶ Harder to test and maintain: if you can clearly separate functionality,

each is easier to understand and fix if problems occur

▶ This is similar to the Separation of Concern principle
▶ Another reformulation: Create classes that are

▶ small enough to lower coupling (dependance)
▶ large enough to maximize cohesion (things that will change together

are in the same package / class)

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 4 / 33



Single Responsibility Principle

A class should have one, and only one, reason to change.

▶ What’s a “reason to change”? This seems a bit vague

▶ To me: Don’t throw two responsibilities (functionalities) into a class
that do not really belong together

▶ Why so:
▶ Lower reusability: you can’t use one independent of the other
▶ Harder to test and maintain: if you can clearly separate functionality,

each is easier to understand and fix if problems occur

▶ This is similar to the Separation of Concern principle
▶ Another reformulation: Create classes that are

▶ small enough to lower coupling (dependance)
▶ large enough to maximize cohesion (things that will change together

are in the same package / class)

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 4 / 33



Single Responsibility Principle: Example

A class that generates a tabular report from a data source and presents it
as a table

class Report {

public void generate(DataSource d) { ... }

public String print() { ... }

}

Everything’s fine here because the print method needs access to most
internals of the Report class.

And now there’s new requirements . . .

class Report {

public void generate(DataSource d) { ... }

public String print() { ... }

public String printHtml() { ... }

public String printXml() { ... }

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 5 / 33



Single Responsibility Principle: Example

A class that generates a tabular report from a data source and presents it
as a table

class Report {

public void generate(DataSource d) { ... }

public String print() { ... }

}

And now there’s new requirements . . .

class Report {

public void generate(DataSource d) { ... }

public String print() { ... }

public String printHtml() { ... }

public String printXml() { ... }

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 5 / 33



Single Responsibility Principle: Example

interface Formatter {

public String tableHeader(...);

public String tableRow(...);

}

class Report {

public void generate(DataSource d) { ... }

public String print(Formatter f) { ... }

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 6 / 33



Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 7 / 33



Open-Closed Principle

A module should be open for extension but closed for modification.

▶ Write modules such that they can be extended (put to new uses)
without requiring them to be modified

▶ How’s that possible?

▶ We’ve already seen a quite complex example: Visitor

▶ The key to achieve this is Abstraction

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 8 / 33



Open-Closed Principle: Bad Example

class Shape { ... }

class Rectangle extends Shape {

int x, y, width, height;

}

class Circle extends Shape {

int x, y;

float radius;

}

class GraphicEditor {

void draw(Shape s) { // code changes for every new Shape

if (s instanceof Rectangle) drawRectangle((Rectangle)s);

else if (s instanceof Circle) drawCircle((Circle)s);

// etc.

}

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 9 / 33



Open-Closed Principle: Reworked

class Shape { abstract void draw(GraphicEnvironment g); }

class Rectangle extends Shape {

int x, y, width, height;

void draw(GraphicEnvironment g){ ... }

}

class Circle extends Shape {

int x, y;

float radius;

void draw(GraphicEnvironment g){ ... }

}

class GraphicEditor {

// add shape classes without changing this class

void draw(Shape s) {

s.draw(graphicEnvironment);

}

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 10 / 33



Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 11 / 33



Liskov Substitution Principle

If S is subtype of T, the program behaves the same if objects of type T are
replaced by objects of type S

▶ This is also called strong behavioural subtyping (Barbara Liskov,
1987)

▶ Similar to Design by Contract

▶ Consequence: If I know what objects of class T do, i can rely on the
this for objects of type S

▶ May seem counterintuitive: How can i have a more specific class that
does not behave differently from its superclass?

▶ The key is: you may only add functionality, but not change it

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 12 / 33



Breaking LSP: Ellipse vs. Circle

A circle is a degenerate form of an ellipse, we are tempted to use
inheritance because Circle is-a Ellipse

Circle

Ellipse

Ellipse has two Foci, which have to be identical if it is a Circle, which
has to be enforced by the implementation

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 13 / 33



Breaking LSP: Ellipse vs. Circle

class Ellipse {

private Point focusA, focusB;

public void setFoci(Point a, Point b);

public double getCircumference();

public double getArea();

public Point getFocusA();

public Point getFocusB();

...

}

class Circle extends Ellipse {

public void setFoci(Point a, Point b) {

if (! a.equals(b)) throw new IllegalArgumentException();

super.setFoci(a, b);

}

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 14 / 33



Breaking LSP: A Client Using Ellipse

Write client code that uses the contracts given by Ellipse:

void f(Ellipse e) {

e.setFoci(new Point(1, 0), new Point(0, 1));

assert(e.getFocusA().equals(new Point(1, 0));

assert(e.getFocusB().equals(new Point(0, 1));

...

}

Obviously, this breaks when a Circle is passed to f

We are changing the contract in the subclass: This makes the abstraction
worthless

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 15 / 33



Breaking LSP: A Client Using Ellipse

Write client code that uses the contracts given by Ellipse:

void f(Ellipse e) {

e.setFoci(new Point(1, 0), new Point(0, 1));

assert(e.getFocusA().equals(new Point(1, 0));

assert(e.getFocusB().equals(new Point(0, 1));

...

