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Overview

 Finite-state automata (FSA) – What for?  
– Recap: Chomsky hierarchy of grammars and languages
– FSA, regular languages and regular expressions
– Appropriate problem classes and applications

 Finite-state automata and algorithms
– Regular expressions and FSA
– Deterministic (DFSA) vs. non-deterministic (NFSA) finite-state 

automata
– Determinization: from NFSA to DFSA
– Minimization of DFSA

 Extensions: finite-state transducers and FST operations



  

Finite-state automata: What for?

Chomsky Hierarchy of 
Languages

 Regular languages 
(Type-3)

 Context-free languages 
(Type-2)

 Context-sensitive languages 
(Type-1)

 Type-0 languages

Hierarchy of Grammars and 
Automata

 Regular PS grammar
Finite-state automata

 Context-free PS grammar 
Push-down automata

 Tree adjoining grammars 
Linear bounded automata

 General PS grammars
Turing machine

computationally more complex
less efficient



  

Finite-state automata model regular languages
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Finite-state
MACHINE

Finite-state automata model regular languages
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• properties of regular languages
• appropriate problem classes
• algorithms for FSA



  

Languages, formal languages and grammars

 Alphabet Σ : finite set of symbols
 String : sequence x1 ... xn of symbols xi from the alphabet Σ

– Special case: empty string ε
 Language over Σ : the set of strings that can be generated from Σ 

– Sigma star Σ* : set of all possible strings over the alphabet Σ 
 Σ = {a, b}    Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}

– Sigma plus Σ+ :  Σ+ = Σ* -{ε} 
– Special languages:  ∅ = {} (empty language) ≠ {ε} (language of empty string)

 A formal language : a subset of Σ*
 Basic operation on strings: concatenation •

– If a = xi … xm  and b = xm+1 … xn then a⋅ b = ab = xi … xmxm+1 … xn 

– Concatenation is associative but not commutative
– ε is identity element : aε = ε a = a

 A grammar of a particular type generates a language of a corresponding type

S
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Recap on Formal Grammars and Languages

 A formal grammar is a tuple G = < Σ , Φ , S, R>
– Σ alphabet of terminal symbols 
– Φ alphabet of non-terminal symbols (Σ ∩ Φ =∅)
– S the start symbol
– R finite set of rules R ⊆ Γ * × Γ * of the form α → β 

where Γ = Σ ∪ Φ and α ≠ ε and α ∉ Σ*
 The language L(G) generated by a grammar G 

– set of strings w ⊆  Σ* that can be derived from S according to G=<Σ ,Φ, S, R>
 Derivation: given G=<Σ, Φ, S, R> and u,v ∈ Γ* = (Σ ∪ Φ)*

– a direct derivation (1 step) w ⇒G v holds iff
u1, u2 ∈ Γ* exist such that w = u1α u2 and v = u1β u2, and α → β  ∈ R exists

– a derivation w ⇒G* v holds iff either w = v 
                                            or z ∈ Γ* exists such that w ⇒G* z and z ⇒G v 

 A language generated by a grammar G:  L(G) = {w : S ⇒G* w & w ∈ Σ*}
I.e., L(G) strongly depends on R ! 



  

Chomsky Hierarchy of Grammars

 Classification of languages generated by formal grammars
– A language is of type i (i = 0,1,2,3) iff it is generated by a type-i grammar 
– Classification according to increasingly restricted types of production rules 

L-type-0  ⊃   L-type-1  ⊃   L-type-2  ⊃   L-type-3
– Every grammar generates a unique language, but a language can be generated 

by several different grammars.
– Two grammars are 

 (Weakly) equivalent if they generate the same string language
 Strongly equivalent if they generate both the same string language 

                                    and the same tree language



  

Chomsky Hierarchy of Grammars

Type-0 languages: general phrase structure grammars
 no restrictions on the form of production rules:

arbitrary strings on LHS and RHS of rules
 A grammar G = <Σ, Φ, S, R> generates a language L-type-0 iff

– all rules R are of the form α → β, where α ∈ Γ+ and β ∈ Γ*  (with Γ = Σ ∪ Φ)
– I.e., LHS a nonempty sequence of NT or T symbols with at least one NT 

symbol and RHS a possibly empty sequence of NT or T symbols
 Example:

