
U.SCHÄFER • JAVA II • WS 2010/11

1

Design Patterns (Entwurfsmuster)

Ulrich.Schaefer@dfki.de

U.SCHÄFER • JAVA II • WS 2010/11

2

History

● 1960ies and before: dark age of programming:
ALGOL, COBOL, FORTRAN,...

● 1970ies: structured programming paradigm: use
subroutines, data types: Pascal, Modula

● 1980ies: object-oriented programming (OOP)
paradigm: (additionally) use objects, inheritance,
encapsulation, polymorphism: Smalltalk, C++

● 1990ies: there are recurring patterns in OOP that
one should be aware of when designing new code

U.SCHÄFER • JAVA II • WS 2010/11

3

The Gang of Four

● 1977: Christopher Alexander et al: A Pattern
Language (architecture, not computer science!)

● 1995: Gamma, Helm, Johnson and Vlissides:
Design Patterns – Elements of Reusable Software
(GoF/"Gang of Four" book)

● describe most frequent patterns, their purpose,
define basic methods, classes, structures,
dependencies

U.SCHÄFER • JAVA II • WS 2010/11

4

Design Patterns

● "Design patterns are recurring solutions to design
problems you see over and over." (Alpert et al.'98)

● "Design patterns constitute a set of rules describing how
to accomplish certain tasks in the realm of software
development." (Pree, '94)

● "Design patterns describe how objects communicate
without become entangled in each other’s data models
and methods." (Cooper, '98)

● "A pattern addresses a recurring design problem that
arises in specific design situations and presents a solution
to it." (Buschmann, et. al. 1996)

U.SCHÄFER • JAVA II • WS 2010/11

5

Design Patterns

● today, hundreds of patterns have been proposed,
ranging from very simple to very complex ones

● there is no 'standard', only common sense
● independent of a programming language
● most patterns are not part of a programming

language unlike structured programming or OOP
● but pattern implementations differ depending on

programming language

U.SCHÄFER • JAVA II • WS 2010/11

6

Design Patterns

● Pattern ≠ Class (in general)
– some are trivial (single method)
– some are part of the programming language
– for some patterns holds pattern = class or interface
– some can be implemented as independent class library
– some require complex teamplay of multiple classes
– names of methods and classes may differ (e.g.

according to application context)

U.SCHÄFER • JAVA II • WS 2010/11

7

Patterns we already know

● Interface: part of Java language

● Iterator: e.g. java.util.Collection interface
● Factory: JAXP ParserFactory, TransformerFactory
● Adapter: JAXP Source
● many more in AWT / Swing / Java Foundation

Classes

U.SCHÄFER • JAVA II • WS 2010/11

8

Singleton Pattern

● purpose: guarantee existence of a single object,
e.g., a server, window manager, printer spooler

● declare constructor private to prevent it from
being called (may throw exception instead)

● define getInstance() to return instance
● may be extended to create a limited number of

instances ("Fewton", "Oligoton")

U.SCHÄFER • JAVA II • WS 2010/11

9

Singleton – Example

public class Singleton {

 private static Singleton instance = null;

 public static Singleton getInstance() {

 if (instance == null) {

 instance = new Singleton();

 }

 return instance;

 }

 private Singleton() { } // hide constructor

}

U.SCHÄFER • JAVA II • WS 2010/11

10

Immutable Pattern

● purpose: guarantee that an object cannot be
modified
– when threads should not concurrently modify an

object
– share the same object in multiple references,

example: java.lang.String
● may be declared final to prevent modification

by methods introduced in subclasses

U.SCHÄFER • JAVA II • WS 2010/11

11

Immutable Pattern – Example

public class Immutable { // make it final to be safe

 private int value1;

 private String[] value2; // hide

 public Immutable(int value1, String[] value2) {

 this.value1 = value1; // doesn't need to be cloned

 this.value2 = (String[])value2.clone(); }

 public int getValue1() {

 return value1; }

 public String getValue2(int index) {

 return value2[index]; }

}

U.SCHÄFER • JAVA II • WS 2010/11

12

Factory Method Pattern

● purpose: delegate object creation to subclasses,
let them decide which object to return and how
to create it

U.SCHÄFER • JAVA II • WS 2010/11

13

Factory Method Pattern – Example

public class Icon {

 private Icon() { } // hide constructor

 public static Icon loadFromFile(String name) {

 Icon ret = null;

 if (name.endsWith(".gif")) {

 ret = new GifIcon(name);

 } else if (name.endsWith(".jpg")) {

 ret = new JpegIcon(name);

 } else if (name.endsWith(".png")) {

 ret = new PngIcon(name);

 }

 return ret;

 }

}

U.SCHÄFER • JAVA II • WS 2010/11

14

Factory Pattern

● purpose:
– generate complex objects from a configuration

(parameters; e.g. color, engine, wheel type of a car)
– return potentially different instances
– provide, but hide multiple implementations

