
Java II
Probabilistic Part-of-Speech Tagging

Bernd Kiefer

{Bernd.Kiefer}@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

Probabilistic POS Tagging – p.1/26

Part-of-Speech Tagging I

Task: given a sequence of input tokens and a tag set (a set
of symbols), assign each word the most appropriate tag

Example:

Sie protestierten gegen den Abbau von Arbeitsplätzen .

PPER VVFIN APPR ART NN APPR NN $.

Problems:

Probabilistic POS Tagging – p.2/26

Part-of-Speech Tagging I

Task: given a sequence of input tokens and a tag set (a set
of symbols), assign each word the most appropriate tag

Example:

Sie protestierten gegen den Abbau von Arbeitsplätzen .

PPER VVFIN APPR ART NN APPR NN $.

Problems:
Fix tokenization and tag set

Probabilistic POS Tagging – p.2/26

Part-of-Speech Tagging I

Task: given a sequence of input tokens and a tag set (a set
of symbols), assign each word the most appropriate tag

Example:

Sie protestierten gegen den Abbau von Arbeitsplätzen .

PPER VVFIN APPR ART NN APPR NN $.

Problems:
Fix tokenization and tag set
Multiple possible tags for one word e.g,
protestieren: VVFIN, VVINF der: ART, PDS, PRELS

Probabilistic POS Tagging – p.2/26

Part-of-Speech Tagging II

Rule based tagging: Write rules manually (mostly regular
expressions)

Probabilistic POS Tagging – p.3/26

Part-of-Speech Tagging II

Rule based tagging: Write rules manually (mostly regular
expressions)

Statistical tagging: Get the most probable sequence of
tags, given the input sequence as evidence

Probabilistic POS Tagging – p.3/26

Part-of-Speech Tagging II

Rule based tagging: Write rules manually (mostly regular
expressions)

Statistical tagging: Get the most probable sequence of
tags, given the input sequence as evidence

Transformation based tagging: a machine learning method
trying to combine the previous ones

Probabilistic POS Tagging – p.3/26

Part-of-Speech Tagging II

Rule based tagging: Write rules manually (mostly regular
expressions)

Statistical tagging: Get the most probable sequence of
tags, given the input sequence as evidence

Transformation based tagging: a machine learning method
trying to combine the previous ones

Statistical tagging needs a corpus of sentences annotated
with the correct tags

Probabilistic POS Tagging – p.3/26

Part-of-Speech Tagging II

Rule based tagging: Write rules manually (mostly regular
expressions)

Statistical tagging: Get the most probable sequence of
tags, given the input sequence as evidence

Transformation based tagging: a machine learning method
trying to combine the previous ones

Statistical tagging needs a corpus of sentences annotated
with the correct tags

With this corpus, a special kind of weighted automaton,
called hidden Markov model, is produced

Probabilistic POS Tagging – p.3/26

Part-of-Speech Tagging II

Rule based tagging: Write rules manually (mostly regular
expressions)

Statistical tagging: Get the most probable sequence of
tags, given the input sequence as evidence

Transformation based tagging: a machine learning method
trying to combine the previous ones

Statistical tagging needs a corpus of sentences annotated
with the correct tags

With this corpus, a special kind of weighted automaton,
called hidden Markov model, is produced

Finding the most probable assignment boils down to
finding the “best” path through the automaton

Probabilistic POS Tagging – p.3/26

Recap: Probability Theory I

Throw a dice three times. How probable is it to get at least one
Six?

We have a finite Sample Space Ω: A set of elementary
outcomes, e.g., {One,Two,Three,Four,Five,Six}

An event A is a subset of the sample space, e.g., “the
outcome is less than Four” {One,Two,Three}

A probability measure P is a function from events (i.e.,
elements of P(Ω)) to the set of real numbers in [0, 1] with
the following properties:

0 ≤ P (A) ≤ 1 for each event A ⊆ Ω

P (Ω) = 1

A ∩ B = ∅ ⇒ P (A ∪B) = P (A) + (B) (Additivity)

Probabilistic POS Tagging – p.4/26

Recap: Probability Theory II

Two events are independent, ⇔ P (A ∩ B) = P (A) · P (B)

The probability for A if we know that B has occurred is
called conditional probability P (A|B)

