
Graph Algorithms II

Bernd Kiefer
Jörg Steffen

January 20, 2023

Heuristic Search Pictures from
http://www-cs-students.stanford.edu/~amitp/gameprog.html

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 1 / 21



Strongly Connected Components

Strongly Connected Components

▶ Definition: a SCC of a directed graph is the maximal set U of
vertices, such that for all u, v ∈ U : u → v ∧ v → u

▶ SCCs consist of connected cycles of the graph

▶ Vertices not in any cycle constitute their own SCC

▶ The SCCs form a total partition of the graph

▶ The component graph, where the SCCs are replaced by vertices, is
acyclic

▶ Many algorithms are easier to solve on acyclic graphs
▶ Run the algorithm on the harder, but smaller SCCs
▶ Combine the results on the acyclic component graph
▶ a special kind of divide and conquer

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 2 / 21



Strongly Connected Components

Strongly Connected Components

DFS starting at s then t

s t

uv

w

x

y

z

q

s t

uv

w

x

y

z

q

1

2

3

4

5

6

7

8 9

▶ All nodes of a SCC will be visited in the same DFS

▶ All vertices of an SCC are connected by tree edges

▶ There must be a highest entry node

▶ It is the vertex with the lowest discovery time in the SCC

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 3 / 21



Strongly Connected Components

Strongly Connected Components

DFS starting at s then t

s t

uv

w

x

y

z

q

s t

uv

w

x

y

z

q

1

2

3

4

5

6

7

8 9

▶ All nodes of a SCC will be visited in the same DFS

▶ All vertices of an SCC are connected by tree edges

▶ There must be a highest entry node

▶ It is the vertex with the lowest discovery time in the SCC

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 3 / 21



Strongly Connected Components

Strongly Connected Components

DFS starting at s then t

s t

uv

w

x

y

z

q

s t

uv

w

x

y

z

q

1

2

3

4

5

6

7

8 9

▶ All nodes of a SCC will be visited in the same DFS

▶ All vertices of an SCC are connected by tree edges

▶ There must be a highest entry node

▶ It is the vertex with the lowest discovery time in the SCC

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 3 / 21



Strongly Connected Components

Tarjan’s Algorithm

▶ Crucial observation: Root Property
▶ store, for every vertex, the lowest discovery time of an active vertex

reachable from it in the DFS tree 7→ low(v)
▶ a vertex with d(v) == low(v) is the root of an SCC
▶ the SCC consists of the root and all vertices that

▶ are on the DFS tree below the root and
▶ don’t belong to another SCC

−→ we can use a stack to collect these vertices

▶ low(v) < d(v) can only occur when using
▶ back edges
▶ cross edges pointing to a vertex still on the stack (active SCC)

▶ vertices not on the stack are not considered because they belong to an
already finished SCC in another DFS tree branch

▶ Pop the SCC vertices when reaching the root

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 4 / 21



Strongly Connected Components

Tarjan’s SCC Algorithm

StronglyConnectedComponents(G )

Initialize all v ∈ V: d(v) = 0; low(v) = 0;
for all v ∈ V with d(v) == 0 do

low(v) = d(v) = + + time; S .push(v);
for all e = (v , u) ∈ E do

if d(u) == 0 then // u not visited: recurse
findSCC(u) ; low(v) = min(low(v), low(u))

else if u is in S then
low(v) = min(low(v), low(u))

if d(v) == low(v) then
while S .top()̸= v do

u = S .pop();
S .pop() // pop root

To check efficiently if u is in S , use an additional boolean

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 5 / 21



Strongly Connected Components

Tarjan’s SCC Algorithm

StronglyConnectedComponents(G )

Initialize all v ∈ V: d(v) = 0; low(v) = 0;
for all v ∈ V with d(v) == 0 do

low(v) = d(v) = + + time; S .push(v);
for all e = (v , u) ∈ E do

if d(u) == 0 then // u not visited: recurse
findSCC(u) ; low(v) = min(low(v), low(u))

else if u is in S then
low(v) = min(low(v), low(u))

if d(v) == low(v) then
while S .top()̸= v do

u = S .pop();
S .pop() // pop root

To check efficiently if u is in S , use an additional boolean

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 5 / 21



Search in Weighted Graphs

Search in Weighted Graphs

▶ Many applications require weights attached to the edges e.g., the
transition probabilities

▶ Goal: find the shortest path
▶ We will look at single-source shortest path with nonnegative weights

▶ The Bellman-Ford algorithm works with negative weights, too
▶ For graphs with negative cycles, the shortest path is not well defined

▶ First: Dijkstra’s algorithm for SSSP with nonnegative weights

▶ Generalization: A∗ search with a heuristic function

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 6 / 21



Search in Weighted Graphs

Dijkstra’s SSSP

▶ Algorithm relies on the triangle equation:
dist(u,w) + weight(w , v) ≥ dist(u, v) for all u, v ,w ∈ V

▶ Initially:
▶ set the distances for all nodes to +∞, except for the source node s to

zero
▶ mark all nodes as not optimized

▶ While there are nodes not yet optimized:
▶ take the unoptimized node u with the smallest dist(u)
▶ check for all neighbours v if the triangle equation is violated, that is:

dist(u) + weight(u, v) < dist(v)
▶ if so, correct dist(v) and store u as predecessor of v