}

Obviously, this breaks when a Circle is passed to f

We are changing the contract in the subclass: This makes the abstraction
worthless

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 15 / 33



LSP and Contracts

▶ A contract consists of
▶ preconditions that must hold before a method call, otherwise the result

is undefined (an exception is thrown, etc.)
▶ guarantees that will be fulfilled when the method has been completed,

called postconditions

▶ A derived class is substitutable for its base class if:

1. Its preconditions are no stronger than the base class method.
2. Its postconditions are no weaker than the base class method.

▶ When this holds, LSP is not violated

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 16 / 33



Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 17 / 33



Interface Segregation Principle

Many client specific interfaces are better
than one general purpose interface

Clients should not be forced to depend upon interfaces they don’t use.

▶ Don’t put too much functionality into an interface:
you can implement as many as you want

▶ Instead of using one large interface, use many small interfaces

▶ But: put functionality together belonging to the same responsibility
(cohesion!)

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 18 / 33



Interface Segregation Principle: Example

interface IWorker {

public void work();

public void eat();

}

class Worker implements IWorker {

public void work() { /* ... working */ }

public void eat() { /* ... eating lunch */ }

}

class SuperWorker implements IWorker {

public void work() { /* ... working faster */ }

public void eat() { /* ... eating lunch */ }

}

class Manager {

IWorker worker;

public void setWorker(IWorker w) { worker=w; }

public void manage() { worker.work(); }

}

Now add Robot that does recharge instead of eat
Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 19 / 33



Interface Segregation Principle: Example

interface IWorker { public void work(); }

interface NeedsFood { public void eat(); }

interface NeedsRecharge { public void recharge() ; }

// ...

class SuperWorker implements IWorker, NeedsFood {

public void work() { /* ... working faster */ }

public void eat() { /* ... eating lunch */ }

}

class Robot implements IWorker, NeedsRecharge {

public void work() { /* ... working */ }

public void recharge() { /* ... mmmm */ }

class Manager {

IWorker worker;

public void setWorker(IWorker w) { worker = w; }

public void manage() { worker.work(); }

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 20 / 33



Interface Segregation Principle

▶ ISP needs more effort in the design phase and may produce code of
higher complexity

▶ But it’s well invested time

▶ The code is more independent, and the design is more flexible

▶ What if the harm’s already done, or you are using an existing library?

▶ Use the Adapter pattern!

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 21 / 33



Interface Segregation Principle

▶ ISP needs more effort in the design phase and may produce code of
higher complexity

▶ But it’s well invested time

▶ The code is more independent, and the design is more flexible

▶ What if the harm’s already done, or you are using an existing library?

▶ Use the Adapter pattern!

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 21 / 33



Special Adapter Example (for ISP)

interface MonsterLegacyWorker {

public void work();

public void eat();

public void recharge();

}

public class SuperWorker { /* ... */ }

// Legacy codes ends here ------------------------------

interface Worker { public void doWork(); }

public class WorkerAdapter implements Worker {

private MonsterLegacyWorker worker;

public WorkerAdapter(MonsterLegacyWorker w) { worker = w; }

public void doWork() { worker.work() }

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 22 / 33



Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 23 / 33



Dependency Inversion Principle

High-level modules should not depend on low-level modules,
both should depend on abstractions

Abstractions should not depend on details.
Details should depend on abstractions.

Classical Top-Down Design

1. Create a high-level description of the system

2. Refine the design into modules and high-level classes

3. Create low-level implementations to provide the needed functionalities

Consequences

▶ The high-level classes depend on the implementations

▶ the low-level classes are very hard to replace

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 24 / 33



Dependency Inversion Principle

High-level modules should not depend on low-level modules,
both should depend on abstractions

Abstractions should not depend on details.
Details should depend on abstractions.

Classical Top-Down Design

1. Create a high-level description of the system

2. Refine the design into modules and high-level classes

3. Create low-level implementations to provide the needed functionalities

Consequences

▶ The high-level classes depend on the implementations

▶ the low-level classes are very hard to replace

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 24 / 33



Dependency Inversion Principle

High-level modules should not depend on low-level modules,
both should depend on abstractions

Abstractions should not depend on details.
Details should depend on abstractions.

Classical Top-Down Design

1. Create a high-level description of the system

2. Refine the design into modules and high-level classes

3. Create low-level implementations to provide the needed functionalities

Consequences

▶ The high-level classes depend on the implementations

▶ the low-level classes are very hard to replace

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 24 / 33



Dependency Inversion Principle

High-level modules should not depend on low-level modules,
both should depend on abstractions

Abstractions should not depend on details.
Details should depend on abstractions.

