Java II Probabilistic Part-of-Speech Tagging

Bernd Kiefer

\{Bernd.Kiefer\}@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

Part-of-Speech Tagging I

- Task: given a sequence of input tokens and a tag set (a set of symbols), assign each word the most appropriate tag
- Example:

Sie protestierten gegen den Abbau von Arbeitsplätzen .
PPER VVFIN APPR ART NN APPR NN \$.

- Problems:

Part-of-Speech Tagging I

- Task: given a sequence of input tokens and a tag set (a set of symbols), assign each word the most appropriate tag
- Example:

Sie protestierten gegen den Abbau von Arbeitsplätzen .
PPER VVFIN APPR ART NN APPR NN \$.

- Problems:
- Fix tokenization and tag set

Part-of-Speech Tagging I

- Task: given a sequence of input tokens and a tag set (a set of symbols), assign each word the most appropriate tag
- Example:

Sie protestierten gegen den Abbau von Arbeitsplätzen
PPER VVFIN APPR ART NN APPR NN \$.

- Problems:
> Fix tokenization and tag set
- Multiple possible tags for one word e.g, protestieren: VVFIN, VVINF der: ART, PDS, PRELS

Part-of-Speech Tagging II

- Rule based tagging: Write rules manually (mostly regular expressions)

Part-of-Speech Tagging II

- Rule based tagging: Write rules manually (mostly regular expressions)
- Statistical tagging: Get the most probable sequence of tags, given the input sequence as evidence

Part-of-Speech Tagging II

- Rule based tagging: Write rules manually (mostly regular expressions)
- Statistical tagging: Get the most probable sequence of tags, given the input sequence as evidence
- Transformation based tagging: a machine learning method trying to combine the previous ones

Part-of-Speech Tagging II

- Rule based tagging: Write rules manually (mostly regular expressions)
- Statistical tagging: Get the most probable sequence of tags, given the input sequence as evidence
- Transformation based tagging: a machine learning method trying to combine the previous ones
- Statistical tagging needs a corpus of sentences annotated with the correct tags

Part-of-Speech Tagging II

- Rule based tagging: Write rules manually (mostly regular expressions)
- Statistical tagging: Get the most probable sequence of tags, given the input sequence as evidence
- Transformation based tagging: a machine learning method trying to combine the previous ones
- Statistical tagging needs a corpus of sentences annotated with the correct tags
- With this corpus, a special kind of weighted automaton, called hidden Markov model, is produced

Part-of-Speech Tagging II

- Rule based tagging: Write rules manually (mostly regular expressions)
- Statistical tagging: Get the most probable sequence of tags, given the input sequence as evidence
- Transformation based tagging: a machine learning method trying to combine the previous ones
- Statistical tagging needs a corpus of sentences annotated with the correct tags
- With this corpus, a special kind of weighted automaton, called hidden Markov model, is produced
- Finding the most probable assignment boils down to finding the "best" path through the automaton

Recap: Probability Theory I

Throw a dice three times. How probable is it to get at least one Six?

- We have a finite Sample Space Ω : A set of elementary outcomes, e.g., \{One, Two, Three, Four, Five, Six\}
- An event A is a subset of the sample space, e.g., "the outcome is less than Four" \{One, Two, Three $\}$
- A probability measure P is a function from events (i.e., elements of $\mathcal{P}(\Omega)$) to the set of real numbers in $[0,1]$ with the following properties:
- $0 \leq P(A) \leq 1$ for each event $A \subseteq \Omega$
> $P(\Omega)=1$
> $A \cap B=\emptyset \Rightarrow P(A \cup B)=P(A)+(B) \quad$ (Additivity)

Recap: Probability Theory II

- Two events are independent, $\Leftrightarrow P(A \cap B)=P(A) \cdot P(B)$
- The probability for A if we know that B has occurred is called conditional probability $P(A \mid B)$
$>P(A \mid B)=\frac{P(A \cap B)}{P(B)}$: the updated probability if given B has occurred
> $P(A)$ is often called prior, $P(A \mid B)$ posterior probability (knowing B)
- if A and B are independent:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) \cdot P(B)}{P(B)}=P(A)
$$

