
Graphs and Search

Bernd Kiefer
Jörg Steffen

January 13, 2023

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 1 / 20

Graphs: Definition

▶ Graph G: A set of vertices (nodes) V and a set of edges E , which is a
relation on vertices, that is: E ⊆ V × V

▶ Example:
▶ Vertices: students at the university
▶ (u, v) ∈ E ⇔ student u knows student v

▶ Graphical representation:
▶ vertices: blobs
▶ edges: arrows (arcs) between the blobs

▶ If E is symmetric, i.e., if (u, v) ∈ E ⇔ (v , u) ∈ E
the graph is called undirected (plain arcs, not arrows)

▶ Example: E is the set of students that are akin

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 1 / 20

Graphs: Definitions II

▶ Vertex u is reachable from vertex v (u → v) iff there is a sequence of
edges (u,w1), (w1,w2), . . . , (wn, v) in E

▶ A graph is cyclic (contains a cycle) if there is u ∈ V s.th. u → u over
a nontrivial sequence of edges in E , including a self loop

directed graph undirected graph

s t

uv

w

x

y

z

q

r

v

s

w

t

x

u

y

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 2 / 20

Implementation Basics

▶ Represent the vertices as numbers from zero to |V| − 1

▶ Matrix representation: represent E as a quadratic boolean matrix A
of size |V|; A[i , j] is true iff (i , j) ∈ E

+ Good for dense graphs, where |E| ≈ |V|2 : only one bit per edge

+ Fast: are two vertices directly connected?

– Initialization is quadratic in |V|
– Visiting all outgoing edges of a vertex takes |V| steps, no matter how

many there really are

– Additional information attached to the edges (e.g., weights) has to be
stored separately

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 3 / 20

Adjacency List Representation

▶ For every vertex, store a list of outgoing edges, i.e., the vertex
number that is reached

▶ Graph is represented by an array of list heads

▶ In Java: ArrayList of Lists.

+ Compact representation for most graphs, except if they are very dense

+ Allows more efficient implementations of many graph algorithms

+ Additional edge information can be stored in the elements of the edge
lists directly

▶ In the exercises, a Map<Integer, List<Edge>> is used for simplicity

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 4 / 20

Search in Graphs

▶ Task: visit all reachable vertices, starting at vertex s

▶ Iteratively use all the outgoing edges of s, and all the nodes that can
be reached through these egdes

▶ Make sure that no node gets explored twice
▶ Basic idea: maintain two sets

▶ U the visited nodes
▶ A the active nodes, i.e., still unexplored outedges

▶ In textbooks, vertices are often assigned colors during the search:
▶ White: not in U and not in A
▶ Grey: in U and in A (under consideration)
▶ Black: in U , but not in A anymore (finished)

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 5 / 20

Generic Search Algorithm

Initialization: both sets contain only the start vertex s

U = A = {s} // s gets grey
while A ≠ ∅ do

for some node n ∈ A do
if there is an unused edge e = (n,m) leaving n then

if m ̸∈ U then
U = U ∪ {m};A = A ∪ {m} // m gets grey

else
A = A− {n} // n gets black

Questions:

▶ How to implement sets U and A?

▶ Does the result depend on the implementation?

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 6 / 20

Implementation of U

▶ What is the best data structure for U?
▶ What are the operations on U?

▶ U should be implemented as a bit vector over the nodes
▶ Two alternatives:

▶ boolean member variable of the node data structure
▶ A so-called property vector (or property map) attached to the vertices

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 7 / 20

Implementation of U

▶ What is the best data structure for U?
▶ What are the operations on U?

1. Add a node m
2. Is node n contained in the set?

▶ U should be implemented as a bit vector over the nodes
▶ Two alternatives:

▶ boolean member variable of the node data structure
▶ A so-called property vector (or property map) attached to the vertices

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 7 / 20

Implementation of U

▶ What is the best data structure for U?
▶ What are the operations on U?

