Java II
 Natural Language Algorithms in Java Data Structures for Disjoint Sets

Bernd Kiefer
\{Bernd.Kiefer\}@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

Disjoint Set Data Structures

- Problem: a set with n elements and a (total) equivalence relation \equiv
- Implement the following operations efficiently:
- do elements a and b belong to the same class?
- put a into the equivalence class of b
- merge the equivalence classes of a and b (union)
- assume the elements are numbered consecutively
- use a vector \mathcal{V} of n elements containing integers
- if $\mathcal{V}[n]=n, n$ is the representative of the class
- otherwise, $\mathcal{V}[n]$ points directly or indirectly to the representative

Straightforward Implementation

proc find-representative $(a) \equiv$ while $\mathcal{V}[a] \neq a$ do $a:=\mathcal{V}[a]$
return a
proc equiv $(a, b) \equiv$
return find-representative $(a)=$ find-representative (b)
proc union (a, b)
$a:=$ find-representative (a)
$\mathcal{V}[a]:=$ find-representative (b)

union $(3,8)$

Example I

union $(3,8)$

union $(3,8)$
equiv $(6,3)$

Improving Asymptotic Complexity

- the tree can degenerate into a spine of length $O(n)$
- idea: use the freedom in merging two sets
- for every representative, maintain the size of the set it represents
- always merge the smaller set into the bigger
- instead maintaining the rank (an approximation of the tree height) gives the same asymptotic results
- Any tree of height h must then at least containt 2^{h} elements
- additionaly, shorten the paths during each equiv operation

Improved Implementation

proc find-representative $(a) \equiv$
while $\mathcal{V}[a] \neq \mathcal{V}[\mathcal{V}[a]]$ do

$$
a:=\mathcal{V}[a]:=\mathcal{V}[\mathcal{V}[a]] \quad \text { // path compression }
$$

return $\mathcal{V}[a]$
proc union (a, b)
$a:=$ find-representative (a)
$b:=$ find-representative(b)
if $\operatorname{size}(a)>\operatorname{size}(b)$ then
exchange $(a, b) \quad / /$ merge \mathbf{b} into a
$V[a]:=b \quad / /$ merge a into b
$\operatorname{size}(b)=\operatorname{size}(a)+\operatorname{size}(b)$

Size + Path Compression

union $(7,8)$

Size + Path Compression

union $(7,8)$

Size + Path Compression

union $(7,8)$
equiv $(3,8)$

Size + Path Compression

union $(7,8)$
equiv $(3,8)$

