
Java II
Java Strings and Regular Expressions

Bernd Kiefer

Bernd.Kiefer@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

Strings and Regular Expressions – p.1/23

String handling in Java

The most basic implementation of strings: char arrays

+ Can be modified
– No methods for manipulation, fixed length

String class: a wrapper around char arrays
int length()

char charAt(int index)

int compareTo (String anotherString)

boolean contains(CharSequence s)

boolean equals(Object anObject)

String concat(String str)

boolean regionMatches(int toffset, String other,

int ooffset, int len)

String substring(intbeginIndex)

Strings and Regular Expressions – p.2/23

Modifying String objects

String is the only class overriding operator +:
contatenation

String firstName = "John", lastName = "Smith";

String fullName = firstName + lastName;

String objects are immutable

String firstName = lastName = "Major";

firstName = "John";

“modification” of a String always creates a new object!

Strings and Regular Expressions – p.3/23

Modifying String objects II

Frequently modifying String objects may lead to
inefficiency

Run concat.java from the course home page as an
example

Alternative: StringBuffer class

In General:

Object creation and reclamation is costly: =⇒
Avoid creating intermediate objects if not necessary!

Strings and Regular Expressions – p.4/23

Mutable String : StringBuffer

StringBuffer objects are mutable (and thread-safe)

Dynamic in size (in an efficient way)

Modification and search methods
insert, append, delete, replace
indexOf, lastIndexOf

More efficient single-thread version: StringBuilder ,
preferable in most cases

Strings and Regular Expressions – p.5/23

String Comparison

String s = "Ahab", t = "Ahab";

if (s == t) System.out.println(s);

Will s be printed?

Strings and Regular Expressions – p.6/23

String Comparison

String s = "Ahab", t = "Ahab";

if (s == t) System.out.println(s);

Will s be printed?

No! operator == only tests for object identity!

If comparison of strings is wanted, use equals

x == y =⇒ x.equals(y)

x.equals(y) =⇒ x == y

Strings and Regular Expressions – p.6/23

String Comparison

String s = "Ahab", t = "Ahab";

if (s == t) System.out.println(s);

Will s be printed?

No! operator == only tests for object identity!

If comparison of strings is wanted, use equals

x == y =⇒ x.equals(y)

x.equals(y) =⇒ x == yX

Strings and Regular Expressions – p.6/23

Tokenization

Tokenization: Split a string into several units (the tokens)

Very frequently needed (where ?)

class java.util.StringTokenizer provides this
give an input string and a set of delimiters
sequentially supplies tokens on request

StringTokenizer(String s, String del, boolean retDelims)

set of delimiters
default: " \t\n\r\f": (space, tab, newline,
carriage-return, and the form-feed character)

Shall delimiters be tokens?

Strings and Regular Expressions – p.7/23

StringTokenizer Example

Split an input string using delimiters , , (and) , and let the
delimiters themselves be tokens:
StringTokenizer st =

new StringTokenizer("(1.0,2.0)", ",()", true);

while (st.hasMoreTokens())

{ System.out.println(st.nextToken()); }

Output:

(

1.0

,

2.0

)

Strings and Regular Expressions – p.8/23

StreamTokenizer Class

Works on a Reader rather than a String

More fine grained control over tokenization process:
Adaptable character set for words and white space
Optionally ignore C/C++ style comments
Are line breaks tokens or not
Optionally parses numbers
Support for quotation characters

String s can be processed by using StringReader

nextToken() returns a token type rather than a string

The string or number are in sval or nval , resp.

Have a look at the API documentation!

Strings and Regular Expressions – p.9/23

StreamTokenizer Example

HashSet<String> wordlist = new HashSet<String>();

try {

FileReader fr = new FileReader("InputFile.txt");

BufferedReader br = new BufferedReader(fr);

StreamTokenizer st = new StreamTokenizer(br);

st.resetSyntax();

st.wordChars(’A’, ’Z’); st.wordChars(’a’, ’z’);

while (st.nextToken() != StreamTokenizer.TT_EOF) {

if (st.ttype == StreamTokenizer.TT_WORD)

wordlist.add(st.sval);

}

} catch (IOException ioex) { System.out.println(ioex); }

for (String s : wordlist) System.out.println(s);

This prints every word in InputFile exactly once.