1. Add a node m
2. Is node n contained in the set?

▶ U should be implemented as a bit vector over the nodes
▶ Two alternatives:

▶ boolean member variable of the node data structure
▶ A so-called property vector (or property map) attached to the vertices

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 7 / 20

Property Vectors

Advantages and drawbacks of property vectors
▶ More flexible:

▶ Create all and only those you need for an algorithm
▶ In a graph framework, one can not put all the data into the vertices
▶ May contain any type, small or bigger datastructures
▶ Only use memory when they are needed

▶ Require an efficient indexing between vertices and values: maintain a
numeric index in the vertices

▶ Member variables are always faster

Property vectors can also be used for graph edges

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 8 / 20

Implementation of A

The choice of the data structure for A and the decisions about n and e
determine the order in which vertices are visited

▶ Operations on set A:

▶ Implement A as a queue and keep n until it gets black: Breadth First
Search (BFS)

▶ Implement A as a stack and always take its top element: Depth First
Search (DFS)

▶ DFS is often implemented as a recursive function, the function call
stack takes the role of A

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 9 / 20

Implementation of A

The choice of the data structure for A and the decisions about n and e
determine the order in which vertices are visited
▶ Operations on set A:

▶ Add a vertex
▶ Get and remove some vertex (nondeterministic)
▶ Test if set is empty

▶ Implement A as a queue and keep n until it gets black: Breadth First
Search (BFS)

▶ Implement A as a stack and always take its top element: Depth First
Search (DFS)

▶ DFS is often implemented as a recursive function, the function call
stack takes the role of A

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 9 / 20

Implementation of A

The choice of the data structure for A and the decisions about n and e
determine the order in which vertices are visited
▶ Operations on set A:

▶ Add a vertex
▶ Get and remove some vertex (nondeterministic)
▶ Test if set is empty

▶ Implement A as a queue and keep n until it gets black: Breadth First
Search (BFS)

▶ Implement A as a stack and always take its top element: Depth First
Search (DFS)

▶ DFS is often implemented as a recursive function, the function call
stack takes the role of A

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 9 / 20

BFS Implementation

for all v ∈ V do
d(v) = 0

time = 1 // the time when a vertex is touched
for all v ∈ V with d(v) == 0 do // v is the start node

d(v) = time;A.push back(v) // v gets grey
while ¬ A.empty() do

n = A.pop front()
time = d(n) + 1
for all e = (n,m) do

if d(m) == 0 then // m /∈ U ?
d(m) = time;A.push back(m) // m gets grey

// n gets black

▶ Finally, all vertices of G have been visited

▶ The d(v) is abused to serve as the U bitvector

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 10 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

w

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1

w r

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1 3

r t

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1 3

3

r t x

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1 3

33

t x v

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1 3

33

4

x v u

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1 3

33

4

4

v u y

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1 3

33

4

4

u y

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1 3

33

4

4

y

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Breadth First Search

r

v

s

w

t

x

u

y

A →

1

2

2 1 3

33

4

4

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 11 / 20

Properties of BFS

▶ Run-time complexity of BFS?

▶ All operations on d(v) and A need O(1) time

▶ The outer loop is traversed |V| times

▶ The inner loop touches all edges, so at least |E| times

−→ overall complexity is O(V + E)
▶ Grey edges mark first discoveries of neighbor nodes

▶ They obviously form a tree

▶ Do you have an interpretation for d(v) ?

▶ In fact, d(v)− 1 is the minimal distance from the startnode

▶ The (grey) tree edges are minimal length paths

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 12 / 20

Properties of BFS

▶ Run-time complexity of BFS?

▶ All operations on d(v) and A need O(1) time

▶ The outer loop is traversed |V| times

▶ The inner loop touches all edges, so at least |E| times

−→ overall complexity is O(V + E)
▶ Grey edges mark first discoveries of neighbor nodes

▶ They obviously form a tree

▶ Do you have an interpretation for d(v) ?

▶ In fact, d(v)− 1 is the minimal distance from the startnode

▶ The (grey) tree edges are minimal length paths

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 12 / 20

Properties of BFS

▶ Run-time complexity of BFS?