G = <{S,A,B,C,D,E},{a},S,R>,  L(G) = {a2n | n≥1}
S → ACaB.              CB → E.           aE → Ea.
Ca → aaC.                aD → Da.         AE → ε. 
CB → DB.                AD → AC.
 a22 = aaaa ∈ L(G) iff  S ⇒* aaaa



  

Chomsky Hierarchy of Grammars

Type-1 languages: context-sensitive grammars
 A grammar G = <Σ, Φ, S, R> generates a language L-type-1 iff

– all rules R are of the form αAγ → αβγ , or S → ε  (with no S symbol on RHS)
where A ∈ Φ and α, β, γ  ∈ Γ* (Γ = Σ ∪ Φ), β ≠ ε  

– I.e., LHS: non-empty sequence of NT or T symbols with at least one NT 
symbol
and RHS a nonempty sequence of NT or T symbols (exception: S → ε )

– For all rules  LHS → RHS :  |LHS|  ≤ |RHS|
 Example:

L = { an bn cn | n≥1}
 R = { S → a S B C,       a B → a b,

          S → a B C,          b B → b b,  
          C B → B C,         b C → b c,    c C → c c }
 a3b3c3 = aaabbbccc ∈ L(G) iff  S ⇒* aaabbbccc



  

Chomsky Hierarchy of Grammars

Type-2 languages: context-free grammars 
 A grammar G = <Σ, Φ, S, R> generates a language L-type-2 iff

– all rules R are of the form A → α, 
where A ∈ Φ and α ∈ Γ* (Γ = Σ ∪ Φ)

– I.e., LHS: a single NT symbol; RHS a (possibly empty) sequence of NT or T 
symbols

 Example:
L = { an b an | n ≥1}
R = { S → A S A, S → b, A → a }



  

Chomsky Hierarchy of Grammars

Type-3 languages: regular or finite-state grammar 
 A grammar G = <Σ, Φ, S, R> is called right (left) linear (or regular) iff

– all rules R are of the form 
 Α → w or A → wB (or A → Bw), where A,B ∈ Φ and w ∈ Σ∗

– i.e., LHS: a single NT symbol; RHS: a (possibly empty) sequence of T symbols, 
optionally followed (preceded) by a NT symbol

 Example:
 Σ = { a, b }
 Φ = { S, A, B}
 R = { S → a A,      B → b B,
            A → a A,      B → b 
            A → b b B                  }
 
S ⇒ a A ⇒ a a A ⇒ a a b b B ⇒ a a b b b B ⇒ a a b b b b

S

Aa

b A

b B

Bb

b

b



  

Operations on languages

 Typical set-theoretic operations on languages
– Union: L1 ∪ L2 = { w : w∈L1 or w∈L2 }

– Intersection: L1 ∩ L2 = { w : w∈L1 and w∈L2 }

– Difference: L1 - L2 = { w : w∈L1 and w∉ L2 }

– Complement of L ⊆ Σ* wrt. Σ*:  L– = Σ* - L
 Language-theoretic operations on languages

– Concatenation: L1L2 = {w1w2 : w1∈L1 and w2∈L2}

– Iteration: L0={ε},  L1=L,  L2=LL,  ...  L*= ∪i≥0 Li,  L+ = ∪i>0 Li

– Mirror image: L-1 = {w-1 : w∈L}
 Union, concatenation and Kleene star are called regular operations
 Regular sets/languages: languages that are defined by the regular 

operations: concatenation (⋅) , union (∪) and kleene star (*)
 Regular languages are closed under concatenation, union, kleene star, 

intersection and complementation



  

Regular languages, regular expressions and FSA
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Regular languages and regular expressions

 Regular sets/languages can be specified/defined by regular expressions
Given a set of terminal symbols Σ, the following are regular expressions
– ε  is a regular expression
– For every a ∈ Σ, a is a regular expression
– If R is a regular expression, then R* is a regular expression
– If Q,R are regular expressions, then QR (Q ⋅ R) and Q ∪ R are regular 

expressions
 Every regular expression denotes a regular language

– L(ε) = {ε}
– L(a) = {a} for all a ∈ Σ
– L(αβ) = L(α)L(β) 
– L(α ∪β) = L(α) ∪ L(β) 
– L(α*) = L(α)*



  

 Grammars: generate (or recognize) languages
Automata: recognize (or generate) languages

 Finite-state automata recognize regular languages
 A finite automaton (FA) is a tuple A = <Φ,Σ, δ, q0,F>

