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Processing Regular Expressions

I We already learned about Java’s regular expression
functionality

I Now we get to know the machinery behind
I Pattern and
I Matcher classes

I Compiling a regular expression into a Pattern object
produces a Finite Automaton

I This automaton is then used to perform the matching tasks

I We will see how to construct a finite automaton that
recognizes an input string, i.e., tries to find a full match



Definition: Finite Automaton

I A finite automaton (FA) is a tuple A =< Q,Σ, δ, q0,F >
I Q a finite non-empty set of states
I Σ a finite alphabet of input letters
I δ a (total) transition function Q × Σ −→ Q
I q0 ∈ Q the initial state
I F ⊆ Q the set of final (accepting) states

I Transition graphs (diagrams):

q0 q1 q2 q3

d o g

initial state states transition final state



Finite Automata: Matching

I A finite automaton accepts a given input string s if there is a
sequence of states p1, p2, . . . , p|s| ∈ Q such that

1. p1 = q0, the start state
2. δ(pi , si ) = pi+1, where si is the i-th character in s
3. p|s| ∈ F , i.e., a final state

I A string is successfully matched if we have found the
appropriate sequence of states

I Imagine the string on an input tape with a pointer that is
advanced when using a δ transition

I The set of strings accepted by an automaton is the accepted
language, analogous to regular expressions



(Non)deterministic Automata

I in the definition of automata, δ was a total function ⇒
given an input string, the path through the automaton is
uniquely determined

I those automata are therefore called deterministic

I for nondeterministic FA, δ is a transition relation

I δ : Q × Σ ∪ {ε} −→ P(Q), where P(Q) is the powerset of Q

I allows transitions from one state into several states with the
same input symbol

I need not be total

I can have transitions labeled ε (not in Σ), which represents the
empty string



RegExps −→ Automata

Construct nondeterminstic automata from regular expressions
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NFA vs. DFA

I Traversing a DFA is easy given the input string: the path is
uniquely determined

I In contrast, traversing an NFA requires keeping track of a set
of (current) states, starting with the set {qo}

I Processing the next input symbol means taking all possible
outgoing transitions from this set and collecting the new set

I From every NFA, an equivalent DFA (one which does accept
the same language), can be computed

I Basic Idea: track the subsets that can be reached for every
possible input



Traversing an NFA
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NFA −→ DFA: Subset Construction

I Simulate “in parallel” all possible moves the automaton can
make

I The states of the resulting DFA will represent sets of states of
the NFA, i.e., elements of P(Q)

I We use two operations on states/state-sets of the NFA

ε-closure(T ) Set of states reachable from any state s in T on ε-
transitions

move(T , a)
Set of states to which there is a transition from one state
in T on input symbol a

I The final states of the DFA are those where the corresponding
NFA subset contains a final state



Algorithm: Subset Construction

proc SubsetConstruction(s0) ≡
DFAStates = ε-closure({s0})
while there is an unmarked state T in DFAStates do

mark T
for each input symbol a do

U := ε-closure(move(T , a))
DFADelta[T , a] := U
if U 6∈ DFAStates then add U as unmarked to DFAStates

proc ε-closure(T ) ≡
ε-closure := T ; to check := T
while to check not empty do

get some state t from to check
for each state u with edge labeled ε from t to u

if u 6∈ ε-closure then add u to ε-closure and to check



Example: Subset construction
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Time/Space Considerations

I DFA traversal is linear to the length of input string x

I NFA needs O(n) space (states+transitions), where n is the
length of the regular expression

I NFA traversal may need time n × |x |, so why use NFAs?

I There are DFA that have at least 2n states!

I Solution 1: “Lazy” construction of the DFA: construct DFA
states on the fly up to a certain amount and cache them

I Solution 2: Try to minimize the DFA:
There is a unique (modulo state names) minimal automaton
for a regular language!
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Automata Minimization

I Take any state q of the deterministic automaton to minimize
and assume it to be the (single) start state

I We call the language that this automaton accepts the right
language of q

I The language of each state consists of suffixes of the overall
accepted language

I If two states accept the same language, they are equivalent
and can be merged

I To minimize the automaton, merge all equivalent nodes

I This is implemented by first partitioning the original set of
states into equivalence classes, i.e., sets of equivalent states

I Finally, each equivalence class is replaced by a single state,
merging transitions accordingly