Recap: Probability Theory III

- Bayes Rule: $P(A \mid B)=\frac{P(A) \cdot P(B \mid A)}{P(B)}$
- Useful if $P(B \mid A)$ is easier to determine than $P(A \mid B)$
- Bayes Decomposition:

$$
\begin{aligned}
& P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right) \\
&= P\left(A_{n} \mid A_{1} \cap A_{2} \cap \ldots \cap A_{n-1}\right) \cdot P\left(A_{1} \cap \ldots \cap A_{n-1}\right) \\
&= P\left(A_{n} \mid A_{1} \cap \ldots \cap A_{n-1}\right) \cdot P\left(A_{n-1} \mid A_{1} \cap \ldots \cap A_{n-2}\right) . \\
& P\left(A_{1} \cap \ldots \cap A_{n-2}\right) \\
& \vdots \\
&= \prod_{i=1}^{n} P\left(A_{i} \mid A_{1} \cap \ldots \cap A_{i-1}\right)
\end{aligned}
$$

Stochastic Processes

- A stochastic process is a sequence $X_{1}, X_{2}, \ldots X_{n}$ of elementary outcomes of Ω
- A stochastic process is said to be in state X_{t} at time t
- A Markov Chain is a special stochastic process consisting of:
- A finite set of states $\mathcal{Q}=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$
- A $n \times n$ transition matrix \mathbf{P} specifying the probability of changing from state p to q
- A vector v of initial state probabilities
- Markov property: the probability of being in the current state, given all former states, depends only on the previous state: $P\left(q_{t} \mid q_{1}, \ldots, q_{t-1}\right)=P\left(q_{t} \mid q_{t-1}\right)$

(Hidden) Markov Models

- Attribute each state in a Markov chain with a finite set of signals $\Sigma=\sigma_{1}, \ldots, \sigma_{m}$
- After each transition, a symbol from Σ is emitted with some probability
- There is a $n \times m$ signal matrix $\mathbf{A}=\left[a_{i j}\right]$, which contains the probabilities $p\left(s=\sigma_{i} \mid q=q_{j}\right)$
- Markov models contain a second Markov assumption: the probability of the emitted signal only depends on the current state
- If only the emissions are observable, but not the sequence of states, the model is called Hidden Markov Model (HMM)

Markov Models II
Example: $\mathcal{Q}=\left\{q_{1}, q_{2}\right\}$ and $\Sigma=\{a, c, d\}$
$P=\left[\begin{array}{ll}0.2 & 0.8 \\ 0.5 & 0.5\end{array}\right] \quad A=\left[\begin{array}{lll}0.4 & 0.6 & 0.0 \\ 0.0 & 0.4 & 0.6\end{array}\right] \quad v=\left[\begin{array}{ll}1.0 & 0.0\end{array}\right]$

Probability for emitting c in the second step?

Markov Models III

- What is the probability of emitting σ_{j} at time t while being in state q_{i} ?
- Two steps:
- What is the probability of emitting σ_{j} at time t while being in state q_{i} ?
- Two steps:

1. Probability of being in state $q_{i_{t}}$ at time t

Markov Models III

- What is the probability of emitting σ_{j} at time t while being in state q_{i} ?
- Two steps:

1. Probability of being in state $q_{i_{t}}$ at time t
\times
2. Probability of emitting σ_{j} when being in state $q_{i_{t}}$ (remember Markov-assumption no. 2)

Markov Models III

- What is the probability of emitting σ_{j} at time t while being in state q_{i} ?
- Two steps:

1. Probability of being in state $q_{i_{t}}$ at time t
\times
2. Probability of emitting σ_{j} when being in state $q_{i_{t}}$
(remember Markov-assumption no. 2)
$\rightarrow p^{t}\left(q_{i}, \sigma_{j}\right)=p^{t}\left(q_{i}\right) \cdot p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right)$

Markov Models III

- What is the probability of emitting σ_{j} at time t while being in state q_{i} ?
- Two steps:

1. Probability of being in state $q_{i_{t}}$ at time t
\times
2. Probability of emitting σ_{j} when being in state $q_{i_{t}}$ (remember Markov-assumption no. 2)
$\rightarrow p^{t}\left(q_{i}, \sigma_{j}\right)=p^{t}\left(q_{i}\right) \cdot p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right)$

- 2. is easy: $p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right)=\mathbf{A}\left[\sigma_{j}, q_{i}\right]$

Markov Models III

- What is the probability of emitting σ_{j} at time t while being in state q_{i} ?
- Two steps:

1. Probability of being in state $q_{i_{t}}$ at time t
\times
2. Probability of emitting σ_{j} when being in state $q_{i_{t}}$ (remember Markov-assumption no. 2)
$\rightarrow p^{t}\left(q_{i}, \sigma_{j}\right)=p^{t}\left(q_{i}\right) \cdot p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right)$

- 2. is easy: $p\left(s_{t}=\sigma_{j} \mid q_{i t}=q_{i}\right)=\mathbf{A}\left[\sigma_{j}, q_{i}\right]$

Let's look at step 1: what is $p^{t}\left(q_{i}\right)$?