– Φ a finite non-empty set of states
– Σ  a finite alphabet of input letters
– δ a transition function Φ × Σ  → Φ 
– q0 ∈ Φ  the initial state

– F ⊆ Φ the set of final (accepting) states
 Transition graphs (diagrams):

– states: circles                                                                          p∈ Φ 

– transitions: directed arcs between circles                               δ(p, a) = q

– initial state                                                                              p = q0

– final state                                                                                r ⊆ F

p

Finite-state automata (FSA)

p qa

p

r



  

FSA transition graphs and traversal

 Transition graph

 Traversal of an FSA
= Computation with an FSA
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S = q0  F = {q5, q8 } 

Transition function  δ: Φ × Σ → Φ
δ(q0,c)=q1

δ(q0,e)=q3

δ(q0,l)=q6

δ(q1,l)=q2

δ(q2,e)=q3

δ(q3,a)=q4

δ(q3,v)=q9

δ(q4,r)=q5

δ(q6,e)=q7

δ(q7,t)=q8

δ(q8,t)=q9

δ(q9,e)=q4



  

FSA transition graphs and traversal

 Transition graph                                   State diagram

 Traversal of an FSA
= Computation with an FSA
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FSA can be used for
•  acceptance (recognition)
•  generation



  

FSA traversal and acceptance of an input string

 Traversal of a (deterministic) FSA
– FSA traversal is defined by states and transitions of A, 

relative to an input string w∈Σ*
– A configuration of A is defined by the current state and the unread part of the 

input string: (q, wi,),  with q∈Φ, wi suffix of w

– A transition: a binary relation between configurations
(q,wi) |–A (q’,wi+1) iff  wi = zwi+1 for z∈Σ and δ(q,z)= q’ 
(q,wi) yields (q’,wi+1) in a single transition step

– Reflexive, transitive closure of |–A: (q, wi) |–*A (q’, wj) 
(q, wi) yields (q’, wj) in zero or a finite number of steps 

 Acceptance
– Decide whether an input string w is in the language L(A) defined by FSA A
– An FSA A accepts a string w iff (q0,w) |–*A (qf, ε), with q0 initial state, qf ⊆ F

– The language L(A) accepted by FSA A is the set of all strings accepted by A
I.e., w ∈ L(A) iff  there is some qf ⊆ FA such that (q0,w) |–*A (qf, ε)



  

Regular grammars and Finite-state automata

 A grammar G = <Σ, Φ, S, R> is called right linear (or regular) iff
all rules R are of the form A → w or A → wB, where A,B ∈ Φ and w ∈ Σ*
– Σ={a, b},  Φ={S,A,B},  R={S → aA, A → aA, A → bbB, B → bB, B → b}

S ⇒ aA ⇒ aaA ⇒ aabbB ⇒ aabbbB ⇒ aabbbb
– The NT symbol corresponds to a state in an FSA: the future of the derivation only 

depends on the identity of this state or symbol and the remaining production 
rules.

– Correspondence of type-3 grammar rules 
with transitions in a (non-deterministic) FSA:

 Α → w B    ≡    δ(Α,w)=Β
 Α → w        ≡    δ(Α,w)=q,  q ∈Φ

– Conversely, we can construct an FSA 
from the rules of a type-3 language

 Regular grammars and FSA can be shown to be equivalent
 Regular grammars generate regular languages
 Regular languages are defined by concatenation, union, kleene star

S

Aa

b A

b B

Bb

b

b



  

Deterministic finite-state automata

 Deterministic finite-state automata (DFSA)
– at each state, there is at most one transition that can be taken to read the 

next input symbol 
– the next state (transition) is fully determined by current configuration
– δ is functional (and there are no ε-transitions)

 Determinism is a useful property for an FSA to have!
– Acceptance or rejection of an input can be computed in linear time 0(n) for 

inputs of length n
– Especially important for processing of LARGE documents

 Appropriate problem classes for FSA
– Recognition and acceptance of regular languages,

in particular string manipulation, regular phonological and morphological 
processes

– Approximations of non-regular languages in morphology, shallow finite-
state parsing, …



  

Multiple equivalent FSA 

 FSA for the language Llehr = { lehrbar, lehrbarkeit, belehrbar, 
belehrbarkeit, unbelehrbar, unbelehrbarkeit, unlehrbar, unlehrbarkeit }

 DFSA for Llehr

 Regular expression and FSA for Llehr : (un | ε) (be lehr | lehr) bar (keit | ε)
(non-deterministic)

 Equivalent FSA
(non-deterministic)

un

lehr keit

be

ε ε
bar

un keitbe

ε lehr

bar

ε

lehr

un be lehr bar keit

be

lehr

lehr



  

Defining FSA through regular expressions

 FSA for even mildly complex regular languages are best constructed 
from regular expressions!

