Finite Automata

Bernd Kiefer Jörg Steffen

January 20, 2023

Processing Regular Expressions

- We already learned about Java's regular expression functionality
- Now we get to know the machinery behind
- Pattern and
- Matcher classes
- Compiling a regular expression into a Pattern object produces a Finite Automaton
- This automaton is then used to perform the matching tasks
- We will see how to construct a finite automaton that recognizes an input string, i.e., tries to find a full match

Definition: Finite Automaton

- A finite automaton (FA) is a tuple $A=<Q, \Sigma, \delta, q_{0}, F>$
- Q a finite non-empty set of states
- Σ a finite alphabet of input letters
- δ a (total) transition function $Q \times \Sigma \longrightarrow Q$
- $q_{0} \in Q$ the initial state
- $F \subseteq Q$ the set of final (accepting) states
- Transition graphs (diagrams):

Finite Automata: Matching

- A finite automaton accepts a given input string s if there is a sequence of states $p_{1}, p_{2}, \ldots, p_{|s|} \in Q$ such that

1. $p_{1}=q_{0}$, the start state
2. $\delta\left(p_{i}, s_{i}\right)=p_{i+1}$, where s_{i} is the i-th character in s
3. $p_{|s|} \in F$, i.e., a final state

- A string is successfully matched if we have found the appropriate sequence of states
- Imagine the string on an input tape with a pointer that is advanced when using a δ transition
- The set of strings accepted by an automaton is the accepted language, analogous to regular expressions

(Non)deterministic Automata

- in the definition of automata, δ was a total function \Rightarrow
given an input string, the path through the automaton is uniquely determined
- those automata are therefore called deterministic
- for nondeterministic FA, δ is a transition relation
- $\delta: Q \times \Sigma \cup\{\epsilon\} \longrightarrow \mathcal{P}(Q)$, where $\mathcal{P}(Q)$ is the powerset of Q
- allows transitions from one state into several states with the same input symbol
- need not be total
- can have transitions labeled ϵ (not in Σ), which represents the empty string

RegExps \longrightarrow Automata

Construct nondeterminstic automata from regular expressions

NFA vs. DFA

- Traversing a DFA is easy given the input string: the path is uniquely determined
- In contrast, traversing an NFA requires keeping track of a set of (current) states, starting with the set $\left\{q_{0}\right\}$
- Processing the next input symbol means taking all possible outgoing transitions from this set and collecting the new set
- From every NFA, an equivalent DFA (one which does accept the same language), can be computed
- Basic Idea: track the subsets that can be reached for every possible input

Traversing an NFA

NFA \longrightarrow DFA: Subset Construction

- Simulate "in parallel" all possible moves the automaton can make
- The states of the resulting DFA will represent sets of states of the NFA, i.e., elements of $\mathcal{P}(Q)$
- We use two operations on states/state-sets of the NFA
 transitions
move (T, a)
Set of states to which there is a transition from one state in T on input symbol a
- The final states of the DFA are those where the corresponding NFA subset contains a final state

Algorithm: Subset Construction

DFAStates $=\epsilon$-closure $\left(\left\{s_{0}\right\}\right)$
while there is an unmarked state T in DFAStates do mark T
for each input symbol a do
$U:=\epsilon-\operatorname{closure}(\operatorname{move}(T, a))$
DFADelta[T, a] :=U
if $U \notin$ DFAStates then add U as unmarked to DFAStates
ϵ-closure (T) :
ϵ-closure $:=T$; to_check $:=T$
while to_check not empty do
get some state t from to_check
for each state u with edge labeled ϵ from t to u do if $u \notin \epsilon$-closure then add u to ϵ-closure and to_check

Example: Subset construction

Example: Subset construction

0,1,
 2,4,7

Example: Subset construction

Time/Space Considerations

- DFA traversal is linear to the length of input string x
- NFA needs $\mathcal{O}(n)$ space (states+transitions), where n is the length of the regular expression
- NFA traversal may need time $n \times|x|$, so why use NFAs?

Time/Space Considerations

- DFA traversal is linear to the length of input string x
- NFA needs $\mathcal{O}(n)$ space (states+transitions), where n is the length of the regular expression
- NFA traversal may need time $n \times|x|$, so why use NFAs?
- There are DFA that have at least 2^{n} states!

Time/Space Considerations

- DFA traversal is linear to the length of input string x
- NFA needs $\mathcal{O}(n)$ space (states+transitions), where n is the length of the regular expression
- NFA traversal may need time $n \times|x|$, so why use NFAs?
- There are DFA that have at least 2^{n} states!
- Solution 1: "Lazy" construction of the DFA: construct DFA states on the fly up to a certain amount and cache them
- Solution 2: Try to minimize the DFA:

There is a unique (modulo state names) minimal automaton for a regular language!