Markov Models IV

- Probability $p^{t}\left(q_{i}\right)$ of being in state q_{i} at time t

Markov Models IV

- Probability $p^{t}\left(q_{i}\right)$ of being in state q_{i} at time t
- $p^{t}\left(q_{i}\right)$ is the i th element of vector vP^{t-1} Why?
- time zero: $p^{0}\left(q_{t_{0}}=q_{i}\right)=\mathbf{v}\left[q_{i}\right]$

Markov Models IV

- Probability $p^{t}\left(q_{i}\right)$ of being in state q_{i} at time t
- $p^{t}\left(q_{i}\right)$ is the i th element of vector vP^{t-1} Why?
- time zero: $p^{0}\left(q_{t_{0}}=q_{i}\right)=\mathbf{v}\left[q_{i}\right]$
- Probability of being in $q_{t_{1}}$ at time one: $p^{1}\left(q_{*}\right)=\mathbf{v P} \rightarrow$

$$
p^{1}\left(q_{t_{1}}\right)=\sum_{i=0}^{n} \underbrace{p^{0}\left(q_{t_{0}}=q_{i}\right)}_{\mathbf{v}\left[q_{t_{0}}\right]} \cdot \mathbf{P}\left[q_{i}, q_{t_{1}}\right]=\mathbf{v} \mathbf{P}\left[*, q_{t_{1}}\right]
$$

Markov Models IV

- Probability $p^{t}\left(q_{i}\right)$ of being in state q_{i} at time t
- $p^{t}\left(q_{i}\right)$ is the i th element of vector vP^{t-1} Why?
- time zero: $p^{0}\left(q_{t_{0}}=q_{i}\right)=\mathbf{v}\left[q_{i}\right]$
- Probability of being in $q_{t_{1}}$ at time one: $p^{1}\left(q_{*}\right)=\mathbf{v P} \rightarrow$

$$
p^{1}\left(q_{t_{1}}\right)=\sum_{i=0}^{n} \underbrace{p^{0}\left(q_{t_{0}}=q_{i}\right)}_{\mathbf{v}\left[q_{t_{0}}\right]} \cdot \mathbf{P}\left[q_{i}, q_{t_{1}}\right]=\mathbf{v P}\left[*, q_{t_{1}}\right]
$$

- $q_{t_{2}}$ at time two: $p^{2}\left(q_{*}\right)=\mathbf{v P P}$ etc.

$$
p^{2}\left(q_{t_{2}}\right)=\sum_{i=0}^{n} p^{1}\left(q_{t_{1}}=q_{i}\right) \cdot \mathbf{P}\left[q_{i}, q_{t_{2}}\right]=\mathbf{v P} \mathbf{P}\left[*, q_{t_{2}}\right]
$$

Markov Models V

- Put it together:

$$
\begin{aligned}
p^{t}\left(q_{i}, \sigma_{j}\right) & =p^{t}\left(q_{i}\right) \cdot p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right) \\
& =\mathbf{v P}^{t-1}\left[q_{i}\right] \cdot \mathbf{A}\left[\sigma_{j}, q_{i}\right]
\end{aligned}
$$

Markov Models V

- Put it together:

$$
\begin{aligned}
p^{t}\left(q_{i}, \sigma_{j}\right) & =p^{t}\left(q_{i}\right) \cdot p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right) \\
& =\mathbf{v} \mathbf{P}^{t-1}\left[q_{i}\right] \cdot \mathbf{A}\left[\sigma_{j}, q_{i}\right]
\end{aligned}
$$

- Sum over all states to get the probability of emitting σ_{j} at time t

$$
p^{t}\left(\sigma_{j}\right)=\sum_{i=0}^{n} p^{t}\left(q_{i}\right) \cdot p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right)
$$

