Java II
 Graphs and Search

Bernd Kiefer

Deutsches Forschungszentrum für künstliche Intelligenz

Graphs: Definition

- Graph \mathcal{G} : A set of vertices (nodes) \mathcal{V} and a set of edges \mathcal{E}, which is a relation on vertices, that is: $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- Example:
- Vertices: students at the university
- $(u, v) \in \mathcal{E} \Leftrightarrow$ student u knows student v
- Graphical representation:
- vertices: blobs
- edges: arrows (arcs) between the blobs
- If \mathcal{E} is symmetric, i.e., if $(u, v) \in \mathcal{E} \Leftrightarrow(v, u) \in \mathcal{E}$ the graph is called undirected (plain arcs, not arrows)
- Example: \mathcal{E} is the set of students that are akin

Graphs: Definitions II

- Vertex u is reachable from vertex $v(u \rightarrow v)$ iff there is a sequence of edges $\left(u, w_{1}\right),\left(w_{1}, w_{2}\right), \ldots,\left(w_{n}, v\right)$ in \mathcal{E}
- A graph is cyclic (contains a cycle) if there is $u \in \mathcal{V}$ s.th. $u \rightarrow u$ over a nontrivial sequence of edges in \mathcal{E}, including a self loop
directed graph

undirected graph

Implementation Basics

- Represent the vertices as numbers from zero to $|\mathcal{V}|-1$
- Matrix representation: represent \mathcal{E} as a quadratic boolean matrix A of size $|\mathcal{V}| ; A[i, j]$ is true iff $(i, j) \in \mathcal{E}$
+ Good for dense graphs, where $|\mathcal{E}| \approx|\mathcal{V}|^{2}$: only one bit per edge
+ Fast: are two vertices directly connected?
- Initialization is quadratic in $|\mathcal{V}|$
- Visiting all outgoing edges of a vertex takes $|\mathcal{V}|$ steps, no matter how many there really are
- Additional information attached to the edges (e.g., weights) has to be stored separately

Adjacency List Representation

- For every vertex, store a list of outgoing edges, i.e., the vertex number that is reached
- Graph is represented by an array of list heads
- In Java: ArrayList of Lists.
+ Compact representation for most graphs, except if they are very dense
+ Allows more efficient implementations of many graph algorithms
+ Additional edge information can be stored in the elements of the edge lists directly

Search in Graphs

- Task: visit all reachable vertices, starting at vertex s
- Iteratively use all the outgoing edges of s, and all the nodes that can be reached through these egdes
- Make sure that no node gets explored twice
- Basic idea: maintain two sets
- \mathcal{U} the visited nodes
- \mathcal{A} the active nodes, i.e., still unexplored outedges
- In textbooks, vertices are often assigned colors during the search:
- White: not in \mathcal{U} and not in \mathcal{A}
- Grey: in \mathcal{U} and in \mathcal{A} (under consideration)
- Black: in \mathcal{U}, but not in \mathcal{A} anymore (finished)

Generic Search Algorithm

- Initialization: both sets contain only the start vertex s

$$
\begin{aligned}
& \text { proc } \operatorname{Search}(s) \equiv \\
& \mathcal{U}=\mathcal{A}=\{s\} \quad / / \text { s gets grey }
\end{aligned}
$$

while $\mathcal{A} \neq \emptyset$ do
for some node $n \in \mathcal{A}$
if there is an unused edge $e=(n, m)$ leaving n if $m \notin \mathcal{U}$ then $\quad / / \mathrm{m}$ gets grey
$\mathcal{U}=\mathcal{U} \cup\{m\} ; \mathcal{A}=\mathcal{A} \cup\{m\}$
else
$\mathcal{A}=\mathcal{A}-\{n\} \quad / / \mathrm{n}$ gets black

- Questions:
- How to implement sets \mathcal{U} and \mathcal{A} ?
- Does the result depend on the implementation?

Implementation of \mathcal{U}

- What is the best data structure for \mathcal{U} ?
- What are the operations on \mathcal{U} ?

Implementation of \mathcal{U}

- What is the best data structure for \mathcal{U} ?
- What are the operations on \mathcal{U} ?

1. Add a node m
2. Is node n contained in the set?

Implementation of \mathcal{U}

- What is the best data structure for \mathcal{U} ?
- What are the operations on \mathcal{U} ?

