
Java for Advanced Programmers Exercise # 8

The templates required for this exercise can be downloaded here:
https://www.dfki.de/˜steffen/advanced-java/graphs2.zip

1 Tarjan’s SCC Algorithm (7.5 points)

Implement Tarjan’s algorithm for finding strongly connected components as a DFS visitor
by completing the provided skeleton class TarjanVisitor. The procedure is similar to
the CollectTimesVisitor from last exercise. After DFS the visitor should contain as
result a set of sets of vertices (Integers) that represent the SCCs.
Hints:

� The else-if case in the pseudo code from the lecture means that a non-tree edge
is used.

� Make sure to remove the low map entry for a vertex when you pop it from the stack!
This is required to avoid any interference with later DFS runs.

Write a unit test using the following graph. This yields the SCCs from the lecture example:

s --> z w

z --> y w

y --> x

x --> z

w --> q x

q --> x

t --> v u

u --> v t

v --> w s

2 Dijkstra’s SSSP Algorithmus (7.5 points)

Implement Dijkstra’s single source shortest path algorithm for a pair of vertices (source
and target) by completing the provided skeleton class DijkstraShortestPath. Use
Integer as edge info <E>. Abort when the target node is reached and return the best
path as a list of edges (not as list of vertices as described in the lecture). Implement Q
with a PriorityQueue, and accept the disadvantage of lower key when adjusting the
distance.

Write a unit test to find the shortest path between s and u using the following graph:

https://www.dfki.de/~steffen/advanced-java/graphs2.zip


s --> w(2) z(4)

z --> w(5) y(9)

v --> w(1) s(6)

w --> x(6) q(3)

t --> u(1) v(9) s(8)

u --> t(5) v(7)

x --> z(8) u(7)

q --> x(2)

y --> x(5)

r --> s(1)


	Tarjan's SCC Algorithm (7.5 points)
	Dijkstra's SSSP Algorithmus (7.5 points)