Markov Models V

- Put it together:

$$
\begin{aligned}
p^{t}\left(q_{i}, \sigma_{j}\right) & =p^{t}\left(q_{i}\right) \cdot p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right) \\
& =\mathbf{v} \mathbf{P}^{t-1}\left[q_{i}\right] \cdot \mathbf{A}\left[\sigma_{j}, q_{i}\right]
\end{aligned}
$$

- Sum over all states to get the probability of emitting σ_{j} at time t

$$
p^{t}\left(\sigma_{j}\right)=\sum_{i=0}^{n} p^{t}\left(q_{i}\right) \cdot p\left(s_{t}=\sigma_{j} \mid q_{i_{t}}=q_{i}\right)
$$

- Get the probability for all symbols:

$$
\left[p^{t}\left(\sigma_{1}\right), \ldots, p^{t}\left(\sigma_{m}\right)\right]=\mathbf{v P}^{t-1} \mathbf{A}
$$

Hidden Markov Models

- We have a Markov model and a known sequence of emitted signals $\mathbf{S}=\sigma_{i_{1}} \ldots \sigma_{i_{T}}$, but we can not observe the sequence of states.

Hidden Markov Models

- We have a Markov model and a known sequence of emitted signals $\mathbf{S}=\sigma_{i_{1}} \ldots \sigma_{i_{T}}$, but we can not observe the sequence of states.
\rightarrow the Markov model is a black box, therefore it is called hidden

Hidden Markov Models

- We have a Markov model and a known sequence of emitted signals $\mathbf{S}=\sigma_{i_{1}} \ldots \sigma_{i_{T}}$, but we can not observe the sequence of states.
\rightarrow the Markov model is a black box, therefore it is called hidden
- To guess the sequence of states, we are looking for the sequence Q with the maximal probability, given S :

$$
\max _{\mathbf{Q}} P(\mathbf{Q} \mid \mathbf{S})
$$

Hidden Markov Models

- We have a Markov model and a known sequence of emitted signals $\mathbf{S}=\sigma_{i_{1}} \ldots \sigma_{i_{T}}$, but we can not observe the sequence of states.
\rightarrow the Markov model is a black box, therefore it is called hidden
- To guess the sequence of states, we are looking for the sequence Q with the maximal probability, given S :

$$
\max _{\mathbf{Q}} P(\mathbf{Q} \mid \mathbf{S})
$$

- Bayes inversion: $P(\mathbf{Q} \mid \mathbf{S})=\frac{P(\mathbf{S} \mid \mathbf{Q}) \cdot P(\mathbf{Q})}{P(\mathbf{S}) \longleftarrow}$ independent of \mathbf{Q}
- Task: find the most probable sequence of tags for a given sequence of words

POS-Tagging with HMMs

- Task: find the most probable sequence of tags for a given sequence of words
- Use an HMM:
> the words are the emitted signals
- the tags are the (wanted) state sequence

POS-Tagging with HMMs

- Task: find the most probable sequence of tags for a given sequence of words
- Use an HMM:
- the words are the emitted signals
- the tags are the (wanted) state sequence
- Suppose we have v, P, and A, how do we compute $\max _{\mathbf{Q}} P(\mathbf{S} \mid \mathbf{Q}) \cdot P(\mathbf{Q})$ efficiently?
- Define $\theta_{t}(i)$: maximal probability to be in state q_{i} at time t : $\theta_{t}(i)=\max \left\{P\left(\sigma_{i_{1}} \ldots \sigma_{i_{t}} \mid q_{j_{0}} \ldots q_{j_{t}}\right\}\right.$ with $j_{t}=i$

POS-Tagging with HMMs

- Task: find the most probable sequence of tags for a given sequence of words
- Use an HMM:
- the words are the emitted signals
- the tags are the (wanted) state sequence
- Suppose we have v, P, and A, how do we compute $\max _{\mathbf{Q}} P(\mathbf{S} \mid \mathbf{Q}) \cdot P(\mathbf{Q})$ efficiently?
- Define $\theta_{t}(i)$: maximal probability to be in state q_{i} at time t : $\theta_{t}(i)=\max \left\{P\left(\sigma_{i_{1}} \ldots \sigma_{i_{t}} \mid q_{j_{0}} \ldots q_{j_{t}}\right\}\right.$ with $j_{t}=i$
- Brute force method would be exponential in t