▶ All operations on d(v) and A need O(1) time

▶ The outer loop is traversed |V| times

▶ The inner loop touches all edges, so at least |E| times

−→ overall complexity is O(V + E)

▶ Grey edges mark first discoveries of neighbor nodes

▶ They obviously form a tree

▶ Do you have an interpretation for d(v) ?

▶ In fact, d(v)− 1 is the minimal distance from the startnode

▶ The (grey) tree edges are minimal length paths

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 12 / 20

Properties of BFS

▶ Run-time complexity of BFS?

▶ All operations on d(v) and A need O(1) time

▶ The outer loop is traversed |V| times

▶ The inner loop touches all edges, so at least |E| times

−→ overall complexity is O(V + E)
▶ Grey edges mark first discoveries of neighbor nodes

▶ They obviously form a tree

▶ Do you have an interpretation for d(v) ?

▶ In fact, d(v)− 1 is the minimal distance from the startnode

▶ The (grey) tree edges are minimal length paths

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 12 / 20

Properties of BFS

▶ Run-time complexity of BFS?

▶ All operations on d(v) and A need O(1) time

▶ The outer loop is traversed |V| times

▶ The inner loop touches all edges, so at least |E| times

−→ overall complexity is O(V + E)
▶ Grey edges mark first discoveries of neighbor nodes

▶ They obviously form a tree

▶ Do you have an interpretation for d(v) ?

▶ In fact, d(v)− 1 is the minimal distance from the startnode

▶ The (grey) tree edges are minimal length paths

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 12 / 20

DFS: Recursive Procedure

DFS(g):

for all v ∈ V do
d(v) = 0

time = 1 // the time when a vertex is touched
for all v ∈ V do

if d(v) == 0 then
DFS-Visit(v)

DFS-Visit(v):

d(v) = time; time = time + 1 // v gets grey
for all e = (v , u) do

if d(u) == 0 then
DFS-Visit(u) // is u white? Then visit it

f (v) = time; time = time + 1 // v gets black

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 13 / 20

Edge Classification using DFS

We store two timestamps for each vertex v

▶ the discovery time d(v), when v changes from white to grey

▶ the finishing time f (v), when v changes from grey to black

The edges of a directed graph can be classified into four categories,
depending on the role they play in a run of depth first search.

▶ tree edges: the edges used in the recursion (ending on a white vertex)

▶ backward edges: edges ending in a grey vertex (including self loops)

▶ forward edges: edges (n,m) ending in a black vertex, and d [n] < d [m]

▶ cross edges: edges (n,m) ending in a black vertex, and d [m] < d [n]

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 14 / 20

Edge Classification using DFS

We store two timestamps for each vertex v

▶ the discovery time d(v), when v changes from white to grey

▶ the finishing time f (v), when v changes from grey to black

The edges of a directed graph can be classified into four categories,
depending on the role they play in a run of depth first search.

▶ tree edges: the edges used in the recursion (ending on a white vertex)

▶ backward edges: edges ending in a grey vertex (including self loops)

▶ forward edges: edges (n,m) ending in a black vertex, and d [n] < d [m]

▶ cross edges: edges (n,m) ending in a black vertex, and d [m] < d [n]