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 7 / 21



Search in Weighted Graphs

Dijkstra’s SSSP II

Dijkstra-SSPP(s,G )

1: for all v ∈ V do
2: dist(v) = +∞; predecessor(v) =undef; Q.add(v)
3: dist(s) = 0
4: while Q ̸= ∅ do
5: u = Q.extract min()
6: for all (u, v) ∈ E do
7: alt = dist(u) + weight(u, v)
8: if alt < dist(v) then
9: dist(v) = alt; predecessor(v) = u

▶ Finally, the predecessor chain can be followed backwards from any
node for the shortest path to s

▶ The algorithm can be stopped in line 5 if u is the desired target node

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 8 / 21



Search in Weighted Graphs

Data Structure for Q

▶ Q must support the operations
▶ add element
▶ extract min : get and remove the element with the lowest key
▶ lower key : lower the key of an arbitrary element

▶ java.util.PriorityQueue supports the first two efficiently

▶ BUT: lower key can only be implemented using:
remove(v)+add(v), which means O(n) + O(lg(n))

▶ To avoid the search in remove(v), relate the elements efficiently to
the buckets of the priority queue

▶ To do so, a homemade priority queue is requied

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 9 / 21



Search in Weighted Graphs

Data Structure for Q

▶ Q must support the operations
▶ add element
▶ extract min : get and remove the element with the lowest key
▶ lower key : lower the key of an arbitrary element

▶ java.util.PriorityQueue supports the first two efficiently

▶ BUT: lower key can only be implemented using:
remove(v)+add(v), which means O(n) + O(lg(n))

▶ To avoid the search in remove(v), relate the elements efficiently to
the buckets of the priority queue

▶ To do so, a homemade priority queue is requied

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 9 / 21



Heuristic Search

A* Search

▶ If the search space is very big (as in most AI complete problems),
Dijkstra’s algorithm may be too expensive

▶ Use additional information to guide the search, if available

▶ This is mostly called rest-cost estimate or heuristic function of the
search

▶ Will only affect the average time for finding the goal
▶ Incrementally explore all paths until the optimal path is found:

▶ The solution is sound and complete
▶ Because of the additional bookkeeping, it can get worse than the plain

algorithm, but will behave better in practice

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 10 / 21



Heuristic Search

A* Search: Simple Example

▶ Get from Place s to t using the map of a city
▶ Vertices: crossings
▶ Edges: connecting roads (eventually one-way)
▶ Weights: Length of the road between two crossings
▶ If at crossing x , we know the dist(x) already traveled
▶ In addition, we have an estimate for the rest: the air-line distance

between x and the target t

▶ Instead of using dist(x) (Dijkstra), use dist(x) + airline(x , t) as
weight for the priority queue

▶ If the remaining cost are never overestimated, the heuristic is
admissible and the optimum will be found

▶ Dijkstra is a special A*, with the rest cost estimate zero

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 11 / 21



Heuristic Search

Automatic Pathfinding

Task: Move an object through an environment with obstacles from a
start to a goal location

▶ find the shortest path

▶ find the fastest path

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 12 / 21



Heuristic Search

Problem Desription

Concave obstactles pose a severe problem

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 13 / 21



Heuristic Search

Obstacle Avoidance

▶ Compute convex hulls beforehand and avoid entering them

▶ Design algorithm to handle this problem

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 14 / 21



Heuristic Search

Problem Formulation as Graph

▶ Map the plane onto a grid, and connect nodes

▶ Distance between nodes?

manhattan euclidean (?) euclidean

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 15 / 21



Heuristic Search

Problem Formulation as Graph

▶ Map the plane onto a grid, and connect nodes

▶ Distance between nodes?

manhattan

euclidean (?) euclidean

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 15 / 21



Heuristic Search

Problem Formulation as Graph

▶ Map the plane onto a grid, and connect nodes

▶ Distance between nodes?

manhattan euclidean (?)

euclidean

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 15 / 21



Heuristic Search

Problem Formulation as Graph

▶ Map the plane onto a grid, and connect nodes

▶ Distance between nodes?

manhattan euclidean (?) euclidean

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 15 / 21



Heuristic Search

Dijkstra on a Rectangular Grid

Dijkstra’s algorithm visits the non-visited node nearest to the starting
point first

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 16 / 21



Heuristic Search

Greedy Best-First Search

▶ Needs additional information about the graph, such as relative
position of current and goal node, a rest-cost estimate, like A*

▶ Always takes the node with the best heuristic value first

▶ Can significantly improve over Dijkstra

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 17 / 21



Heuristic Search

Dijkstra Behaviour With Obstacles

Guaranteed to find shortest path, even with obstacles

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 18 / 21



Heuristic Search

Greedy Best-First With Obstacles

Less nodes visited, but suboptimal path

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 19 / 21



Heuristic Search

A* as combination of Dijkstra and Best-First

▶ A* combines information from Dijkstra (distance from start) with
estimated information about the remaining cost (like best-first)

▶ Without obstacles, A* behaves like greedy best-first

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 20 / 21



Heuristic Search

Improved Behaviour of A*

▶ The combination of information avoids search in implausible directions

▶ Better performance coupled with good results, depending on the
accuracy of the rest-cost estimation

Bernd Kiefer Jörg Steffen Graph Algorithms II - January 20, 2023 21 / 21


	Strongly Connected Components
	Search in Weighted Graphs
	Heuristic Search

