Data Structures for Disjoint Sets

Bernd Kiefer Jörg Steffen

January 20, 2023

Application: Network Connectivity

- An underlying, unexplored undirected graph
- union: connect two objects
- find query: is there a connection between two objects

Disjoint Set Data Structures: What for?

A set of n elements and a (total) equivalence relation \equiv

- Implement the following operations efficiently:
- do elements a and b belong to the same class?
- put a into the equivalence class of b
- merge the equivalence classes of a and b (union)
- Every union operation reduces the set of classes by one

Disjoint Set Data Structures: What for?

A set of n elements and a (total) equivalence relation \equiv

- Implement the following operations efficiently:
- do elements a and b belong to the same class?
- put a into the equivalence class of b
- merge the equivalence classes of a and b (union)
- Every union operation reduces the set of classes by one

Examples for \equiv

- Connected computers in a network
- Variables pointing to the same object in memory (e.g., for garbage collection)
- Similarly colored pictures in a digital image
- Coreferences of feature structures during unification

Some Abstractions

- Objects
$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { disjoint points }\end{array}$
- Disjoint sets of objects
$\left.0 \quad 1 \begin{array}{lll}3 & 5 & 7\end{array}\right\}\left\{\begin{array}{lllll}6 & 2\end{array}\right\} 4\left\{\begin{array}{ll}8 & 9\end{array}\right\}$ sets of connected points
- Find query: are objects 2 and 9 in the same set?
$0 \quad 1\left\{\begin{array}{lll}2 & 3 & 9\end{array}\right\}\left\{\begin{array}{ll}5 & 6\end{array}\right\} 7\left\{\begin{array}{ll}4 & 8\end{array}\right\}$ are two points connected?
- Union: merge sets containing 3 and 8
$0 \begin{array}{llllll}1 & \left\{\begin{array}{lllll}2 & 3 & 9 & 4 & 8\end{array}\right\} 7 & \left\{\begin{array}{ll}5 & 6\end{array}\right\}\end{array}$ add a connection between two points
- We are looking at cases where n objects are involved, and m operations are performed, both n and m large!

Implementation Basics

- For programming: assume the elements are numbered consecutively
- a symbol table can be used to associate objects to numbers
- use a vector \mathcal{V} of n elements containing integers
- if $\mathcal{V}[n]=n, n$ is the representative of the class
- otherwise, $\mathcal{V}[n]$ points directly or indirectly to the representative

Quick find

- $\operatorname{find}(a, b): \mathcal{V}[a]==\mathcal{V}[b]$

$$
\begin{array}{lllllllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\mathcal{V} & 0 & 1 & 2 & 4 & 4 & 5 & 4 & 7 & 5 & 5
\end{array}
$$

Quick find

- $\operatorname{find}(a, b): \mathcal{V}[a]==\mathcal{V}[b]$
- Problem: Merge may require many changes, e.g., merge 6 and 9

$$
\begin{array}{lllllllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\mathcal{V} & 0 & 1 & 2 & 4 & 4 & 5 & 4 & 7 & 5 & 5
\end{array}
$$

Quick find

- $\operatorname{find}(a, b): \mathcal{V}[a]==\mathcal{V}[b]$
- Problem: Merge may require many changes, e.g., merge 6 and 9
- Merge is linear in n

$$
\begin{array}{lllllllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\mathcal{V} & 0 & 1 & 2 & 5 & 5 & 5 & 5 & 7 & 5 & 5
\end{array}
$$

Quick Merge

find-representative(a):
while $\mathcal{V}[a] \neq a$ do
$a:=\mathcal{V}[a]$
return a
equiv(a, b):
return find-representative(a) =find-representative(b)
union(\mathbf{a}, \mathbf{b}):
$a:=f i n d-r e p r e s e n t a t i v e(a)$
$\mathcal{V}[a]:=$ find-representative (b)

Example I

union $(3,8)$

Example I

union $(3,8)$

Example I

union $(3,8)$
equiv $(6,3)$

Improving Asymptotic Complexity

- the tree can degenerate into a spine of length $O(n)$
- idea: use the freedom in merging two sets
- for every representative, maintain the size of the set it represents
- always merge the smaller set into the bigger
- instead maintaining the rank (an approximation of the tree height) gives the same asymptotic results
- Any tree of height h must then at least containt 2^{h} elements
- additionaly, shorten the paths during each equiv operation

Improved Implementation

find-representative(a):
while $\mathcal{V}[a] \neq \mathcal{V}[\mathcal{V}[a]]$ do
$a:=\mathcal{V}[a]:=\mathcal{V}[\mathcal{V}[a]] \quad / /$ path compression
return $\mathcal{V}[a]$
union(\mathbf{a}, b):
$a:=$ find-representative(a)
$b:=$ find-representative(b)
if $\operatorname{size}(a)>\operatorname{size}(b)$ then
exchange $(a, b) \quad / /$ merge b into a
$V[a]:=b \quad / /$ merge a into b
$\operatorname{size}(b)=\operatorname{size}(a)+\operatorname{size}(b)$

Size + Path Compression

union $(7,8)$

Size + Path Compression

union $(7,8)$

Size + Path Compression

union $(7,8)$
equiv $(3,8)$

