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History

● 1960ies and before: dark age of programming: 
ALGOL, COBOL, FORTRAN,...

● 1970ies: structured programming paradigm: use 
subroutines, data types: Pascal, Modula

● 1980ies: object-oriented programming (OOP) 
paradigm: (additionally) use objects, inheritance, 
encapsulation, polymorphism: Smalltalk, C++

● 1990ies: there are recurring patterns in OOP that 
one should be aware of when designing new code
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The Gang of Four

● 1977: Christopher Alexander et al: A Pattern 
Language (architecture, not computer science!)

● 1995: Gamma, Helm, Johnson and Vlissides: 
Design Patterns – Elements of Reusable Software 
(GoF/"Gang of Four" book)

● describe most frequent patterns, their purpose, 
define basic methods, classes, structures, 
dependencies
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Design Patterns

● "Design patterns are recurring solutions to design 
problems you see over and over." (Alpert et al.'98)

● "Design patterns constitute a set of rules describing how 
to accomplish certain tasks in the realm of software 
development." (Pree, '94)

● "Design patterns describe how objects communicate 
without become entangled in each other’s data models 
and methods." (Cooper, '98)

● "A pattern addresses a recurring design problem that 
arises in specific design situations and presents a solution 
to it." (Buschmann, et. al. 1996)
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Design Patterns

● today, hundreds of patterns have been proposed, 
ranging from very simple to very complex ones

● there is no 'standard', only common sense
● independent of a programming language
● most patterns are not part of a programming 

language unlike structured programming or OOP
● but pattern implementations differ depending on 

programming language
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Design Patterns

● Pattern ≠ Class (in general)
– some are trivial (single method)
– some are part of the programming language
– for some patterns holds pattern = class or interface
– some can be implemented as independent class library
– some require complex teamplay of multiple classes
– names of methods and classes may differ (e.g. 

according to application context)
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Patterns we already know

● Interface: part of Java language

● Iterator: e.g. java.util.Collection interface 
● Factory: JAXP ParserFactory, TransformerFactory
● Adapter: JAXP Source
● many more in AWT / Swing / Java Foundation 

Classes



U.SCHÄFER • JAVA II • WS 2010/11

8

Singleton Pattern

● purpose: guarantee existence of a single object, 
e.g., a server, window manager, printer spooler

● declare constructor private to prevent it from 
being called (may throw exception instead)

● define getInstance() to return instance
● may be extended to create a limited number of 

instances ("Fewton", "Oligoton")
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Singleton – Example

public class Singleton {

  private static Singleton instance = null;

  public static Singleton getInstance() {

    if (instance == null) {

      instance = new Singleton();

    }

    return instance;

  }

  private Singleton() { } // hide constructor

}
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Immutable Pattern

● purpose: guarantee that an object cannot be 
modified
– when threads should not concurrently modify an 

object
– share the same object in multiple references, 

example: java.lang.String
● may be declared final to prevent modification 

by methods introduced in subclasses
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Immutable Pattern – Example

public class Immutable {  // make it final to be safe

  private int      value1;  

  private String[] value2;    // hide

  public Immutable(int value1, String[] value2) {

    this.value1 = value1; // doesn't need to be cloned

    this.value2 = (String[])value2.clone();   }

  public int getValue1() { 

    return value1; }

  public String getValue2(int index) {

    return value2[index]; }

}
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Factory Method Pattern

● purpose: delegate object creation to subclasses, 
let them decide which object to return and how 
to create it



U.SCHÄFER • JAVA II • WS 2010/11

13

Factory Method Pattern – Example

public class Icon {

  private Icon() { } // hide constructor

  public static Icon loadFromFile(String name) {

    Icon ret = null;

    if (name.endsWith(".gif")) { 

       ret = new GifIcon(name);

    } else if (name.endsWith(".jpg")) {

       ret = new JpegIcon(name);

    } else if (name.endsWith(".png")) {

       ret = new PngIcon(name);

    }

    return ret;

