Graph Algorithms II

Bernd Kiefer Jörg Steffen

January 20, 2023

Heuristic Search Pictures from
http://www-cs-students.stanford.edu/~amitp/gameprog.html

Strongly Connected Components

- Definition: a SCC of a directed graph is the maximal set U of vertices, such that for all $u, v \in U: u \rightarrow v \wedge v \rightarrow u$
- SCCs consist of connected cycles of the graph
- Vertices not in any cycle constitute their own SCC
- The SCCs form a total partition of the graph
- The component graph, where the SCCs are replaced by vertices, is acyclic
- Many algorithms are easier to solve on acyclic graphs
- Run the algorithm on the harder, but smaller SCCs
- Combine the results on the acyclic component graph
- a special kind of divide and conquer

Strongly Connected Components

Strongly Connected Components

DFS starting at s then t

Strongly Connected Components

DFS starting at s then t

- All nodes of a SCC will be visited in the same DFS
- All vertices of an SCC are connected by tree edges
- There must be a highest entry node
- It is the vertex with the lowest discovery time in the SCC

Tarjan's Algorithm

- Crucial observation: Root Property
- store, for every vertex, the lowest discovery time of an active vertex reachable from it in the DFS tree $\mapsto \operatorname{low}(v)$
- a vertex with $d(v)==\operatorname{low}(v)$ is the root of an SCC
- the SCC consists of the root and all vertices that
- are on the DFS tree below the root and
- don't belong to another SCC
\longrightarrow we can use a stack to collect these vertices
- low $(v)<d(v)$ can only occur when using
- back edges
- cross edges pointing to a vertex still on the stack (active SCC)
- vertices not on the stack are not considered because they belong to an already finished SCC in another DFS tree branch
- Pop the SCC vertices when reaching the root

Tarjan's SCC Algorithm

StronglyConnectedComponents (G)
Initialize all $v \in \mathcal{V}: d(v)=0 ; \operatorname{low}(v)=0$;
for all $v \in \mathcal{V}$ with $d(v)==0$ do

$$
\operatorname{low}(v)=d(v)=++ \text { time } ; S . \operatorname{push}(v)
$$

for all $e=(v, u) \in \mathcal{E}$ do
if $d(u)==0$ then $\quad / / u$ not visited: recurse findSCC $(u) ; \operatorname{low}(v)=\min (\operatorname{low}(v), \operatorname{low}(u))$
else if u is in S then

$$
\operatorname{low}(v)=\min (\operatorname{low}(v), \operatorname{low}(u))
$$

if $d(v)==\operatorname{low}(v)$ then
while $S . \operatorname{top}() \neq v$ do

$$
u=S \cdot \operatorname{pop}() ;
$$

S.pop() // pop root

Tarjan's SCC Algorithm

StronglyConnectedComponents (G) Initialize all $v \in \mathcal{V}: d(v)=0 ; \operatorname{low}(v)=0$; for all $v \in \mathcal{V}$ with $d(v)==0$ do

$$
\operatorname{low}(v)=d(v)=++ \text { time } ; S . \operatorname{push}(v)
$$

for all $e=(v, u) \in \mathcal{E}$ do
if $d(u)==0$ then $\quad / / u$ not visited: recurse findSCC $(u) ; \operatorname{low}(v)=\min (\operatorname{low}(v), \operatorname{low}(u))$
else if u is in S then

$$
\operatorname{low}(v)=\min (\operatorname{low}(v), \operatorname{low}(u))
$$

if $d(v)==\operatorname{low}(v)$ then while $S . \operatorname{top}() \neq v$ do

$$
u=S \cdot \operatorname{pop}() ;
$$

S.pop() // pop root

To check efficiently if u is in S, use an additional boolean

Search in Weighted Graphs

- Many applications require weights attached to the edges e.g., the transition probabilities
- Goal: find the shortest path
- We will look at single-source shortest path with nonnegative weights
- The Bellman-Ford algorithm works with negative weights, too
- For graphs with negative cycles, the shortest path is not well defined
- First: Dijkstra's algorithm for SSSP with nonnegative weights
- Generalization: A^{*} search with a heuristic function

Dijkstra's SSSP

- Algorithm relies on the triangle equation: $\operatorname{dist}(u, w)+w e i g h t(w, v) \geq \operatorname{dist}(u, v)$ for all $u, v, w \in \mathcal{V}$
- Initially:
- set the distances for all nodes to $+\infty$, except for the source node s to zero
- mark all nodes as not optimized
- While there are nodes not yet optimized:
- take the unoptimized node u with the smallest $\operatorname{dist}(u)$
- check for all neighbours v if the triangle equation is violated, that is: $\operatorname{dist}(u)+\operatorname{weight}(u, v)<\operatorname{dist}(v)$
- if so, correct $\operatorname{dist}(v)$ and store u as predecessor of v

