
Java II
Natural Language Algorithms in Java

Data Structures for Disjoint Sets

Bernd Kiefer

{Bernd.Kiefer}@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

Disjoint Sets – p.1/7



Disjoint Set Data Structures

Problem: a set with n elements and a (total) equivalence
relation ≡

Implement the following operations efficiently:
do elements a and b belong to the same class?
put a into the equivalence class of b

merge the equivalence classes of a and b (union)

assume the elements are numbered consecutively

use a vector V of n elements containing integers

if V [n] = n, n is the representative of the class

otherwise, V [n] points directly or indirectly to the
representative

Disjoint Sets – p.2/7



Straightforward Implementation

proc find-representative(a) ≡

while V [a] 6= a do a := V [a]
return a

proc equiv(a, b) ≡

return find-representative(a) = find-representative(b)

proc union(a, b)
a := find-representative(a)
V [a] := find-representative(b)

Disjoint Sets – p.3/7



Example I

5

1
0

3

2
4

6

7

8

union(3, 8)

Disjoint Sets – p.4/7



Example I

5

1
0

3

2
4

6

7

8

union(3, 8)

Disjoint Sets – p.4/7



Example I

5

1
0

3

2
4

6

7

8

union(3, 8)
equiv(6, 3)

Disjoint Sets – p.4/7



Improving Asymptotic Complexity

the tree can degenerate into a spine of length O(n)

idea: use the freedom in merging two sets
for every representative, maintain the size of the set it
represents
always merge the smaller set into the bigger
instead maintaining the rank (an approximation of the
tree height) gives the same asymptotic results
Any tree of height h must then at least containt 2h

elements

additionaly, shorten the paths during each equiv operation

Disjoint Sets – p.5/7



Improved Implementation

proc find-representative(a) ≡

while V [a] 6= V [V [a]] do
a := V [a] := V [V [a]] // path compression

return V [a]

proc union(a, b)
a := find-representative(a)
b := find-representative(b)
if size(a) > size(b) then

exchange(a, b) // merge b into a
V [a] := b // merge a into b
size(b) = size(a) + size(b)

Disjoint Sets – p.6/7



Size + Path Compression

5
5

1
0

3

2
3

4

61

7

8

union(7, 8)

Disjoint Sets – p.7/7



Size + Path Compression

5
8

1
0

3

2
4

61

7

8

union(7, 8)

Disjoint Sets – p.7/7



Size + Path Compression

5
8

1
0

3

2
4

61

7

8

union(7, 8)
equiv(3, 8)

Disjoint Sets – p.7/7



Size + Path Compression

5
8

1
0

3

2
4

61

7

8

union(7, 8)
equiv(3, 8)

Disjoint Sets – p.7/7


	Disjoint Set Data Structures
	Straightforward Implementation
	Example I
	Improving Asymptotic Complexity
	Improved Implementation
	Size + Path Compression