 Every regular expression denotes a regular language
– L(ε) = {ε}

– L(a) = {a} for all a ∈ Σ

 Every regular expression translates to a FSA  (Closure properties)
– An FSA for a (with L(a) = {a}), a ∈ Σ: 

– An FSA for ε (with L(ε) = {ε }), ε ∈ Σ:    

– Concatenation of two FSA FA and FB:

 ΣΑΒ = ΣΑ  (Σ initial state)

 ΦΑΒ = ΦΒ   (Φ set of final states)

∀ δΑΒ = δΑ ∪ δΒ ∪ {δ(<qi,ε>,qj) | qi ∈ ΦΑ, qj = ΣΒ }

a

● L(αβ ) = L(α)L(β) 
●  L(α ∪β) = L(α) ∪ L(β) 
●  L(α*) = L(α)*

ε 

FA FB

FAB
ε 



  

Defining FSA through regular expressions

– union of two FSA FA and FB:
 SAB = s0  (new state)
 FAB = { sj } (new state)

∀ δAB = δA ∪ δB 

              ∪ {δ(<q0,ε>,qz) | q0 = SAB, ( qz = SA or qz = SB)}
         ∪ {δ(<qz,ε>,qj) | (qz∈FA or qz∈FB), qi ∈FAB}

– Kleene Star over an FSA FA :
 SA* = s0  (new state)
 FA* = { qj } (new state)

∀ δAB = δA  ∪ 

              ∪ {δ(<qj,ε>,qz) | qj ∈ FA, qz = SA)}

              ∪ {δ(<q0,ε>,qz) | q0 = SA*, ( qz = SA or qz = FA*)}
         ∪ {δ(<qz,ε>,qj) | qz∈FA , qj∈FA*}

FA

FA∪Bε ε 

FB
ε ε 

FA

FA*
ε ε 

ε 

ε 



  

ε 

Defining FSA through regular expressions

(ab ∪ aba)* 

 ε-transition: move to δ(q, ε) without reading an input symbol 
 FSA construction from regular expressions yields 

a non-deterministic FSA (NFSA)
– Choice of next state is only partially determined by the current configuration, 

i.e., we cannot always predict which state will be the next state in the traversal

a b ε ε ε 

a bε ε ε a

ε 

ε 

ε ε 

ε 

ε 
ε 

ε 



  

Non-deterministic finite-state automata (NFSA)
 Non-determinism

 Introduced by ε-transitions and/or
 Transition being a relation Δ over Φ × Σ* × Φ, i.e. a set of triples <qsource,z,qtarget>

Equivalently: Transition function δ maps to a set of states: δ: Φ × Σ → ℘(Φ)

 A non-deterministic FSA (NFSA) is a tuple A = <Φ,Σ, δ, q0,F>
 Φ a finite non-empty set of states
 Σ  a finite alphabet of input letters
 δ a transition function Φ × Σ* → ℘(Φ)     (or a finite relation over Φ × Σ* × Φ)
 q0 ∈ Φ  the initial state
 F ⊆ Φ the set of final (accepting) states

 Adapted definitions for transitions and acceptance of a string by a NFSA
 (q,w) |–A (q’,wi+1) iff  wi = zwi+1 for z∈Σ* and q’∈ δ(q,z) 
 An NDFA (w/o ε) accepts a string w iff there is some traversal such that 

(q0,w) |–*A (q’, ε) and q’ ⊆ F.
 A string w is rejected by NDFA A iff A does not accept w, 

i.e. all configurations of A for string w are rejecting configurations!