P (A|B) = P (A∩B)
P (B) : the updated probability if given B has

occurred
P (A) is often called prior, P (A|B) posterior probability
(knowing B)
if A and B are independent:
P (A|B) = P (A∩B)

P (B) = P (A)·P (B)
P (B) = P (A)

Probabilistic POS Tagging – p.5/26

Recap: Probability Theory III

Bayes Rule: P (A|B) =
P (A) · P (B|A)

P (B)

Useful if P (B|A) is easier to determine than P (A|B)

Bayes Decomposition:

P (A1 ∩A2 ∩ . . . ∩An)

= P (An|A1 ∩A2 ∩ . . . ∩An−1) · P (A1 ∩ . . . ∩ An−1)

= P (An|A1 ∩ . . . ∩An−1) · P (An−1|A1 ∩ . . . ∩ An−2) ·

P (A1 ∩ . . . ∩ An−2)
...

=
∏n

i=1
P (Ai|A1 ∩ . . . ∩Ai−1)

Probabilistic POS Tagging – p.6/26

Stochastic Processes

A stochastic process is a sequence X1, X2, . . . Xn of
elementary outcomes of Ω

A stochastic process is said to be in state Xt at time t

A Markov Chain is a special stochastic process consisting
of:

A finite set of states Q = {q1, q2, . . . , qn}

A n× n transition matrix P specifying the probability of
changing from state p to q

A vector v of initial state probabilities

Markov property: the probability of being in the current
state, given all former states, depends only on the previous
state: P (qt|q1, . . . , qt−1) = P (qt|qt−1)

Probabilistic POS Tagging – p.7/26

(Hidden) Markov Models

Attribute each state in a Markov chain with a finite set of
signals Σ = σ1, . . . , σm

After each transition, a symbol from Σ is emitted with some
probability

There is a n×m signal matrix A = [aij], which contains the
probabilities p(s = σi|q = qj)

Markov models contain a second Markov assumption: the
probability of the emitted signal only depends on the
current state

If only the emissions are observable, but not the sequence
of states, the model is called Hidden Markov Model (HMM)

Probabilistic POS Tagging – p.8/26

Markov Models II

Example: Q = {q1, q2} and Σ = {a, c, d}

P =

[

0.2 0.8

0.5 0.5

]

A =

[

0.4 0.6 0.0

0.0 0.4 0.6

]

v =
[

1.0 0.0
]

q0 q1 q2

a c c d

1.0 0.8

0.5

0.4 0.6 0.4 0.6

0.2 0.5

Probability for emitting c in the second step?

Probabilistic POS Tagging – p.9/26

Markov Models III

What is the probability of emitting σj at time t while being
in state qi?

Two steps:

Probabilistic POS Tagging – p.10/26

Markov Models III

What is the probability of emitting σj at time t while being
in state qi?

Two steps:
1. Probability of being in state qit at time t

Probabilistic POS Tagging – p.10/26

Markov Models III

What is the probability of emitting σj at time t while being
in state qi?

Two steps:
1. Probability of being in state qit at time t

×

2. Probability of emitting σj when being in state qit
(remember Markov-assumption no. 2)

Probabilistic POS Tagging – p.10/26

Markov Models III

What is the probability of emitting σj at time t while being
in state qi?

Two steps:
1. Probability of being in state qit at time t

×

2. Probability of emitting σj when being in state qit
(remember Markov-assumption no. 2)

→ pt(qi, σj) = pt(qi) · p(st = σj|qit = qi)

Probabilistic POS Tagging – p.10/26

Markov Models III

What is the probability of emitting σj at time t while being
in state qi?

Two steps:
1. Probability of being in state qit at time t

×

2. Probability of emitting σj when being in state qit
(remember Markov-assumption no. 2)

→ pt(qi, σj) = pt(qi) · p(st = σj|qit = qi)

2. is easy: p(st = σj |qit = qi) = A[σj , qi]

Probabilistic POS Tagging – p.10/26

Markov Models III

What is the probability of emitting σj at time t while being
in state qi?

Two steps:
1. Probability of being in state qit at time t

×

2. Probability of emitting σj when being in state qit
(remember Markov-assumption no. 2)

→ pt(qi, σj) = pt(qi) · p(st = σj|qit = qi)

2. is easy: p(st = σj |qit = qi) = A[σj , qi]

Let’s look at step 1: what is pt(qi)?