POS-Tagging with HMMs

- Task: find the most probable sequence of tags for a given sequence of words
- Use an HMM:
- the words are the emitted signals
- the tags are the (wanted) state sequence
- Suppose we have v, P, and A, how do we compute $\max _{\mathbf{Q}} P(\mathbf{S} \mid \mathbf{Q}) \cdot P(\mathbf{Q})$ efficiently?
- Define $\theta_{t}(i)$: maximal probability to be in state q_{i} at time t : $\theta_{t}(i)=\max \left\{P\left(\sigma_{i_{1}} \ldots \sigma_{i_{t}} \mid q_{j_{0}} \ldots q_{j_{t}}\right)\right\}$ with $j_{t}=i$
- Brute force method would be exponential in t
- Idea: compute the $\theta_{t}(i)$ recursively using the $\theta_{t-1}(j)$

Viterbi-Algorithm

- One step needs $O\left(n^{2}\right)$ operations (for all states)

- One step needs $O\left(n^{2}\right)$ operations (for all states)
- Overall complexity for T steps is then $O\left(T n^{2}\right)$

Viterbi-Algorithm

- Initialization: for $j=1, \ldots, n$: $\theta_{1}(j)=\underbrace{P\left(q_{j_{1}}=q_{j}\right)}_{=\mathrm{vP}[j]} \times \mathbf{A}\left[j, \sigma_{i_{1}}\right]$
- Recursion: for $t=2, \ldots, T$
for $j=1, \ldots, n$

$$
\begin{aligned}
& \theta_{t}(j)=\max _{i}\left(\theta_{t-1}(i) \cdot \mathbf{P}[i, j]\right) \cdot \mathbf{A}\left[j, i_{t}\right] \\
& \psi_{t}(j)=\operatorname{argmax}_{i}\left(\theta_{t-1}(i) \cdot \mathbf{P}[i, j]\right)
\end{aligned}
$$

- $\psi_{t}(j)$ saves the predecessor state for backchaining
- Termination: $\hat{q}_{T}=\operatorname{argmax}_{i}\left(\theta_{T}(i)\right)$
- Compute the optimal chain backwards: for $t=T-1, \ldots, 1: \hat{q}_{t}=\psi_{t+1}\left(\hat{q}_{t+1}\right)$
- this is an example of a dynamic programming algorithm: store previously computed results for structured re-use

Viterbi: Trellis Construction

- The trellis is build layer by layer
- Each layer represents the states connected with the emission of one word
- A layer contains only states for tags found in the lexicon
- One state represents a sequence of two tags: the current and previous tag
- Store these tags in each node (a dummy tag for the first layer) with the max probability and back pointer

Viterbi for POS Tagging

- For the tagging application, we want to use trigrams, i.e., we use the current tag and two previous tags
- Using trigrams means using a second order Markov model, i.e., each state encodes a sequence of two tags
- With around 60 tags, this means 3600 states per layer!
- But: the emission probability is often zero, and so many state probabilities
- Building the complete trellis is therefore neither feasible nor effective
\rightarrow Build the graph on the fly and consider only tags associated with the sentence words

Viterbi: Trellis Example

\#B D	Der	Mann		mag		Sc	varz	\#E
\#B A_{11} ART	A_{21}	NE	A_{31}	VMF	A_{41}	NE	A_{51}	\# E \| A_{61}
PDS	A_{22}	NN	A_{32}	VVF	A_{42}	NN	A_{52}	
PRL	A_{23}							

Viterbi: Trellis Example

\#B	Der	Mann	mag	Schwarz	\#E
\#B $\mid A_{11} \mathrm{ART}$	A_{21}	$\mathrm{NE} \mid A_{31}$	VMF	A_{41}	$\mathrm{NE} \mid A_{51}$
PDS	A_{22}	NN	A_{32}	VVF	\#E $\mid A_{61}$
	A_{42}	$\mathrm{NN} \mid A_{52}$			

Viterbi: Trellis Example

\#B D	Mann		mag		Sch	warz	\#E
\#B $\mid A_{11}$ ART	A_{21} NE	A_{31}			NE	A_{51}	\# $\mathrm{E} \mid A_{61}$
PDS	A_{22} NN	A_{32}	VVF	A_{42}	NN	A_{52}	
PRL	A_{23}						

