Java II Graph Algorithms II

Bernd Kiefer

Deutsches Forschungszentrum für künstliche Intelligenz

- Definition: a SCC of a directed graph is the maximal set U of vertices, such that for all u, v ∈ U : u → v ∧ v → u
- SCCs consist of connected cycles of the graph
- Vertices not in any cycle constitute their own SCC
- The SCCs form a total partition of the graph
- The component graph, where the SCCs are replaced by vertices, is acyclic
- Many algorithms are easier to solve on acyclic graphs
 - Run the algorithm on the harder, but smaller SCCs
 - Combine the results on the acyclic component graph
 - a special kind of divide and conquer

DFS starting at s then u y_{5} y_{5} y_{6} y_{7} y_{6} y_{6}

- All nodes of a SCC will be visited in the same DFS
- All vertices of an SCC are connected by tree edges
- There must be a highest entry node
- It is the vertex with the lowest discovery time in the SCC

Tarjan's Algorithm

- Crucial observation: Root Property
 - ► store, for every vertex, the lowest discovery time of an active vertex reachable from it in the DFS tree → low(v)
 - a vertex with d(v) == low(v) is the root of an SCC
 - the SCC consists of the root and all vertices that
 - are on the DFS tree below the root and
 - don't belong to another SCC
 - \longrightarrow we can use a stack to collect these vertices
 - low(v) < d(v) can only occur when using
 - back edges
 - cross edges pointing to a vertex still on the stack (active SCC)
 - vertices not on the stack are not considered because they belong to an already finished SCC in another DFS tree branch
 - Pop the SCC vertices when reaching the root

Tarjan's SCC Algorithm

proc StronglyConnectedComponents(G) =
for
$$v \in V$$
 do $d(v) = 0$; $low(v) = 0$;
for $v \in V$ **do if** $d(v) == 0$ **then** $findSCC(v)$
proc $findSCC(v) \equiv$
 $low(v) = d(v) = + + time$; $S.push(v)$;
for $e = (v, u) \in \mathcal{E}$ **do**
if $d(u) == 0$ **then** // u not visited: recurse
 $findSCC(u)$; $low(v) = min(low(v), low(u))$
elsif u is in S **then** $low(v) = min(low(v), low(u))$
if $d(v) == low(v)$ **then**
while $S.top() \neq v$ **do** $u = S.pop()$;
 $S.pop()$ // pop root

To check efficiently if u is in S, use an additional boolean

Search in Weighted Graphs

- Many applications require weights attached to the edges e.g., the transition probabilities
- Goal: find the shortest path
- We will look at single-source shortest path with nonnegative weights
 - ► The Bellman-Ford algorithm works with negative weights, too
 - For graphs with negative cycles, the shortest path is not well defined
- First: Dijkstra's algorithm for SSSP with nonnegative weights
- ► Generalization: A* search with a heuristic function

Dijkstra's SSSP

- ► Algorithm relies on the triangle equation: dist(u, w) + weight(w, v) ≥ dist(u, v) for all u, v, w ∈ V
- Initially:
 - \blacktriangleright set the distances for all nodes to $+\infty,$ except for the source node s to zero
 - mark all nodes as not optimized
- While there are nodes not yet optimized:
 - take the unoptimized node u with the smallest dist(u)
 - ► check for all neighbours v if the triangle equation is violated, that is: dist(u) + weight(u, v) < dist(v)</p>
 - if so, correct dist(v) and store u as predecessor of v

Dijkstra's SSSP II

1	proc $Dijkstra-SSPP(s, G) \equiv$
2	<u>for</u> $v \in V$ <u>do</u> $dist(v) = +\infty$; $predecessor(v) = undef$; $Q.add(v)$
3	dist(s) = 0
4	<u>while</u> $Q \neq \emptyset$ <u>do</u>
5	$u = Q.extract_min()$
6	$\underline{\mathbf{for}}\ (u,v)\in \mathcal{E}\ \underline{\mathbf{do}}$
$\tilde{7}$	$\mathit{alt} = \mathit{dist}(u) + \mathit{weight}(u, v)$
8	$\underline{\mathbf{if}} \ alt < dist(v) \ \underline{\mathbf{then}}$
9	dist(v) = alt; predecessor(v) = u

- Finally, the predecessor chain can be followed backwards from any node for the shortest path to s
- The algorithm can be stopped in line 5 if u is the desired target node

Data Structure for Q

- Q must support the operations
 - add element
 - extract_min : get and remove the element with the lowest key
 - lower_key : lower the key of an arbitrary element
- java.util.PriorityQueue supports the first two efficiently

Data Structure for Q

- Q must support the operations
 - add element
 - extract_min : get and remove the element with the lowest key
 - lower_key : lower the key of an arbitrary element
- java.util.PriorityQueue supports the first two efficiently
- BUT: lower_key can only be implemented using: remove(v)+add(v), which means O(n) + O(lg(n))
- To avoid the search in remove(v), relate the *elements* efficiently to the *buckets* of the priority queue
- To do so, we need to use a homemade priority queue

Binary Heaps

A heap is a *binary tree* that

- is complete: each level of the tree is completely filled, except for the leaf level, which is filled from left to right
- satisfies the *heap order property*: the data stored in a tree node is smaller (greater) than any in its children

A* Search

- If the search space is very big (as in most AI complete problems), Dijkstra's algorithm may be too expensive
- Use additional information to guide the search, if available
- This will only affect the average time for finding the goal
- Incrementally explore all paths until the optimal path is found:
 - The solution is sound and complete
 - Because of the additional bookkeeping, it can get worse than the plain algorithm, but will behave better in practices

A* Search: Example

- Get from Place s to t using the map of a city
 - Vertices: crossings
 - Edges: connecting roads (eventually one-way)
 - Weights: Length of the road between two crossings
 - ▶ If at crossing *x*, we know the *dist*(*x*) already traveled
 - In addition, we have an estimate for the rest: the air-line distance between x and the target t
- Instead of using dist(x) (Dijkstra), use dist(x) + airline(x, t) as weight for the priority queue
- If the remaining cost are never overestimated, the heuristic is admissible and the optimum will be found
- Dijkstra is a special A*, with the rest cost estimate zero

Collections: List Implementations

- LinkedList
 - + Constant insertion, deletion of any element, linear merge, efficient stack *and* queue
 - get(i), set(i, E) is linear (O(n))
 - Space overhead compared to ArrayList
- ArrayList
 - + Constant (almost) insertion, deletion at the end, efficient stack, otherwise linear
 - + get(i), set(i, E) is constant
 - $+\,$ uses less space than LinkedList
 - when using many small ArrayLists, make sure to create it with a reasonable initial capacity
- All Sorting on List should be $O(n \lg(n))$

Set/Map Implementations

- HashSet, HashMap
 - $+\,$ add, delete, contains, size in amortized constant time
 - + linear union, intersection
 - iteration performance depends on load factor
- TreeSet, TreeMap
 - add, delete, contains are O(lg(n))
 - $\ + \$ ordered iteration over the elements
 - + using SortedSet, it is possible to get, e.g., the next bigger element contained in the set in O(lg(n)): ts.tailSet(elt).first()

Special Collections

- BitSet
 - + extremely compact representation of a set
 - + very fast union, intersection, etc. using logical bit operations
 - requires numeric indices
- Priority Queue
 - Queue where the elements are sorted according to some Comparator
 - asymptotic efficiency similar to TreeSet: add/remove is O(lg(n))
 - + uses less space than TreeSet
 - $+ \,$ should be somewhat faster in practice