Minimal Automata

- Take any state q of the deterministic automaton to minimize and assume it to be the (single) start state
- We call the language that this automaton accepts the right language of q
- The language of each state consists of suffixes of the overall accepted language
- If two states accept the same language, they are equivalent and can be merged
- To minimize the automaton, merge all equivalent nodes
- This is implemented by first partitioning the original set of states into equivalence classes, i.e., sets of equivalent states
- Finally, each equivalence class is replaced by a single state, merging transitions accordingly

DFA Minization

- Every DFA defines a unique language
- In general, there may be many DFAs for a given language
- The following DFAs accept the same language

Indistinguishable States

- Two states p and q are called indistinguishable, if for all $w \in \Sigma^{*}, F$ being the set of final states

$$
\begin{aligned}
& \delta^{*}(p, w) \in F \Leftrightarrow \delta^{*}(q, w) \in F, \text { and } \\
& \delta^{*}(p, w) \notin F \Leftrightarrow \delta^{*}(q, w) \notin F
\end{aligned}
$$

- $\mathcal{L}_{p}=\left\{w \in \Sigma^{*} \mid \delta^{*}(p, w) \in F\right\}$ is also called suffix language of the automaton.
- The states p and q behave in the same way for all possible strings: $\mathcal{L}_{p}=\mathcal{L}_{q}$
- When is a state p distinguishable from q ?

Indistinguishable States

- Two states p and q are called indistinguishable, if for all $w \in \Sigma^{*}, F$ being the set of final states

$$
\begin{aligned}
& \delta^{*}(p, w) \in F \Leftrightarrow \delta^{*}(q, w) \in F, \text { and } \\
& \delta^{*}(p, w) \notin F \Leftrightarrow \delta^{*}(q, w) \notin F
\end{aligned}
$$

- $\mathcal{L}_{p}=\left\{w \in \Sigma^{*} \mid \delta^{*}(p, w) \in F\right\}$ is also called suffix language of the automaton.
- The states p and q behave in the same way for all possible strings:
$\mathcal{L}_{p}=\mathcal{L}_{q}$
- When is a state p distinguishable from q ?
- There is a string w where $\delta^{*}(p, w) \in F$ and $\delta^{*}(q, w) \notin F$ or vice versa
- Algorithm: start with strings of length 0 and work yourself backwards through the automaton

Indistinguishable States

- Indistinguishable states behave in an identical way
- As a consequence, a set of indistinguishable states can be merged into a single state
- Indistinguishability is an equivalence relation:
- Reflexive: Each state is indistinguishable from itself
- Symmetric: If p is indistinguishable from q, then q is indistinguishable from p
- Transitive: If p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.

Indistinguishability And Partitions

- Indistinguishability is an equivalence relation:
- Reflexive: Each state is indistinguishable from itself
- Symmetric: If p is indistinguishable from q, then q is indistinguishable from p
- Transitive: If p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.
- (Total) equivalence relations on nodes V of a graph induce a (total) partitioning into subsets of nodes $\mathcal{N}=n_{1}, n_{2}, \ldots, n_{k}$, such that
- For all i and $j, n_{i} \cap n_{j}=\emptyset$
- $U_{i} n_{i}=V$

Detecting Indistinguishable States

- Basis: Every nonaccepting state is distinguishable from any accepting state $(w=\epsilon)$
- Induction: States p and q are distinguishable if there is some input symbol a such that $\delta(p, a)$ is distinguishable from $\delta(q, a)$
- Testing all possible state pairs until no more distinguishable states can be found leaves the rest indistinguishable
- The sets of indistinguishable states can be merged into one state per set

Detecting Indistinguishable States

- Basis: p distinguishable from q and r
- 0: q and r go to p, does not separate them
- 1: q goes to r, and r to q, which are indistinguishable, again, no separation
- q and r can be merged into a single state

DFA Minimization: the Algorithm

Create an $n \times n$ boolean table distinct, n the number of states, and set all cells to false
for every pair $(p, q), p, q \in Q$ do
if $p \in F \wedge q \notin F$ or vice versa then $\operatorname{distinct}(p, q)=$ true
while there is a change in distinct do
for every pair $(p, q), p, q \in Q$ and each $a \in \Sigma$ do if $\neg \operatorname{distinct}(p, q) \wedge \operatorname{distinct}(\delta(p, a), \delta(q, a))$ then $\operatorname{distinct}(p, q)=$ true
for $p \in Q$ do // assume an order on the states
for $q>p \in Q$ do
if $\neg \operatorname{distinct}(p, q)$ then
merge q into p, mark q deleted

Minimization in action

| | q_{0} | | q_{1} | q_{2} | q_{3} | q_{4} | q_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$q_{6} q_{7}$

Minimization in action

Minimization in action

| | q_{0} | q_{1} | q_{2} | q_{3} | q_{4} | q_{5} | q_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |q_{7}

Minimization in action

Minimization in action

Minimization in action

Minimization in action

Minimization in action

| | q_{0} | | q_{1} | q_{2} | q_{3} | q_{4} | q_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$q_{6} q_{7}$

Minimization in action

Minimization in action