Probabilistic POS Tagging – p.10/26

Markov Models IV

Probability pt(qi) of being in state qi at time t

Probabilistic POS Tagging – p.11/26

Markov Models IV

Probability pt(qi) of being in state qi at time t

pt(qi) is the i th element of vector vPt−1 Why?

time zero: p0(qt0 = qi) = v[qi]

Probabilistic POS Tagging – p.11/26

Markov Models IV

Probability pt(qi) of being in state qi at time t

pt(qi) is the i th element of vector vPt−1 Why?

time zero: p0(qt0 = qi) = v[qi]

Probability of being in qt1 at time one: p1(q∗) = vP →

p1(qt1) =
n∑

i=0

p0(qt0 = qi)
︸ ︷︷ ︸

v[qt0
]

·P[qi, qt1] = vP[∗, qt1]

Probabilistic POS Tagging – p.11/26

Markov Models IV

Probability pt(qi) of being in state qi at time t

pt(qi) is the i th element of vector vPt−1 Why?

time zero: p0(qt0 = qi) = v[qi]

Probability of being in qt1 at time one: p1(q∗) = vP →

p1(qt1) =
n∑

i=0

p0(qt0 = qi)
︸ ︷︷ ︸

v[qt0
]

·P[qi, qt1] = vP[∗, qt1]

qt2 at time two: p2(q∗) = vPP etc.

p2(qt2) =

n∑

i=0

p1(qt1 = qi) · P[qi, qt2] = vPP[∗, qt2]

Probabilistic POS Tagging – p.11/26

Markov Models V

Put it together:

pt(qi, σj) = pt(qi) · p(st = σj |qit = qi)

= vPt−1[qi] · A[σj , qi]

Probabilistic POS Tagging – p.12/26

Markov Models V

Put it together:

pt(qi, σj) = pt(qi) · p(st = σj |qit = qi)

= vPt−1[qi] · A[σj , qi]

Sum over all states to get the probability of emitting σj at
time t

pt(σj) =

n∑

i=0

pt(qi) · p(st = σj |qit = qi)

Probabilistic POS Tagging – p.12/26

Markov Models V

Put it together:

pt(qi, σj) = pt(qi) · p(st = σj |qit = qi)

= vPt−1[qi] · A[σj , qi]

Sum over all states to get the probability of emitting σj at
time t

pt(σj) =

n∑

i=0

pt(qi) · p(st = σj |qit = qi)

Get the probability for all symbols:

[pt(σ1), . . . , p
t(σm)] = vPt−1A

Probabilistic POS Tagging – p.12/26

Hidden Markov Models

We have a Markov model and a known sequence of
emitted signals S = σi1 . . . σiT , but we can not observe the
sequence of states.

Probabilistic POS Tagging – p.13/26

Hidden Markov Models

We have a Markov model and a known sequence of
emitted signals S = σi1 . . . σiT , but we can not observe the
sequence of states.

→ the Markov model is a black box, therefore it is called
hidden

Probabilistic POS Tagging – p.13/26

Hidden Markov Models

We have a Markov model and a known sequence of
emitted signals S = σi1 . . . σiT , but we can not observe the
sequence of states.

→ the Markov model is a black box, therefore it is called
hidden

To guess the sequence of states, we are looking for the
sequence Q with the maximal probability, given S:

max
Q

P (Q|S)

Probabilistic POS Tagging – p.13/26

Hidden Markov Models

We have a Markov model and a known sequence of
emitted signals S = σi1 . . . σiT , but we can not observe the
sequence of states.

→ the Markov model is a black box, therefore it is called
hidden

To guess the sequence of states, we are looking for the
sequence Q with the maximal probability, given S:

max
Q

P (Q|S)

Bayes inversion: P (Q|S) =
P (S|Q) · P (Q)

P (S)
independent of Q

Probabilistic POS Tagging – p.13/26

POS-Tagging with HMMs

Task: find the most probable sequence of tags for a given
sequence of words

Probabilistic POS Tagging – p.14/26

POS-Tagging with HMMs

Task: find the most probable sequence of tags for a given
sequence of words

Use an HMM:
the words are the emitted signals
the tags are the (wanted) state sequence

Probabilistic POS Tagging – p.14/26

POS-Tagging with HMMs

Task: find the most probable sequence of tags for a given
sequence of words

Use an HMM:
the words are the emitted signals
the tags are the (wanted) state sequence

Suppose we have v, P, and A, how do we compute
maxQ P (S|Q) · P (Q) efficiently?