● cf. SAXParserFactory, TransformerFactory in
JAXP

U.SCHÄFER • JAVA II • WS 2010/11

15

Factory example

public class TypedFeatStructFactory {

 public TypedFeatStructFactory(TypeHierarchy th) {

 // create TFS factory for a given type hierarchy

 }

 public TypedFeatStruct createFromXmlFile(File f) {

 // create TFS using XML parser

 }

 public TypedFeatStruct createFromTextString(String s){

 // create TFS using 'ASCII' (javaCC) parser

 }

}

U.SCHÄFER • JAVA II • WS 2010/11

16

Abstract Factory Pattern ('Toolkit')

● one level of abstraction higher than Factory

● e.g. GUI widget toolkit

U.SCHÄFER • JAVA II • WS 2010/11

17

Observer Pattern

● notify other objects of changes, e.g. updating
GUI elements (AWT, Swing)

java.util.Observer

java.util.Observable

U.SCHÄFER • JAVA II • WS 2010/11

18

Visitor Pattern

● encapsulate operations on elements in an object

U.SCHÄFER • JAVA II • WS 2010/11

19

Pattern Types

● Creational Patterns
● Structural Patterns
● Behavioral Patterns

U.SCHÄFER • JAVA II • WS 2010/11

20

Pattern types I: Creational Patterns (1)

● help creating objects – adding flexibility in
deciding which objects need to be created for a
given case, e.g.,
– Factory method, (Abstract)Factory
– Singleton
– Prototype: construct by copying example object

('Chinese factory')
– Builder: separate construction of a complex object

from its representation (same builder can produce
different representations)

U.SCHÄFER • JAVA II • WS 2010/11

21

Pattern types I: Creational Patterns (2)

– Object Pool: manage the reuse of objects when a
type of object is expensive to create or only a
limited number of objects can be created.

 A generic implementation can be found in
http://jakarta.apache.org/commons/pool

http://jakarta.apache.org/commons/pool

U.SCHÄFER • JAVA II • WS 2010/11

22

Pattern Types II: Structural Patterns

● help composing groups of objects into larger
structures, e.g.,
– Adapter: change the interface of one class to that of

another one (e.g. javax.xml.transform.Source)
– Composite: collection of objects (recursively)
– Decorator: modify the behavior of individual objects

without having to create a new derived class
– Facade: provide a simple interface hiding different

complex interfaces (e.g., ODBC/JDBC)
– Proxy: control an object by a representative (surrogat)

U.SCHÄFER • JAVA II • WS 2010/11

23

Pattern Types III: Behaviorial Patterns (1)

● help defining communication between objects
and how the flow is controlled in a complex
program, e.g.,
– Command: encapsulate commands in objects
– Observer: define the way a number of classes can

be notified of a change
– Visitor: encapsulate operations on elements of an

object as another object
– Mediator: simplify communication between objects

by introducing another object that keeps coupling

U.SCHÄFER • JAVA II • WS 2010/11

24

Pattern Types III: Behaviorial Patterns (2)

– Strategy: abstract from algorithms (e.g., in a context),
make them interchangeable (cf. AWT Layout
Manager, Swing Look & Feel, Sorting algorithms)

– Chain of Responsibility: pass requests of an object
not directly to the recipient, but through a chain of
requests from object to object, until an appropriate
recipient is found

 A generic implementation can be found in
http://jakarta.apache.org/commons/chain

http://jakarta.apache.org/commons/chain

U.SCHÄFER • JAVA II • WS 2010/11

25

Using Design Patterns

● how to know which design pattern(s) to use?
– experience
– intuition
– discussion
– (re-)implementation

● design patterns provide a common language
when discussing software design and
implementation with co-developers

● help to prevent (design) errors

U.SCHÄFER • JAVA II • WS 2010/11

26

Literature

● Gamma, Helm, Johnson, Vlissides: Design-Patterns -
Elements of Reusable Object-Oriented Software („GoF book“)

● Chapter 10.4 in Guido Krüger: Handbuch der Java-
Programmierung (http://www.javabuch.de) (*diagrams)

● Cooper: The Design Patterns Java Companion (PDF
downloadable), with many Swing examples

● Grand: Patterns in Java (additional patterns)
● Design Patterns in Java – Reference and Example site
● Wikipedia: Design_pattern_(computer_science)

http://www.javabuch.de/
http://www.patterndepot.com/put/8/JavaPatterns.htm
http://www.mindspring.com/~mgrand/pattern_synopses.htm
http://www.fluffycat.com/java/patterns.html
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

	Design Patterns
	PatternHistory
	The Gang of Four
	PatternIntro1
	PatternIntro2
	PatternIntro3
	Patterns we know
	Singleton1
	Singleton
	Immutable1
	Immutable
	Factory method1
	Factory method
	Factory
	Factory example
	AbstractFactory
	Observer
	Visitor
	Pattern Types
	Pattern types1
	Pattern types1b
	Pattern types2
	Pattern types3
	Pattern types3-b
	Experience
	patternLiterature

