Java ll
Graph Algorithms Il

Bernd Kiefer

Deutsches Forschungszentrum fiir kiinstliche Intelligenz

Strongly Connected Components
» Definition: a SCC of a directed graph is the maximal set U of
vertices, such that forall u,ve U:u—>vAv —u
» SCCs consist of connected cycles of the graph
» Vertices not in any cycle constitute their own SCC
» The SCCs form a total partition of the graph

» The component graph, where the SCCs are replaced by
vertices, is acyclic
» Many algorithms are easier to solve on acyclic graphs

» Run the algorithm on the harder, but smaller SCCs
» Combine the results on the acyclic component graph
» a special kind of divide and conquer

34}

Strongly Connected Components

@ >

@

Strongly Connected Components

DFS starting at s then u

)l

Strongly Connected Components

N

All nodes of a SCC will be visited in the same DFS

All vertices of an SCC are connected by tree edges

DFS starting at s then u

—-

v

v

v

There must be a highest entry node

v

It is the vertex with the lowest discovery time in the SCC

)l

Tarjan's Algorithm

» Crucial observation: Root Property

>

store, for every vertex, the lowest discovery time of an active
vertex reachable from it in the DFS tree — low(v)
a vertex with d(v) == Jow(v) is the root of an SCC
the SCC consists of the root and all vertices that

> are on the DFS tree below the root and

» don't belong to another SCC

— we can use a stack to collect these vertices

low(v) < d(v) can only occur when using

> back edges

> cross edges pointing to a vertex still on the stack (active SCC)
vertices not on the stack are not considered because they
belong to an already finished SCC in another DFS tree branch
Pop the SCC vertices when reaching the root

34}

Tarjan's SCC Algorithm

proc StronglyConnectedComponents(G) =
for veVdo d(v) =0; low(v) =0;
for v e V do if d(v) == 0 then findSCC(v)

proc findSCC(v) =
low(v) = d(v) = + + time; S.push(v);
fore = (v,u) € £ do
if d(u) == 0 then // u not visited: recurse
findSCC(u); low(v) = min(low(v), low(u))
elsif v is in S then low(v) = min(low(v), low(u))
if d(v) == low(v) then
while S.top() # v do u = S.pop();
S.pop() // pop root

To check efficiently if u is in S, use an additional boolean

34}

Search in Weighted Graphs

» Many applications require weights attached to the edges e.g.,
the transition probabilities

Goal: find the shortest path
We will look at single-source shortest path with nonnegative
weights
» The Bellman-Ford algorithm works with negative weights, too
» For graphs with negative cycles, the shortest path is not well
defined

First: Dijkstra's algorithm for SSSP with nonnegative weights

v

v

v

Generalization: A* search with a heuristic function

v

34}

Dijkstra's SSSP

> Algorithm relies on the triangle equation:
dist(u, w) + weight(w, v) > dist(u, v) for all u,v,w €V
> Initially:

>

>

set the distances for all nodes to 400, except for the source
node s to zero
mark all nodes as not optimized

» While there are nodes not yet optimized:

>

>

take the unoptimized node u with the smallest dist(u)

check for all neighbours v if the triangle equation is violated,
that is: dist(u) + weight(u, v) < dist(v)

if so, correct dist(v) and store u as predecessor of v

34}

Dijkstra's SSSP Il

1 proc Dijkstra-SSPP(s, G) =
for v € V do dist(v) = +o0; predecessor(v) = undef; Q.add(v)
dist(s) =0
while Q # () do
u = Q.extract_min()
for (u,v) € £ do
alt = dist(u) + weight(u, v)
if alt < dist(v) then
dist(v) = alt; predecessor(v) = u

© [v

» Finally, the predecessor chain can be followed backwards from
any node for the shortest path to s

» The algorithm can be stopped in line 5 if u is the desired
target node

34}

Data Structure for Q

» (must support the operations

» add element

> extract_min :
> lower_key : lower the key of an arbitrary element

» java.util.PriorityQueue supports the first two efficiently

get and remove the element with the lowest key

YFXl

Data Structure for Q

» (must support the operations

> add element
> extract_min : get and remove the element with the lowest key
> lower_key : lower the key of an arbitrary element

» java.util.PriorityQueue supports the first two efficiently

» BUT: lower_key can only be implemented using:
remove (v)+add(v), which means O(n) + O(lg(n))

» To avoid the search in remove(v), relate the elements
efficiently to the buckets of the priority queue

» To do so, we need to use a homemade priority queue

34}

Binary Heaps

A heap is a binary tree that
> is complete: each level of the tree is completely filled, except
for the leaf level, which is filled from left to right

> satisfies the heap order property: the data stored in a tree
node is smaller (greater) than any in its children

34}

A* Search

» If the search space is very big (as in most Al complete
problems), Dijkstra’s algorithm may be too expensive

» Use additional information to guide the search, if available
» This will only affect the average time for finding the goal
> Incrementally explore all paths until the optimal path is found:

» The solution is sound and complete
» Because of the additional bookkeeping, it can get worse than
the plain algorithm, but will behave better in practices

34}

A* Search: Example

» Get from Place s to t using the map of a city

Vertices: crossings

Edges: connecting roads (eventually one-way)

Weights: Length of the road between two crossings

If at crossing x, we know the dist(x) already traveled

In addition, we have an estimate for the rest: the air-line
distance between x and the target ¢t

» Instead of using dist(x) (Dijkstra), use dist(x) + airline(x, t)
as weight for the priority queue

vV vy vy VvYyy

» If the remaining cost are never overestimated, the heuristic is
admissible and the optimum will be found

» Dijkstra is a special A*, with the rest cost estimate zero

34}

Collections: List Implementations

» LinkedList
Constant insertion, deletion of any element, linear merge,
efficient stack and queue
— get(i), set(i, E) is linear (O(n))
— Space overhead compared to ArrayList
» ArrayList
Constant (almost) insertion, deletion at the end, efficient
stack, otherwise linear
get(i), set(i, E) is constant
uses less space than LinkedList
— when using many small ArrayLists, make sure to create it
with a reasonable initial capacity

» All Sorting on List should be O(nlg(n))

34}

Set/Map Implementations

» HashSet, HashMap
add, delete, contains, size in amortized constant time
linear union, intersection
— iteration performance depends on load factor
» TreeSet, TreeMap
» add, delete, contains are O(lg(n))
ordered iteration over the elements
using SortedSet, it is possible to get, e.g., the next bigger
element contained in the set in O(lg(n)):
ts.tailSet(elt).first()

34}

Special Collections

> BitSet
extremely compact representation of a set
very fast union, intersection, etc. using logical bit operations
— requires numeric indices
» Priority Queue
» Queue where the elements are sorted according to some

Comparator
» asymptotic efficiency similar to TreeSet: add/remove is

O(lg(n))
uses less space than TreeSet
should be somewhat faster in practice

34}