Define θt(i): maximal probability to be in state qi at time t:
θt(i) = max{P (σi1 . . . σit|qj0 . . . qjt

)} with jt = i

Probabilistic POS Tagging – p.14/26

POS-Tagging with HMMs

Task: find the most probable sequence of tags for a given
sequence of words

Use an HMM:
the words are the emitted signals
the tags are the (wanted) state sequence

Suppose we have v, P, and A, how do we compute
maxQ P (S|Q) · P (Q) efficiently?

Define θt(i): maximal probability to be in state qi at time t:
θt(i) = max{P (σi1 . . . σit|qj0 . . . qjt

)} with jt = i

Brute force method would be exponential in t

Probabilistic POS Tagging – p.14/26

POS-Tagging with HMMs

Task: find the most probable sequence of tags for a given
sequence of words

Use an HMM:
the words are the emitted signals
the tags are the (wanted) state sequence

Suppose we have v, P, and A, how do we compute
maxQ P (S|Q) · P (Q) efficiently?

Define θt(i): maximal probability to be in state qi at time t:
θt(i) = max{P (σi1 . . . σit|qj0 . . . qjt

)} with jt = i

Brute force method would be exponential in t

Idea: compute the θt(i) recursively using the θt−1(j)

Probabilistic POS Tagging – p.14/26

Viterbi-Algorithm
σit

q1 θt−1(1)

q2 θt−1(2)
...

...
...

qj θt−1(j) max
i

(θt−1(i)·P[i, j])·A[j, it] = θt(j)

...
...

...

qn θt−1(n)

t − 1 t

·A[j, it]

·P[1, j]

·P[2, j]

·P[j, j]

·P[n, j]

Probabilistic POS Tagging – p.15/26

Viterbi-Algorithm
σit

q1 θt−1(1)

q2 θt−1(2)
...

...
...

qj θt−1(j) max
i

(θt−1(i)·P[i, j])·A[j, it] = θt(j)

...
...

...

qn θt−1(n)

t − 1 t

·A[j, it]

·P[1, j]

·P[2, j]

·P[j, j]

·P[n, j]

One step needs O(n2) operations (for all states)

Probabilistic POS Tagging – p.15/26

Viterbi-Algorithm
σit

q1 θt−1(1)

q2 θt−1(2)
...

...
...

qj θt−1(j) max
i

(θt−1(i)·P[i, j])·A[j, it] = θt(j)

...
...

...

qn θt−1(n)

t − 1 t

·A[j, it]

·P[1, j]

·P[2, j]

·P[j, j]

·P[n, j]

One step needs O(n2) operations (for all states)

Overall complexity for T steps is then O(Tn2)

Probabilistic POS Tagging – p.15/26

Viterbi-Algorithm

Initialization: for j = 1, . . . , n: θ1(j) = P (qj1 = qj)
︸ ︷︷ ︸

=vP[j]

×A[j, σi1]

Recursion: for t = 2, . . . , T

for j = 1, . . . , n

θt(j) = maxi(θt−1(i) · P[i, j]) · A[j, it]

ψt(j) = argmaxi(θt−1(i) · P[i, j])

ψt(j) saves the predecessor state for backchaining

Termination: q̂T = argmaxi(θT (i))

Compute the optimal chain backwards:
for t = T − 1, . . . , 1 : q̂t = ψt+1(q̂t+1)

this is an example of a dynamic programming algorithm:
store previously computed results for structured re-use

Probabilistic POS Tagging – p.16/26

Viterbi: Trellis Construction

The trellis is build layer by layer

Each layer represents the states connected with the
emission of one word

A layer contains only states for tags found in the lexicon

One state represents a sequence of two tags: the current
and previous tag

Store these tags in each node (a dummy tag for the first
layer) with the max probability and back pointer

Probabilistic POS Tagging – p.17/26

Viterbi for POS Tagging

For the tagging application, we want to use trigrams, i.e.,
we use the current tag and two previous tags

Using trigrams means using a second order Markov
model, i.e., each state encodes a sequence of two tags

With around 60 tags, this means 3600 states per layer!