  }

}
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Factory Pattern

● purpose:
– generate complex objects from a configuration 

(parameters; e.g. color, engine, wheel type of  a car)
– return potentially different instances
– provide, but hide multiple implementations

● cf. SAXParserFactory, TransformerFactory in 
JAXP
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Factory example

public class TypedFeatStructFactory {

  public TypedFeatStructFactory(TypeHierarchy th) {

     // create TFS factory for a given type hierarchy

  }

  public TypedFeatStruct createFromXmlFile(File f) {

    // create TFS using XML parser

  }

  public TypedFeatStruct createFromTextString(String s){

    // create TFS using 'ASCII' (javaCC) parser

  }

}
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Abstract Factory Pattern ('Toolkit')

● one level of abstraction higher than Factory

●  e.g. GUI widget toolkit
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Observer Pattern

● notify other objects of changes, e.g. updating 
GUI elements (AWT, Swing) 

java.util.Observer

java.util.Observable
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Visitor Pattern

● encapsulate operations on elements in an object 
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Pattern Types

● Creational Patterns
● Structural Patterns
● Behavioral Patterns
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Pattern types I: Creational Patterns (1)

● help creating objects – adding flexibility in 
deciding which objects need to be created for a 
given case, e.g.,
– Factory method, (Abstract)Factory
– Singleton
– Prototype: construct by copying example object 

('Chinese factory')
– Builder: separate construction of a complex object 

from its representation (same builder can produce 
different representations)
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Pattern types I: Creational Patterns (2)

– Object Pool: manage the reuse of objects when a 
type of object is expensive to create or only a 
limited number of objects can be created.

   A generic implementation can be found in 
http://jakarta.apache.org/commons/pool

http://jakarta.apache.org/commons/pool
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Pattern Types II: Structural Patterns

● help composing groups of objects into larger 
structures, e.g.,
– Adapter: change the interface of one class to that of 

another one (e.g. javax.xml.transform.Source)
– Composite: collection of objects (recursively)
– Decorator: modify the behavior of individual objects 

without having to create a new derived class
– Facade: provide a simple interface hiding different 

complex interfaces (e.g., ODBC/JDBC)
– Proxy: control an object by a representative (surrogat)
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Pattern Types III: Behaviorial Patterns (1)

● help defining communication between objects 
and how the flow is controlled in a complex 
program, e.g.,
– Command: encapsulate commands in objects
– Observer: define the way a number of classes can 

be notified of a change
– Visitor: encapsulate operations on elements of an 

object as another object
– Mediator: simplify communication between objects  

by introducing another object that keeps coupling



U.SCHÄFER • JAVA II • WS 2010/11

24

Pattern Types III: Behaviorial Patterns (2)

– Strategy: abstract from algorithms (e.g., in a context), 
make them interchangeable (cf. AWT Layout 
Manager, Swing Look & Feel, Sorting algorithms)

– Chain of Responsibility: pass requests of an object 
not directly to the recipient, but through a chain of 
requests from object to object, until an appropriate 
recipient is found

   A generic implementation can be found in 
http://jakarta.apache.org/commons/chain

http://jakarta.apache.org/commons/chain
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Using Design Patterns

● how to know which design pattern(s) to use?
– experience
– intuition
– discussion
– (re-)implementation

● design patterns provide a common language 
when discussing software design and 
implementation with co-developers

● help to prevent (design) errors
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Literature

● Gamma, Helm, Johnson, Vlissides: Design-Patterns -  
Elements of Reusable Object-Oriented Software („GoF book“)

● Chapter 10.4 in Guido Krüger: Handbuch der Java-
Programmierung (http://www.javabuch.de) (*diagrams)

● Cooper: The Design Patterns Java Companion (PDF 
downloadable), with many Swing examples

● Grand: Patterns in Java (additional patterns)
● Design Patterns in Java – Reference and Example site
● Wikipedia: Design_pattern_(computer_science)

http://www.javabuch.de/
http://www.patterndepot.com/put/8/JavaPatterns.htm
http://www.mindspring.com/~mgrand/pattern_synopses.htm
http://www.fluffycat.com/java/patterns.html
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
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