Viterbi: Trellis Example

Viterbi: Trellis + Probabilities

proc Build layer t of the trellis $\equiv l_{t}=0 \quad / /$ number of states in layer t
for every $\operatorname{tag} T_{k}^{t}$ associated with word t do new state $\left(T_{k}^{t}, t, 1\right)$

$$
\underline{\text { for }} j=2 \ldots l_{t-1} \text { do } \quad / / \text { for all states in layer } t-1
$$

$$
\text { if } \mathrm{T}_{j}^{t-1} \neq \mathrm{T}_{j-1}^{t-1} \text { then } \quad / / \text { one of the tags differs }
$$

$$
\theta_{t}\left(l_{t}\right)=\theta_{t}\left(l_{t}\right) \cdot A_{t k} ; \text { new_state }\left(T_{k}^{t}, t, j\right)
$$

elsif $\theta_{t}\left(l_{t}\right)<\theta_{t-1}(j) \cdot P\left(T_{k}^{t} \mid \mathbf{T O}_{j}^{t-1} \mathbf{T} 1_{j}^{t-1}\right)$ then
// update probability and backpointer

$$
\theta_{t}\left(l_{t}\right)=\theta_{t-1}(j) \cdot P\left(T_{k}^{t} \mid \mathbf{T 0}_{j}^{t-1} \mathbf{T} 1_{j}^{t-1}\right) ; \psi_{t}\left(l_{t}\right)=j
$$

proc new_state $(T, t, j) \equiv$
$l_{t}=l_{t}+1 ; \quad / /$ increase the number of states
$\mathrm{T}_{l_{t}}^{t}=\left[\mathrm{T} 1_{j}^{t-1}, T\right] ; \quad / /$ set tags
// initial prob and backpointer
$\theta_{t}(l)=\theta_{t-1}(j) \cdot P\left(T_{k}^{t} \mid \mathrm{To}_{j}^{t-1} \mathrm{~T} 1_{j}^{t-1}\right) ; \psi_{t}(l)=j$

Acquiring the Model

- Two main possibilities:

1. Unsupervised training: Lexicon + (optional) Bias + EM-Training
2. Supervised training: Requires a tagged corpus

- Variant 1 is too complicated for this course, visit Prof. Klakow's language modeling, if you're interested
- Variant 2: the model parameters v, P and A are basically relative frequencies.
- For P, we use Unigrams: $P\left(t_{j}\right)$, Bigrams: $P\left(t_{j} \mid t_{j-1}\right)$ and Trigrams: $P\left(t_{j} \mid t_{j-2} t_{j-1}\right)$, i.e., a second order model

Acquiring the Model II

- Formulae for the model parameters

Unigrams: $\hat{P}\left(t_{j}\right)=\frac{f\left(t_{j}\right)}{N}$
Bigrams: $\hat{P}\left(t_{j} \mid t_{j-1}\right)=\frac{f\left(t_{j-1} t_{j}\right)}{f\left(t_{j-1}\right)}$
Trigrams: $\hat{P}\left(t_{j} \mid t_{j-2} t_{j-1}\right)=\frac{f\left(t_{j-2}-t_{j-1} t_{j}\right)}{f\left(t_{j-2} t_{j-1}\right)}$
Lexical: $\hat{P}\left(w_{k} \mid t_{j}\right)=\frac{f\left(w_{k}, t_{j}\right)}{f\left(t_{j}\right)}=\mathbf{A}[j, k]$

- $f\left(t_{j-1} t_{j}\right)$ is the number of times the tag sequence $t_{j-1} t_{j}$ occurs in the corpus, N the total number of tags.
- If the denominator is zero, define the probability to be zero

Using the NEGRA Corpus

- Get the file pos-corpus.txt from the course homepage
- The initial wordtag section contains all used POS tags
- After the tables follow the sentences, each starting with \#BOS and ending with \#EOS. Treat these markers as words, too!
- Every line in a sentence contains the word in the first column and the attached tag in the second column
- Compute n-gram and lexical probabilities from this file
- The v vector will only have probability 1 for emitting \#BOS in the first place
- Transform all words to lower case (reduces model size, but also quality)

Smoothing the Model

- What if $f(\ldots)$ is zero for some configuration?