But: the emission probability is often zero, and so many
state probabilities

Building the complete trellis is therefore neither feasible
nor effective

→ Build the graph on the fly and consider only tags
associated with the sentence words

Probabilistic POS Tagging – p.18/26

Viterbi: Trellis Example

#B
#B|A11

#B

Der
ART|A21

PDS|A22

PRL|A23

#B ART

#B PDS

#B PRL

Mann
NE|A31

NN|A32

mag
VMF|A41

VVF|A42

Schwarz
NE|A51

NN|A52

#E
#E|A61

Probabilistic POS Tagging – p.19/26

Viterbi: Trellis Example

#B
#B|A11

#B

Der
ART|A21

PDS|A22

PRL|A23

#B ART

#B PDS

#B PRL

Mann
NE|A31

NN|A32

#B ART NE
#B PDS NE
#B PRL NE

mag
VMF|A41

VVF|A42

Schwarz
NE|A51

NN|A52

#E
#E|A61

Probabilistic POS Tagging – p.19/26

Viterbi: Trellis Example

#B
#B|A11

#B

Der
ART|A21

PDS|A22

PRL|A23

#B ART

#B PDS

#B PRL

Mann
NE|A31

NN|A32

#B ART NE
#B PDS NE
#B PRL NE

#B ART NN
#B PDS NN
#B PRL NN

mag
VMF|A41

VVF|A42

Schwarz
NE|A51

NN|A52

#E
#E|A61

Probabilistic POS Tagging – p.19/26

Viterbi: Trellis Example

#B
#B|A11

#B

Der
ART|A21

PDS|A22

PRL|A23

#B ART

#B PDS

#B PRL

Mann
NE|A31

NN|A32

#B ART NE
#B PDS NE
#B PRL NE

#B ART NN
#B PDS NN
#B PRL NN

mag
VMF|A41

VVF|A42

ART NE VMF
PDS NE VMF
PRL NE VMF
ART NN VMF
PDS NN VMF
PRL NN VMF

Schwarz
NE|A51

NN|A52

#E
#E|A61

Probabilistic POS Tagging – p.19/26

Viterbi: Trellis Example

#B
#B|A11

#B

Der
ART|A21

PDS|A22

PRL|A23

#B ART

#B PDS

#B PRL

Mann
NE|A31

NN|A32

#B ART NE
#B PDS NE
#B PRL NE

#B ART NN
#B PDS NN
#B PRL NN

mag
VMF|A41

VVF|A42

ART NE VMF
PDS NE VMF
PRL NE VMF
ART NN VMF
PDS NN VMF
PRL NN VMF

ART NE VVF
PDS NE VVF
PRL NE VVF
ART NN VVF
PDS NN VVF
PRL NN VVF

Schwarz
NE|A51

NN|A52

#E
#E|A61

Probabilistic POS Tagging – p.19/26

Viterbi: Trellis Example

#B
#B|A11

#B

Der
ART|A21

PDS|A22

PRL|A23

#B ART

#B PDS

#B PRL

Mann
NE|A31

NN|A32

#B ART NE
#B PDS NE
#B PRL NE

#B ART NN
#B PDS NN
#B PRL NN

mag
VMF|A41

VVF|A42

ART NE VMF
PDS NE VMF
PRL NE VMF
ART NN VMF
PDS NN VMF
PRL NN VMF

ART NE VVF
PDS NE VVF
PRL NE VVF
ART NN VVF
PDS NN VVF
PRL NN VVF

Schwarz
NE|A51

NN|A52

NE VMF NE
NN VMF NE
NE VVF NE
NN VVF NE

#E
#E|A61

Probabilistic POS Tagging – p.19/26

Viterbi: Trellis Example

#B
#B|A11

#B

Der
ART|A21

PDS|A22

PRL|A23

#B ART

#B PDS

#B PRL

Mann
NE|A31

NN|A32

#B ART NE
#B PDS NE
#B PRL NE

#B ART NN
#B PDS NN
#B PRL NN

mag
VMF|A41

VVF|A42

ART NE VMF
PDS NE VMF
PRL NE VMF
ART NN VMF
PDS NN VMF
PRL NN VMF

ART NE VVF
PDS NE VVF
PRL NE VVF
ART NN VVF
PDS NN VVF
PRL NN VVF

Schwarz
NE|A51

NN|A52

NE VMF NE
NN VMF NE
NE VVF NE
NN VVF NE

NE VMF NN
NN VMF NN
NE VVF NN
NN VVF NN

#E
#E|A61

Probabilistic POS Tagging – p.19/26

Viterbi: Trellis Example

#B
#B|A11

#B

Der
ART|A21

PDS|A22

PRL|A23

#B ART

#B PDS

#B PRL

Mann
NE|A31

NN|A32

#B ART NE
#B PDS NE
#B PRL NE

#B ART NN
#B PDS NN
#B PRL NN

mag
VMF|A41

VVF|A42

ART NE VMF
PDS NE VMF
PRL NE VMF
ART NN VMF
PDS NN VMF