Strings and Regular Expressions – p.10/23

Regular Expressions

Σ∗ is the set of all strings over alphabet Σ

A regular expression r describes a set of strings L ∈ Σ∗

L is called the language of r

If a set L can be described by a regular expression, it is
called a regular language

An algorithm that checks if a string belongs to a regular
language L is called recognizer or matcher

Regular expressions are frequently used in string search
and editing tasks (certainly in your favorite text editor, too)

Strings and Regular Expressions – p.11/23

Regular Expressions: Definition

Regular expressions can be defined inductively:
Every element of Σ and ǫ (the empty string) is a regular
expression
If α and β are regular expressions, so are
• (αβ) (concatenation)
• (α β) (alternative), and
• (α∗) (Kleene star: zero or more repetitions of α)

Example: ((A (C (G T)))∗) is the set of gene sequences
of arbitrary length

In real world systems: less brackets, lots of syntactic sugar
like character classes or + operator for one or more
repetitions

Strings and Regular Expressions – p.12/23

Regular expressions in JAVA

java.util.regex package contains three relevant classes

Pattern a compiled representation of a regular
expression.

Matcher the engine that interprets the pattern and
performs match operations against an input string

PatternSyntaxException an unchecked exception that
indicates a syntax error in a regular expression pattern

Strings and Regular Expressions – p.13/23

Regular expressions: Code Example

String REGEX = "a(a|b) * b";

String INPUT = "aaabbb";

Pattern pattern;

Matcher matcher;

boolean found;

...

pattern = Pattern.compile(REGEX);

matcher = pattern.matcher(INPUT);

while(matcher.find()) {

System.out.println("I found the text \"" +

matcher.group() + "\" starting at " + matcher.start() +

" and ending at " + matcher.end() + ".");

found = true;

}

if(!found) { System.out.println("No match found."); }

Strings and Regular Expressions – p.14/23

Java Style of Regular expressions

String literals: REGEX = "john smith"

Metacharacters (characters with special meaning)
. (dot): matches any character
ˆ and $ match beginning/end of a string, respectively
Furthermore: () [] { } \ | ? * +

What if we need to match, e.g., ’[’ literally?
• precede metacharacter with backslash
• everything enclosed in \Q up to \E is treated literally
• Watch Out: a backslash in a Java String literal

requires two: "\\]" "\\Q[|]\\E"

Strings and Regular Expressions – p.15/23

Character Classes & Quantifiers

Character classes are abbreviations for sets of characters

See Pattern API for specification of character classes

Strings and Regular Expressions – p.16/23

Character Classes & Quantifiers

Character classes are abbreviations for sets of characters

See Pattern API for specification of character classes

metacharacters are different in character classes

Strings and Regular Expressions – p.16/23

Character Classes & Quantifiers

Character classes are abbreviations for sets of characters

See Pattern API for specification of character classes

metacharacters are different in character classes

Quantifiers:
x * : zero or more times x

Strings and Regular Expressions – p.16/23

Character Classes & Quantifiers

Character classes are abbreviations for sets of characters

See Pattern API for specification of character classes

metacharacters are different in character classes

Quantifiers:
x * : zero or more times x
x + : one or more times x

Strings and Regular Expressions – p.16/23

Character Classes & Quantifiers

Character classes are abbreviations for sets of characters

See Pattern API for specification of character classes

metacharacters are different in character classes

Quantifiers:
x * : zero or more times x
x + : one or more times x
x ? : zero or one time x

Strings and Regular Expressions – p.16/23

Character Classes & Quantifiers

Character classes are abbreviations for sets of characters

See Pattern API for specification of character classes

metacharacters are different in character classes

Quantifiers:
x * : zero or more times x
x + : one or more times x
x ? : zero or one time x
x{n,m} : n to m times x
x{n, } : at least n times x
x{,m} : at most m times x

Strings and Regular Expressions – p.16/23

Quantifier types

There are three sets of Quantifiers (? * + {n,m})

Greedy Quantifiers: tries to match as much as possible of
the input string, reads the whole input prior to attempting
the first match. Backs off one character, if the match fails
and tries again.

Strings and Regular Expressions – p.17/23

Quantifier types

There are three sets of Quantifiers (? * + {n,m})

Greedy Quantifiers: tries to match as much as possible of
the input string, reads the whole input prior to attempting
the first match. Backs off one character, if the match fails
and tries again.

Reluctant Quantifiers: starts at the beginning of the input
string, then reluctantly eat one character at a time looking
for a match.