Smoothing the Model

- What if $f(\ldots)$ is zero for some configuration?
- The lattice probability drops to zero although it might only be missing in the training data

Smoothing the Model

- What if $f(\ldots)$ is zero for some configuration?
- The lattice probability drops to zero although it might only be missing in the training data
- Unseen n-grams require backing off to some other information source, e.g., the $n-1$-gram

Smoothing the Model

- What if $f(\ldots)$ is zero for some configuration?
- The lattice probability drops to zero although it might only be missing in the training data
- Unseen n-grams require backing off to some other information source, e.g., the $n-1$-gram
- back-off can be combined with model smoothing

Smoothing the Model

- What if $f(\ldots)$ is zero for some configuration?
- The lattice probability drops to zero although it might only be missing in the training data
- Unseen n-grams require backing off to some other information source, e.g., the $n-1$-gram
- back-off can be combined with model smoothing
- TnT's method of smoothing: linear interpolation

$$
P\left(t_{3} \mid t_{1} t_{2}\right)=\lambda_{1} \hat{P}\left(t_{3}\right)+\lambda_{2} \hat{P}\left(t_{3} \mid t_{2}\right)+\lambda_{3} \hat{P}\left(t_{3} \mid t_{1} t_{2}\right) \quad \lambda_{i} \geq 0
$$

Smoothing the Model

- What if $f(\ldots)$ is zero for some configuration?
- The lattice probability drops to zero although it might only be missing in the training data
- Unseen n-grams require backing off to some other information source, e.g., the $n-1$-gram
- back-off can be combined with model smoothing
- TnT's method of smoothing: linear interpolation

$$
P\left(t_{3} \mid t_{1} t_{2}\right)=\lambda_{1} \hat{P}\left(t_{3}\right)+\lambda_{2} \hat{P}\left(t_{3} \mid t_{2}\right)+\lambda_{3} \hat{P}\left(t_{3} \mid t_{1} t_{2}\right) \quad \lambda_{i} \geq 0
$$

- Constraint $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$ turns P into a probability distribution

Smoothing the Model

- What if $f(\ldots)$ is zero for some configuration?
- The lattice probability drops to zero although it might only be missing in the training data
- Unseen n-grams require backing off to some other information source, e.g., the $n-1$-gram
- back-off can be combined with model smoothing
- TnT's method of smoothing: linear interpolation

$$
P\left(t_{3} \mid t_{1} t_{2}\right)=\lambda_{1} \hat{P}\left(t_{3}\right)+\lambda_{2} \hat{P}\left(t_{3} \mid t_{2}\right)+\lambda_{3} \hat{P}\left(t_{3} \mid t_{1} t_{2}\right) \quad \lambda_{i} \geq 0
$$

- Constraint $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$ turns P into a probability distribution
- Use deleted interpolation to acquire the λ_{i}

Smoothing Algorithm

set $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$
for each trigram $t_{1} t_{2} t_{3}$ with $f\left(t_{1} t_{2} t_{3}\right)>0$ depending on which of the next three is maximal
case $\frac{f\left(t_{1} t_{2} t_{3}\right)-1}{f\left(t_{1} t_{2}\right)-1}$: increment λ_{3} by $f\left(t_{1} t_{2} t_{3}\right)$
case $\frac{f\left(t_{2} t_{3}\right)-1}{f\left(t_{2}\right)-1}$: increment λ_{2} by $f\left(t_{1} t_{2} t_{3}\right)$
case $\frac{f\left(t_{3}\right)-1}{N-1}$: increment λ_{1} by $f\left(t_{1} t_{2} t_{3}\right)$
normalize $\lambda_{1}, \lambda_{2}, \lambda_{3}$: $\quad \lambda_{i}=\frac{\lambda_{i}}{\sum_{j=1}^{3} \lambda_{j}}$

Unknown Words

- Words not in the training data are similar to unseen n-grams
- TnT uses a suffix heuristic to estimate the lexicon probabilities for unknown words from the word endings
- A simpler approach: average over the frequencies of infrequently occuring words $W^{\prime}=\{w: f(w)<c\}$

$$
\tilde{f}(<\text { unk }>, t)=\frac{\sum_{w^{\prime} \in W^{\prime}} f\left(w^{\prime}, t\right)}{\sum_{w^{\prime} \in W^{\prime}} f\left(w^{\prime}\right)} \Rightarrow \tilde{P}(<\text { unk }>\mid t)=\tilde{f}(\text { <unk }>, t) / f(t)
$$

- To renormalize, we have to solve the equations

$$
1=\lambda_{t}\left(\sum_{w \in W} \hat{P}(w \mid t)+\tilde{P}(\text { <unk }>, t)\right) \Rightarrow \lambda_{t}=\frac{f(t)}{\tilde{f}(<\text { unk }>, t)+\sum_{w \in W} f(w, t)}
$$