1. Add a node m
2. Is node n contained in the set?

- \mathcal{U} should be implemented as a bit vector over the nodes
- Two alternatives:
- boolean member variable of the node data structure
- A so-called property vector (or property map) attached to the vertices

Property Vectors

Advantages and drawbacks of property vectors

- More flexible:
- Create all and only those you need for an algorithm
- In a graph framework, one can not put all the data into the vertices
- May contain any type, small or bigger datastructures
- Only use memory when they are needed
- Require an efficient indexing between vertices and values: maintain a numeric index in the vertices
- Member variables are always faster

Property vectors can also be used for graph edges

Implementation of \mathcal{A}

The choice of the data structure for \mathcal{A} and the decisions about n and e determine the order in which vertices are visited

- Operations on set \mathcal{A} :

Implementation of \mathcal{A}

The choice of the data structure for \mathcal{A} and the decisions about n and e determine the order in which vertices are visited

- Operations on set \mathcal{A} :
- Add a vertex
- Get and remove some vertex (nondeterministic)
- Test if set is empty

Implementation of \mathcal{A}

The choice of the data structure for \mathcal{A} and the decisions about n and e determine the order in which vertices are visited

- Operations on set \mathcal{A} :
- Add a vertex
- Get and remove some vertex (nondeterministic)
- Test if set is empty
- Implement \mathcal{A} as a queue and keep n until it gets black: Breadth First Search (BFS)
- Implement \mathcal{A} as a stack and always take its top element: Depth First Search (DFS)
- DFS is often implemented as a recursive function, the function call stack takes the role of \mathcal{A}

BFS Implementation

proc $B F S() \equiv$
foreach $v \in \mathcal{V}$ do $d(v)=0$
time $=1 \quad / /$ the time when a vertex is touched
foreach $v \in \mathcal{V}$ with $d(v)==0$ do $\quad / / \mathrm{v}$ is the start node
$d(v)=$ time; \mathcal{A}. push_back $(v) \quad / / \mathrm{v}$ gets grey
while $\neg \mathcal{A}$.empty () do

$$
n=\mathcal{A} . \text { pop_front }()
$$

$$
\text { time }=d(n)+1
$$

foreach $e=(n, m)$ do
if $d(m)=0$ then $\quad / / m \notin \mathcal{U}$? $d(m)=$ time; \mathcal{A}. push_back (m)
// n gets black

- Finally, all vertices of \mathcal{G} have been visited
- The $d(v)$ is abused to serve as the \mathcal{U} bitvector

Breadth First Search

$\mathcal{A} \rightarrow$

Breadth First Search

$\mathcal{A} \rightarrow$
w

Breadth First Search

$\mathcal{A} \rightarrow$

Breadth First Search

40

Breadth First Search

$\mathcal{A} \rightarrow$

Breadth First Search

$\mathcal{A} \rightarrow$

Breadth First Search

$A \rightarrow \times \sim$

Breadth First Search

4

Breadth First Search

40

Breadth First Search

$\mathcal{A} \rightarrow \mathrm{y}$

Breadth First Search

$\mathcal{A} \rightarrow$

Properties of BFS

- Run-time complexity of BFS?

Properties of BFS

- Run-time complexity of BFS?
- All operations on $d(v)$ and \mathcal{A} need $\mathcal{O}(1)$ time
- The outer loop is traversed $|\mathcal{V}|$ times
- The inner loop touches all edges, so at least $|\mathcal{E}|$ times

Properties of BFS

- Run-time complexity of BFS?
- All operations on $d(v)$ and \mathcal{A} need $\mathcal{O}(1)$ time
- The outer loop is traversed $|\mathcal{V}|$ times
- The inner loop touches all edges, so at least $|\mathcal{E}|$ times \longrightarrow overall complexity is $\mathcal{O}(\mathcal{V}+\mathcal{E})$

Properties of BFS

- Run-time complexity of BFS?
- All operations on $d(v)$ and \mathcal{A} need $\mathcal{O}(1)$ time
- The outer loop is traversed $|\mathcal{V}|$ times
- The inner loop touches all edges, so at least $|\mathcal{E}|$ times \longrightarrow overall complexity is $\mathcal{O}(\mathcal{V}+\mathcal{E})$
- Grey edges mark first discoveries of neighbor nodes
- They obviously form a tree
- Do you have an interpretation for $d(v)$?