PRL NN VMF

ART NE VVF
PDS NE VVF
PRL NE VVF
ART NN VVF
PDS NN VVF
PRL NN VVF

Schwarz
NE|A51

NN|A52

NE VMF NE
NN VMF NE
NE VVF NE
NN VVF NE

NE VMF NN
NN VMF NN
NE VVF NN
NN VVF NN

#E
#E|A61

VMF NE #E
VVF NE #E

VMF NN #E
VVF NN #E

Probabilistic POS Tagging – p.19/26

Viterbi: Trellis + Probabilities

proc Build layer t of the trellis ≡ lt = 0 // number of states in layer t
for every tag T t

k associated with word t do
new state(T t

k, t, 1)
for j = 2 . . . lt−1 do // for all states in layer t− 1

if Tt−1
j 6= Tt−1

j−1 then // one of the tags differs
θt(lt) = θt(lt) · Atk; new state(T t

k, t, j)
elsif θt(lt) < θt−1(j) · P (T t

k|T0t−1
j T1t−1

j) then
// update probability and backpointer
θt(lt) = θt−1(j) · P (T t

k|T0t−1
j T1t−1

j); ψt(lt) = j

proc new state(T, t, j) ≡
lt = lt + 1; // increase the number of states
Tt

lt
= [T1t−1

j , T]; // set tags
// initial prob and backpointer
θt(l) = θt−1(j) · P (T t

k|T0t−1
j T1t−1

j); ψt(l) = j

Probabilistic POS Tagging – p.20/26

Acquiring the Model

Two main possibilities:
1. Unsupervised training: Lexicon + (optional) Bias +

EM-Training
2. Supervised training: Requires a tagged corpus

Variant 1 is too complicated for this course, visit Prof.
Klakow’s language modeling, if you’re interested

Variant 2: the model parameters v, P and A are basically
relative frequencies.

For P, we use Unigrams: P (tj), Bigrams: P (tj |tj−1) and
Trigrams: P (tj |tj−2tj−1), i.e., a second order model

Probabilistic POS Tagging – p.21/26

Acquiring the Model II

Formulae for the model parameters

Unigrams: P̂ (tj) = f(tj)
N

Bigrams: P̂ (tj |tj−1) = f(tj−1tj)
f(tj−1)

Trigrams: P̂ (tj |tj−2tj−1) = f(tj−2tj−1tj)
f(tj−2tj−1)

Lexical: P̂ (wk|tj) = f(wk,tj)
f(tj)

= A[j, k]

f(tj−1tj) is the number of times the tag sequence tj−1tj
occurs in the corpus, N the total number of tags.

If the denominator is zero, define the probability to be zero

Probabilistic POS Tagging – p.22/26

Using the NEGRA Corpus

Get the file pos-corpus.txt from the course homepage

The initial WORDTAG section contains all used POS tags

After the tables follow the sentences, each starting with
#BOS and ending with #EOS. Treat these markers as
words, too!

Every line in a sentence contains the word in the first
column and the attached tag in the second column

Compute n-gram and lexical probabilities from this file

The v vector will only have probability 1 for emitting #BOS
in the first place

Transform all words to lower case (reduces model size, but
also quality)

Probabilistic POS Tagging – p.23/26

Smoothing the Model

What if f(...) is zero for some configuration?

Probabilistic POS Tagging – p.24/26

Smoothing the Model

What if f(...) is zero for some configuration?

The lattice probability drops to zero although it might only
be missing in the training data

Probabilistic POS Tagging – p.24/26

Smoothing the Model

What if f(...) is zero for some configuration?