Strings and Regular Expressions – p.17/23

Quantifier types

There are three sets of Quantifiers (? * + {n,m})

Greedy Quantifiers: tries to match as much as possible of
the input string, reads the whole input prior to attempting
the first match. Backs off one character, if the match fails
and tries again.

Reluctant Quantifiers: starts at the beginning of the input
string, then reluctantly eat one character at a time looking
for a match.

Possessive quantifiers always eat the entire input string,
trying once (and only once) for a match. They never back
off.

Strings and Regular Expressions – p.17/23

Quantifier Example

Current REGEX is: . * foo // greedy quantifier

Current INPUT is: xfooxxxxfoo

I found the text "xfooxxxxfoo" starting at 0 and ending at 11.

Current REGEX is: . * ?foo // reluctant quantifier

Current INPUT is: xfooxxxxfoo

I found the text "xfoo" starting at 0 and ending at 4.

I found the text "xxxxfoo" starting at 4 and ending at 11.

Current REGEX is: . * +foo // possessive quantifier

Current INPUT is: xfooxxxxfoo

No match found.

Strings and Regular Expressions – p.18/23

Grouping

Expressions can be grouped using parentheses:
((ab) * (b+(c)))

Strings and Regular Expressions – p.19/23

Grouping

Expressions can be grouped using parentheses:
((ab) * (b+(c)))

Such groups are by default capturing, i.e., the material in
the group is saved in memory for later use

Strings and Regular Expressions – p.19/23

Grouping

Expressions can be grouped using parentheses:
((ab) * (b+(c)))

Such groups are by default capturing, i.e., the material in
the group is saved in memory for later use

Capturing groups are numbered by counting opening
parentheses from left to right:
1. ((ab) * (b+(c)))
2. (ab)

3. (b+(c))

4. (c)

Strings and Regular Expressions – p.19/23

Using Capturing Groups

Groups can be used with back reference: "((ab) *)\\1"

Specify with a backslash (\) followed by a number

Remember: you have to use two backslashes in a Java
String literal to get one in the string

The reference with number n has to match exactly the
same string as was matched by group n

the group(int which) method of class Matcher can
be also be used to retrieve the matched groups.

This allows to get many matches with a single matches
call: a very specialized split

Strings and Regular Expressions – p.20/23

Splitting using RegExps

The split method can be used to split a string with
delimiters specified as regular expressions.

REGEX = ":++";

INPUT = "one::::two::three:four:five";

Pattern p = Pattern.compile(REGEX);

String[] items = p.split(INPUT);

for(int i = 0; i < items.length ; i++)

{ System.out.println(items[i]); }

There are also split and matches methods in the
String class for one-shot application of regular
expressions

Think about the creation of intermediate objects when
using them

Strings and Regular Expressions – p.21/23

Replacement methods

There are several methods to replace matched string
portions by new material

Again, there are convenience methods in String , too

Some examples:

String replaceAll(String replacement)

String replaceFirst(String replacement)

Matcher appendReplacement(StringBuffer sb, String repl)

StringBuffer appendTail(StringBuffer sb)

Strings and Regular Expressions – p.22/23

appendReplacement Example
Pattern p = Pattern.compile("cat");

Matcher m = p.matcher("one cat two cats in the yard");

StringBuffer sb = new StringBuffer();

int i = 1;

while (m.find())

{ m.appendReplacement(sb, "dog" + i++); }

m.appendTail(sb);

System.out.println(sb.toString());

returns: "one dog1 two dog2s in the yard"

Further Reading to Java regular expressions:

Mastering Regular Expressions, 2nd Edition,
Jeffrey E.F. Friedl, O’Reillly, 2002

Strings and Regular Expressions – p.23/23

	String handling in Java
	Modifying {	t String} objects
	Modifying {	t String} objects II
	Mutable {	t String}: {	t StringBuffer}
	String Comparison
	Tokenization
	{	t StringTokenizer} Example
	{	t StreamTokenizer} Class
	{	t StreamTokenizer} Example
	Regular Expressions
	Regular Expressions: Definition
	Regular expressions in JAVA
	Regular expressions: Code Example
	Java Style of Regular expressions
	Character Classes & Quantifiers
	Quantifier types
	Quantifier Example
	Grouping
	Using Capturing Groups
	Splitting using RegExps
	Replacement methods
	{	t appendReplacement} Example