Properties of BFS

- Run-time complexity of BFS?
- All operations on $d(v)$ and \mathcal{A} need $\mathcal{O}(1)$ time
- The outer loop is traversed $|\mathcal{V}|$ times
- The inner loop touches all edges, so at least $|\mathcal{E}|$ times \longrightarrow overall complexity is $\mathcal{O}(\mathcal{V}+\mathcal{E})$
- Grey edges mark first discoveries of neighbor nodes
- They obviously form a tree
- Do you have an interpretation for $d(v)$?
- In fact, $d(v)-1$ is the minimal distance from the startnode
- The (grey) tree edges are minimal length paths

DFS: Recursive Procedure

proc $\operatorname{DFS}(G) \equiv$
foreach $v \in \mathcal{V}$ do $d(v)=0$
time $=1 \quad / /$ the time when a vertex is touched
foreach $v \in \mathcal{V}$ do if $d(v)==0$ then $\operatorname{DFS}-\operatorname{Visit}(v)$
proc DFS-Visit(v) \equiv
$d(v)=$ time $;$ time $=$ time $+1 \quad / / v$ gets grey
foreach $e=(v, u)$ do
if $d(u)==0$ then $\operatorname{DFS}-\operatorname{Visit}(u) \quad / /$ is u white? Then visit it.
$f(v)=$ time; time $=$ time $+1 \quad / / v$ gets black

We store two timestamps for each vertex v

- the discovery time $d(v)$, when v changes from white to grey
- the finishing time $f(v)$, when v changes from grey to black

Edge Classification using DFS

The edges of a directed graph can be classified into four categories, depending on the role they play in a run of depth first search.

- tree edges: the edges used in the recursion (ending on a white vertex)
- backward edges: edges ending in a grey vertex (including self loops)
- forward edges: edges (n, m) ending in a black vertex, and $d[n]<d[m]$
- cross edges: edges (n, m) ending in a black vertex, and $d[m]<d[n]$

DFS example

DFS example

DFR

DFS example

DFS example

DFK
$=$ bac

DFS example

DFTill
$=$ oxac

DFS example

DF遵
$=$ bac

DFS example

DF遵
$=$ orac

DFS example

三 \equiv Qく

DFS example

三 صQく

DFS example

三 \equiv Qく

DFS example

DF建
三

DFS example

DF建
三 \equiv Qく

DFS example

DF建
三 \quad ミac

DFS example

DF建
$\equiv \quad$ ミQ®

DFS example

DF建
三 \equiv Qく

DFS example

DF建
三 \quad ミac

DFS example

DF建

DFS example

DFK

Edge Classification Example

During DFS, edge (s, t) is
Tree: $\quad f(t)=0 \wedge d(s)<d(t) \quad$ Back: $\quad f(t)=0 \wedge d(s)>d(t)$
Cross: $\quad f(t) \neq 0 \wedge d(t)<d(s)$ Forward: $f(t) \neq 0 \wedge d(t)>d(s)$ After DFS: $f(t)=0 \Rightarrow f(t)>f(s)$ and $f(t) \neq 0 \Rightarrow f(t)<f(s)$
Note: a directed graph is acyclic if there are no back edges.

DFS/BFS Visitors

- Recap: Visitor Pattern, a Behavioural Pattern
- Purpose: Add functionality to a class without changing it
- Implementation:
- Methods of class A get a visitor object as argument
- The visitor's interface methods are called at specific points of the computation and have an A object as argument (at least)
- This allows different additional computations or side effects with one class method of class A
- The functionality is parameterized by the different visitor objects and classes, so to speak
- Especially useful with traversal methods of complex objects (like DFS or BFS)

DFS/BFS Visitors II

- Methods common for DFS/BFS visitor interface
- startNode (v, g) : v is white in the outer loop
- discoverNode (v,g) : v changes from white to gray
- finishNode (v,g) : v changes from gray to black
- treeEdge (e,g) : visit edge with white target node
- Methods specific to BFS visitor
- examineNode (v, g) : v is taken off the queue
- grayTarget (e,g) : gray target node
- blackTarget (e,g) : black target node
- Methods specific to DFS visitor: backEdge (e,g), forwardEdge (e,g), crossEdge (e,g)

Topological Order

- Order the vertices such that if (n, m) is an edge, n comes before m
- Only exists for acyclic graphs
- Algorithm: sort vertices according to decreasing finishing times of DFS
- This can be easily implemented by a DFS visitor
- As each vertex is finished, add it to the front of a linked list
- The visitor contains this list as member variable
- After all vertices have been visited by DFS, the visitor holds the result
- Application example: A constraint graph that locally specifies which action must precede another

Topological Order Example