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 14 / 20

DFS example

1| t

uv

w

x

y

z

q

s

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

w

x

y

2|

q

s

z

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

w

x

3|

2|

q

s

z

y

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

w

4|

3|

2|

q

s

z

y

x

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

w

4|

3|

2|

q

B

s

z

y

x

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

w

4|5

3|

2|

q

B

s

z

y

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

w

4|5

3|6

2|

q

B

s

z

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

7|

4|5

3|6

2|

q

B

s

z

w

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

7|

4|5

3|6

2|

q

B

C

s

z

w

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

7|

4|5

3|6

2|

8|

B

C

s

z

w

q

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

7|

4|5

3|6

2|

8|

B

C

C

s

z

w

q

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

7|

4|5

3|6

2|

8|9

B

C

C

s

z

w

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

7|10

4|5

3|6

2|

8|9

B

C

C

s

z

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

7|10

4|5

3|6

2|11

8|9

B

C

C

s

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1| t

uv

7|10

4|5

3|6

2|11

8|9

B

C

C

F

s

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 t

uv

7|10

4|5

3|6

2|11

8|9

B

C

C

F

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 t

13|v

7|10

4|5

3|6

2|11

8|9

B

C

C

F

u

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 t

13|14|

7|10

4|5

3|6

2|11

8|9

B

C

C

F

u

v

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 t

13|14|

7|10

4|5

3|6

2|11

8|9

B

C

C

F

C

u

v

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 t

13|14|

7|10

4|5

3|6

2|11

8|9

B

C

C

F

C

C

u

v

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 t

13|14|15

7|10

4|5

3|6

2|11

8|9

B

C

C

F

C

C

u

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 16|

13|14|15

7|10

4|5

3|6

2|11

8|9

B

C

C

F

C

C

u

t

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 16|

13|14|15

7|10

4|5

3|6

2|11

8|9

B

C

C

F

C

C B

u

t

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 16|17

13|14|15

7|10

4|5

3|6

2|11

8|9

B

C

C

F

C

C BC

u

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

DFS example

1|12 16|17

13|1814|15

7|10

4|5

3|6

2|11

8|9

B

C

C

F

C

C BC

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 15 / 20

Edge Classification Example

1|12 16|17

13|1814|15

7|10

4|5

3|6

2|11

8|9

C

C

C
F

C

C

B

B

During DFS, edge (s, t) is
Tree: f (t) = 0 ∧ d(s) < d(t) Back: f (t) = 0 ∧ d(s) > d(t)
Cross: f (t) ̸= 0 ∧ d(t) < d(s) Forward: f (t) ̸= 0 ∧ d(t) > d(s)
After DFS: f (t) ̸= 0 ⇒ f (t) < f (s)
Note: a directed graph is acyclic if there are no back edges.

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 16 / 20

DFS/BFS Visitors

▶ Recap: Visitor Pattern, a Behavioural Pattern

▶ Purpose: Add functionality to a class without changing it
▶ Implementation:

▶ Methods of class A get a visitor object as argument
▶ The visitor’s interface methods are called at specific points of the

computation and have an A object as argument (at least)
▶ This allows different additional computations or side effects with one

class method of class A
▶ The functionality is parameterized by the different visitor objects and

classes, so to speak

▶ Especially useful with traversal methods of complex structures (like
DFS or BFS)

▶ The graph implements the traversal, the visitor the special
functionality

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 17 / 20

DFS/BFS Visitors II

▶ Methods common for DFS/BFS visitor interface
▶ startNode(v,g) : v is white in the outer loop
▶ discoverNode(v,g) : v changes from white to gray
▶ finishNode(v,g) : v changes from gray to black
▶ nonTreeEdge(e,g) : visit edge with gray or black target node

▶ Methods specific to BFS visitor
▶ treeEdge(e,g) : visit edge with white target node

▶ Methods specific to DFS visitor:
▶ treeEdgeBefore(e,g) : before recursion into target(e)
▶ treeEdgeAfter(e,g) : after recursion into target(e)

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 18 / 20

Topological Order

▶ Order the vertices such that if (n,m) is an edge, n comes before m

▶ Only exists for acyclic graphs

▶ Algorithm: sort vertices according to decreasing finishing times of
DFS

▶ This can be easily implemented by a DFS visitor

▶ As each vertex is finished, add it to the front of a linked list

▶ The visitor contains this list as member variable

▶ After all vertices have been visited by DFS, the visitor holds the result

▶ Application example: A constraint graph that locally specifies which
action must precede another

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 19 / 20

Topological Order Example

1/8 11/16 17/18

shirt underwear socks 9/10

tie belt watch

2/8 jacket 6/7 pants shoes

3/4 12/15 13/14

socks undershorts pants shoes watch shirt belt tie jacket

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Bernd Kiefer Jörg Steffen Graphs and Search - January 13, 2023 20 / 20