The lattice probability drops to zero although it might only
be missing in the training data

Unseen n-grams require backing off to some other
information source, e.g., the n− 1-gram

Probabilistic POS Tagging – p.24/26

Smoothing the Model

What if f(...) is zero for some configuration?

The lattice probability drops to zero although it might only
be missing in the training data

Unseen n-grams require backing off to some other
information source, e.g., the n− 1-gram

back-off can be combined with model smoothing

Probabilistic POS Tagging – p.24/26

Smoothing the Model

What if f(...) is zero for some configuration?

The lattice probability drops to zero although it might only
be missing in the training data

Unseen n-grams require backing off to some other
information source, e.g., the n− 1-gram

back-off can be combined with model smoothing

TnT’s method of smoothing: linear interpolation
P (t3|t1t2) = λ1P̂ (t3) + λ2P̂ (t3|t2) + λ3P̂ (t3|t1t2) λi ≥ 0

Probabilistic POS Tagging – p.24/26

Smoothing the Model

What if f(...) is zero for some configuration?

The lattice probability drops to zero although it might only
be missing in the training data

Unseen n-grams require backing off to some other
information source, e.g., the n− 1-gram

back-off can be combined with model smoothing

TnT’s method of smoothing: linear interpolation
P (t3|t1t2) = λ1P̂ (t3) + λ2P̂ (t3|t2) + λ3P̂ (t3|t1t2) λi ≥ 0

Constraint λ1 + λ2 + λ3 = 1 turns P into a probability
distribution

Probabilistic POS Tagging – p.24/26

Smoothing the Model

What if f(...) is zero for some configuration?

The lattice probability drops to zero although it might only
be missing in the training data

Unseen n-grams require backing off to some other
information source, e.g., the n− 1-gram

back-off can be combined with model smoothing

TnT’s method of smoothing: linear interpolation
P (t3|t1t2) = λ1P̂ (t3) + λ2P̂ (t3|t2) + λ3P̂ (t3|t1t2) λi ≥ 0

Constraint λ1 + λ2 + λ3 = 1 turns P into a probability
distribution

Use deleted interpolation to acquire the λi

Probabilistic POS Tagging – p.24/26

Smoothing Algorithm

set λ1 = λ2 = λ3 = 0

for each trigram t1t2t3 with f(t1t2t3) > 0

depending on which of the next three is maximal

case
f(t1t2t3) − 1

f(t1t2) − 1
: increment λ3 by f(t1t2t3)

case
f(t2t3) − 1

f(t2) − 1
: increment λ2 by f(t1t2t3)

case
f(t3) − 1

N − 1
: increment λ1 by f(t1t2t3)

normalize λ1, λ2, λ3: λi =
λi

∑
3

j=1
λj

Probabilistic POS Tagging – p.25/26

Unknown Words

Words not in the training data are similar to unseen
n-grams

TnT uses a suffix heuristic to estimate the lexicon
probabilities for unknown words from the word endings

A simpler approach: average over the frequencies of
infrequently occuring words W ′ = {w : f(w) < c}

f̃(<unk>, t) =

∑

w′∈W ′ f(w′, t)
∑

w′∈W ′ f(w′)
⇒ P̃ (<unk>|t) = f̃(<unk>, t)/f(t)

To renormalize, we have to solve the equations

1 = λt(
∑

w∈W

P̂ (w|t)+P̃ (<unk>, t)) ⇒ λt =
f(t)

f̃(<unk>, t) +
∑

w∈W f(w, t)

Probabilistic POS Tagging – p.26/26

	Part-of-Speech Tagging I
	Part-of-Speech Tagging II
	Recap: Probability Theory I
	Recap: Probability Theory II
	Recap: Probability Theory III
	Stochastic Processes
	(Hidden)
Markov Models
	Markov Models II
	Markov Models III
	Markov Models IV
	Markov Models V
	Hidden Markov Models
	POS-Tagging with HMMs
	Viterbi-Algorithm
	Viterbi-Algorithm
	Viterbi: Trellis Construction
	Viterbi for POS Tagging
	Viterbi: Trellis Example
	Viterbi: Trellis + Probabilities
	Acquiring the Model
	Acquiring the Model II
	Using the NEGRA Corpus
	Smoothing the Model
	Smoothing Algorithm
	Unknown Words

