
Java II

Graph Algorithms II

Bernd Kiefer

Deutsches Forschungszentrum für künstliche Intelligenz



Strongly Connected Components

◮ Definition: a SCC of a directed graph is the maximal set U of
vertices, such that for all u, v ∈ U : u → v ∧ v → u

◮ SCCs consist of connected cycles of the graph

◮ Vertices not in any cycle constitute their own SCC

◮ The SCCs form a total partition of the graph

◮ The component graph, where the SCCs are replaced by
vertices, is acyclic

◮ Many algorithms are easier to solve on acyclic graphs
◮ Run the algorithm on the harder, but smaller SCCs
◮ Combine the results on the acyclic component graph
◮ a special kind of divide and conquer



Strongly Connected Components

s t

uv

w

x

y

z

q



Strongly Connected Components

s t

uv

w

x

y

z

q

DFS starting at s then u

s 1 t 9

u
7

v
8

w 2

x3

y
5

z
4

q 6



Strongly Connected Components

s t

uv

w

x

y

z

q

DFS starting at s then u

s 1 t 9

u
7

v
8

w 2

x3

y
5

z
4

q 6

◮ All nodes of a SCC will be visited in the same DFS

◮ All vertices of an SCC are connected by tree edges

◮ There must be a highest entry node

◮ It is the vertex with the lowest discovery time in the SCC



Tarjan’s Algorithm

◮ Crucial observation: Root Property
◮ store, for every vertex, the lowest discovery time of an active

vertex reachable from it in the DFS tree 7→ low(v)
◮ a vertex with d(v) == low(v) is the root of an SCC
◮ the SCC consists of the root and all vertices that

◮ are on the DFS tree below the root and
◮ don’t belong to another SCC

−→ we can use a stack to collect these vertices

◮ low(v) < d(v) can only occur when using
◮ back edges
◮ cross edges pointing to a vertex still on the stack (active SCC)

◮ vertices not on the stack are not considered because they
belong to an already finished SCC in another DFS tree branch

◮ Pop the SCC vertices when reaching the root



Tarjan’s SCC Algorithm

proc StronglyConnectedComponents(G ) ≡

for v ∈ V do d(v) = 0; low(v) = 0;
for v ∈ V do if d(v) == 0 then findSCC (v)

proc findSCC (v) ≡

low(v) = d(v) = + + time; S .push(v);
for e = (v , u) ∈ E do

if d(u) == 0 then // u not visited: recurse
findSCC (u); low(v) = min(low(v), low(u))

elsif u is in S then low(v) = min(low(v), low(u))
if d(v) == low(v) then
while S .top() 6= v do u = S .pop();
S .pop() // pop root

To check efficiently if u is in S , use an additional boolean



Search in Weighted Graphs

◮ Many applications require weights attached to the edges e.g.,
the transition probabilities

◮ Goal: find the shortest path

◮ We will look at single-source shortest path with nonnegative
weights

◮ The Bellman-Ford algorithm works with negative weights, too
◮ For graphs with negative cycles, the shortest path is not well

defined

◮ First: Dijkstra’s algorithm for SSSP with nonnegative weights

◮ Generalization: A∗ search with a heuristic function



Dijkstra’s SSSP

◮ Algorithm relies on the triangle equation:
dist(u,w) + weight(w , v) ≥ dist(u, v) for all u, v ,w ∈ V

◮ Initially:
◮ set the distances for all nodes to +∞, except for the source

node s to zero
◮ mark all nodes as not optimized

◮ While there are nodes not yet optimized:
◮ take the unoptimized node u with the smallest dist(u)
◮ check for all neighbours v if the triangle equation is violated,

that is: dist(u) + weight(u, v) < dist(v)
◮ if so, correct dist(v) and store u as predecessor of v



Dijkstra’s SSSP II

1 proc Dijkstra-SSPP(s,G ) ≡

2 for v ∈ V do dist(v) = +∞; predecessor(v) = undef ; Q.add(v)
3 dist(s) = 0
4 while Q 6= ∅ do

5 u = Q.extract min()
6 for (u, v) ∈ E do

7 alt = dist(u) + weight(u, v)
8 if alt < dist(v) then
9 dist(v) = alt; predecessor(v) = u

◮ Finally, the predecessor chain can be followed backwards from
any node for the shortest path to s

◮ The algorithm can be stopped in line 5 if u is the desired
target node



Data Structure for Q

◮ Q must support the operations
◮ add element
◮ extract min : get and remove the element with the lowest key
◮ lower key : lower the key of an arbitrary element

◮ java.util.PriorityQueue supports the first two efficiently



Data Structure for Q

◮ Q must support the operations
◮ add element
◮ extract min : get and remove the element with the lowest key
◮ lower key : lower the key of an arbitrary element

◮ java.util.PriorityQueue supports the first two efficiently

◮ BUT: lower key can only be implemented using:
remove(v)+add(v), which means O(n) + O(lg(n))

◮ To avoid the search in remove(v), relate the elements

efficiently to the buckets of the priority queue

◮ To do so, we need to use a homemade priority queue



Binary Heaps

A heap is a binary tree that

◮ is complete: each level of the tree is completely filled, except
for the leaf level, which is filled from left to right

◮ satisfies the heap order property: the data stored in a tree
node is smaller (greater) than any in its children



A* Search

◮ If the search space is very big (as in most AI complete
problems), Dijkstra’s algorithm may be too expensive

◮ Use additional information to guide the search, if available

◮ This will only affect the average time for finding the goal

◮ Incrementally explore all paths until the optimal path is found:

◮ The solution is sound and complete
◮ Because of the additional bookkeeping, it can get worse than

the plain algorithm, but will behave better in practices



A* Search: Example

◮ Get from Place s to t using the map of a city
◮ Vertices: crossings
◮ Edges: connecting roads (eventually one-way)
◮ Weights: Length of the road between two crossings
◮ If at crossing x , we know the dist(x) already traveled
◮ In addition, we have an estimate for the rest: the air-line

distance between x and the target t

◮ Instead of using dist(x) (Dijkstra), use dist(x) + airline(x , t)
as weight for the priority queue

◮ If the remaining cost are never overestimated, the heuristic is
admissible and the optimum will be found

◮ Dijkstra is a special A*, with the rest cost estimate zero



Collections: List Implementations

◮ LinkedList

+ Constant insertion, deletion of any element, linear merge,
efficient stack and queue

– get(i), set(i, E) is linear (O(n))
– Space overhead compared to ArrayList

◮ ArrayList

+ Constant (almost) insertion, deletion at the end, efficient
stack, otherwise linear

+ get(i), set(i, E) is constant
+ uses less space than LinkedList
– when using many small ArrayLists, make sure to create it

with a reasonable initial capacity

◮ All Sorting on List should be O(n lg(n))



Set/Map Implementations

◮ HashSet, HashMap

+ add, delete, contains, size in amortized constant time
+ linear union, intersection
– iteration performance depends on load factor

◮ TreeSet, TreeMap
◮ add, delete, contains are O(lg(n))
+ ordered iteration over the elements
+ using SortedSet, it is possible to get, e.g., the next bigger

element contained in the set in O(lg(n)):
ts.tailSet(elt).first()



Special Collections

◮ BitSet

+ extremely compact representation of a set
+ very fast union, intersection, etc. using logical bit operations
– requires numeric indices

◮ Priority Queue
◮ Queue where the elements are sorted according to some

Comparator
◮ asymptotic efficiency similar to TreeSet: add/remove is

O(lg(n))
+ uses less space than TreeSet

+ should be somewhat faster in practice