Dijkstra's SSSP II

Dijkstra-SSPP (s, G)
1: for all $v \in \mathcal{V}$ do
2: $\quad \operatorname{dist}(v)=+\infty ; \operatorname{predecessor}(v)=$ undef; $Q \cdot \operatorname{add}(v)$
3: $\operatorname{dist}(s)=0$
4: while $Q \neq \emptyset$ do
5: $\quad u=Q$.extract_min ()
6: \quad for all $(u, v) \in \mathcal{E}$ do
7: \quad alt $=\operatorname{dist}(u)+\operatorname{weight}(u, v)$
8: \quad if alt $<\operatorname{dist}(v)$ then
9: $\operatorname{dist}(v)=a l t ; \operatorname{predecessor}(v)=u$

- Finally, the predecessor chain can be followed backwards from any node for the shortest path to s
- The algorithm can be stopped in line 5 if u is the desired target node

Data Structure for Q

- Q must support the operations
- add element
- extract_min : get and remove the element with the lowest key
- lower_key: lower the key of an arbitrary element
- java.util.PriorityQueue supports the first two efficiently

Data Structure for Q

- Q must support the operations
- add element
- extract_min : get and remove the element with the lowest key
- lower_key : lower the key of an arbitrary element
- java.util.PriorityQueue supports the first two efficiently
- BUT: lower_key can only be implemented using: remove (v) +add(v), which means $O(n)+O(\lg (n))$
- To avoid the search in remove(v), relate the elements efficiently to the buckets of the priority queue
- To do so, a homemade priority queue is requied

A* Search

- If the search space is very big (as in most AI complete problems), Dijkstra's algorithm may be too expensive
- Use additional information to guide the search, if available
- This is mostly called rest-cost estimate or heuristic function of the search
- Will only affect the average time for finding the goal
- Incrementally explore all paths until the optimal path is found:
- The solution is sound and complete
- Because of the additional bookkeeping, it can get worse than the plain algorithm, but will behave better in practice

A* Search: Simple Example

- Get from Place s to t using the map of a city
- Vertices: crossings
- Edges: connecting roads (eventually one-way)
- Weights: Length of the road between two crossings
- If at crossing x, we know the $\operatorname{dist}(x)$ already traveled
- In addition, we have an estimate for the rest: the air-line distance between x and the target t
- Instead of using $\operatorname{dist}(x)$ (Dijkstra), use $\operatorname{dist}(x)+\operatorname{airline}(x, t)$ as weight for the priority queue
- If the remaining cost are never overestimated, the heuristic is admissible and the optimum will be found
- Dijkstra is a special A^{*}, with the rest cost estimate zero

Automatic Pathfinding

Task: Move an object through an environment with obstacles from a start to a goal location

- find the shortest path
- find the fastest path

Problem Desription

Concave obstactles pose a severe problem

Obstacle Avoidance

- Compute convex hulls beforehand and avoid entering them
- Design algorithm to handle this problem

Problem Formulation as Graph

- Map the plane onto a grid, and connect nodes
- Distance between nodes?

Problem Formulation as Graph

- Map the plane onto a grid, and connect nodes
- Distance between nodes?

Problem Formulation as Graph

- Map the plane onto a grid, and connect nodes
- Distance between nodes?

manhattan

Problem Formulation as Graph

- Map the plane onto a grid, and connect nodes
- Distance between nodes?

manhattan

euclidean (?)

euclidean

Dijkstra on a Rectangular Grid

Dijkstra's algorithm visits the non-visited node nearest to the starting point first

Greedy Best-First Search

- Needs additional information about the graph, such as relative position of current and goal node, a rest-cost estimate, like A*
- Always takes the node with the best heuristic value first
- Can significantly improve over Dijkstra

Dijkstra Behaviour With Obstacles

Guaranteed to find shortest path, even with obstacles

Greedy Best-First With Obstacles

Less nodes visited, but suboptimal path

A* as combination of Dijkstra and Best-First

- A* combines information from Dijkstra (distance from start) with estimated information about the remaining cost (like best-first)
- Without obstacles, A* behaves like greedy best-first

Improved Behaviour of A^{*}

- The combination of information avoids search in implausible directions
- Better performance coupled with good results, depending on the accuracy of the rest-cost estimation