Classical Top-Down Design

1. Create a high-level description of the system

2. Refine the design into modules and high-level classes

3. Create low-level implementations to provide the needed functionalities

Consequences

▶ The high-level classes depend on the implementations

▶ the low-level classes are very hard to replace

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 24 / 33



Dependency Inversion Principle

High-level modules should not depend on low-level modules,
both should depend on abstractions

Abstractions should not depend on details.
Details should depend on abstractions.

Classical Top-Down Design

1. Create a high-level description of the system

2. Refine the design into modules and high-level classes

3. Create low-level implementations to provide the needed functionalities

Consequences

▶ The high-level classes depend on the implementations

▶ the low-level classes are very hard to replace

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 24 / 33



Dependency Inversion Principle

High Level
Policy

Abstract
Interface 2

Abstract
Interface 1

Abstract
Interface 3

Detailed
Implementation 2

Detailed
Implementation 1

Detailed
Implementation 3

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 25 / 33



Dependency Inversion Principle: Bad Example

public class PowerSwitch {

public LightBulb bulb;

public boolean on;

public attach(LightBulb b) { bulb = b; }

public void press() {

if (on) {

bulb.turnOff(); on = false;

} else {

bulb.turnOn(); on = true;

}

}

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 26 / 33



Dependency Inversion Principle Applied

public interface Switchable {
public void turnOn();
public void turnOff();

}

public interface Switch {
public void attach(Switchable s);
public void press();

}

public class LightBulb implements Switchable {
public void turnOn() { /* Let there be light! */ }
public void turnOff() { /* Into darkness */ }

}

public class PowerSwitch implements Switch {
public Switchable client;
public boolean on;

public attach(Switchable c) { client = c; }
public void press() {
if (on) {client.turnOff(); on = false; }
else {client.turnOn(); on = true; }

}
}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 27 / 33



Dependency Inversion Principle: Example II

What’s wrong here?
public Result readComplicatedSyntax(String filename) {

FileReader f = new FileReader(filename);

while (f.canRead()) {

char c = f.read();

// Now follows a lot of complicated code

// ...

// even more complicated code

// ...

}

return result;

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 28 / 33



Dependency Inversion Principle: Object Creation

▶ There is no way to instantiate objects of abstract classes (by
definition)

▶ As a consequence, you always depend on a concrete class when
creating objects (calling a constructor)

▶ The elegant solution: The Factory pattern

▶ The Factory creates one concrete implementation of a common
interface, based on arguments

▶ There’s an even more extreme version: the Abstract Factory pattern
which uses (several) Factories to build objects

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 29 / 33



Dependency Inversion Principle: Object Creation

▶ There is no way to instantiate objects of abstract classes (by
definition)

▶ As a consequence, you always depend on a concrete class when
creating objects (calling a constructor)

▶ The elegant solution: The Factory pattern

▶ The Factory creates one concrete implementation of a common
interface, based on arguments

▶ There’s an even more extreme version: the Abstract Factory pattern
which uses (several) Factories to build objects

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 29 / 33



Dependency Inversion Principle: Object Creation

▶ There is no way to instantiate objects of abstract classes (by
definition)

▶ As a consequence, you always depend on a concrete class when
creating objects (calling a constructor)

▶ The elegant solution: The Factory pattern

▶ The Factory creates one concrete implementation of a common
interface, based on arguments

▶ There’s an even more extreme version: the Abstract Factory pattern
which uses (several) Factories to build objects

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 29 / 33



Factory: Simple Example

public interface Worker { /* ... */ }

public class WorkerFactory {

public static Worker getWorker(int workload) {

if (workload > 100) return new SuperWorker();

else return new OrdinaryWorker();

}

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 30 / 33



Factory Example: DIP Again

An example that uses the Prototype pattern:

public interface Copyable<T> { T copy(T object); }

public interface Worker extends Copyable<Worker> { /* ... */ }

public class WorkerFactory {

HashMap<String, Worker> workerPrototypes = new HashMap<>();

public void register(String type, Worker prototype) {

workerPrototypes.put(type, prototype);

}

public Worker getWorker(String type) {

Worker w = workerPrototypes.get(type);

if (w != null) w = w.copy();

return w;

}

}

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 31 / 33



Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 32 / 33



Acknowledgement, Literature

For these slides, I borrowed massively from

▶ Robert C. Martin
www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

▶ http://www.oodesign.com

▶ https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

▶ Pictures from https://lostechies.com/derickbailey/2009/02/11/

solid-development-principles-in-motivational-pictures/ and
http://www.abhishekshukla.com/net-2/

solid-design-principles-open-closed-principle-ocp/

▶ ... and tons more on the web

Bernd Kiefer Jörg Steffen JfAP - Design Principles January 10, 2023 33 / 33

www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.oodesign.com
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://lostechies.com/derickbailey/2009/02/11/solid-development-principles-in-motivational-pictures/
https://lostechies.com/derickbailey/2009/02/11/solid-development-principles-in-motivational-pictures/
http://www.abhishekshukla.com/net-2/solid-design-principles-open-closed-principle-ocp/
http://www.abhishekshukla.com/net-2/solid-design-principles-open-closed-principle-ocp/