  

ε 

Non-determinism in FSA

(ab ∪ aba)* 

a b ε ε ε 

a bε ε ε a

ε 

ε 

ε ε 

ε 

ε 
ε 

ε 

a b a
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Non-determinism in FSA

(ab ∪ aba)* 

a b ε ε ε 

a bε ε ε a
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Non-determinism in FSA

(ab ∪ aba)* 
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Non-determinism in FSA

(ab ∪ aba)* 
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Non-determinism in FSA

(ab ∪ aba)* 
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a bε ε ε a
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Equivalence of DFSA and NFSA

 Despite non-determinism, NFSA are not more powerful than DFSA: 
they accept the same class of languages: regular languages

 For every non-deterministic FSA there is deterministic FSA that 
accepts the same language (and vice versa)
– The corresponding DFSA has in general more states, in which it models 

the sets of possible states the NFSA could be in in a given traversal

 There is an algorithm (via subset construction) that allows conversion 
of an NFSA to an equivalent DFSA

Efficiency considerations: an FSA is most efficient and compact iff

 It is a DFSA  (efficiency)     → Determinization of NFSA

 It is minimal  (compact encoding) → Minimization of FSA



  

 FSA  A1 and A2 are equivalent iff L(A1) = L(A2)

 Theorem: for each NFSA there is an equivalent DFSA
 Construction: A = < Φ, Σ, δ, q0, F > a NFSA over Σ

– define eps(q) = { p ∈ Φ | (q, ε, p) ∈δ }

– define an FSA A‘= <Φ’,Σ, δ’, q0’,F’> over sets of states, with

Φ’={B | B⊆ Φ}
q0’={eps(q0)}

δ’(B,a) =  { ⋃ eps(p) | q ∈Β and ∃ p∈B such that (q, a, p) ∈ δ }
F’={B ⊆ Φ | B ∩ F ≠ ∅}

 A’ satisfies the definition of a DFSA. We need to show that L(A) = L(A’)

 Define   D(q, w) :=  { p ∈ Φ | (q, w) ⊢*

A
(p, ε) }         and

                D'(Q, w) := { P ∈ Φ' | (Q, w) ⊢*

A'
(P, ε) }

Equivalence of DFSA and NFSA



  

Prove:  D(q
0
, w) = D'({q

0
}, w) by induction over length of w

 |w| = 0 : by definition of D and D'
 Induction step: |w| = k+1, w = v a, by hypothesis:

D(q
0
, v) = D'({q

0
}, v) = {p

1
, p

2
, ... , p

k
 }= P

by def. of D: D(q
0
, w) =⋃

p  P ∈
{eps(q) | (p, a, q)  ∈ δ } 

by def. of  δ': D'({p
1
, p

2
, ... , p

k
 }, a) =⋃

p  P ∈
{eps(q) | (p, a, q)  ∈ δ }

it follows:
D'({q

0
}, w) = δ'(D'({q

0
}, w), a) = D'({p

1
, p

2
, ... , p

k
 }, a)

= ⋃
p  P ∈

{eps(q) | (p, a, q)  ∈ δ } = D(q
0
, w)  q.e.d.

 Finally, A and A' only accept if D'({q
0
}, w) = D(q

0
, w) contain a state F∈

Equivalence of DFSA and NFSA: Proof



  

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F>             A‘=<Φ’,Σ, δ’,q0’,F’> 

L(A)= a(ba)* ∪ a(bba)*

a

b

a

a

b

ba

Subset construction:

Compute δ’ from δ 
for all subsets S ⊆ Φ and a∈Σ s.th.
δ’(S,a) = { s’| ∃s∈S s.th. (s,a,s‘)∈δ}



  

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F>     A‘=<Φ’,Σ, δ’, q0’,F’>

L(A)= a(ba)* ∪ a(bba)* 

a

b

a

a

b

ba

1

2

4

3 5

6

Φ’= { B | B ⊆ {1,2,3,4,5,6}
q0’={1},
δ’({1},a)={2,3}, δ’({4},a)= {2},
δ’({1},b)=∅, δ’({4},b)= ∅,
δ’({2,3},a)= ∅, δ’({3},a)= ∅,
δ’({2,3},b)= {4,5}, δ’({3},b)= {5},
δ’({4,5},a)= {2}, δ’({5},a)= ∅,
δ’({4,5},b)= {6}, δ’({5},b)= {6}
δ’({2},a)= ∅,
δ’({2},b)= {4}, F’= {{2,3},{2},{3}}
δ’({6},a)= {3},
δ’({6},b)= ∅,



  

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F>     A‘=<Φ’,Σ, δ’, q0’,F’> 

a

b

a

a

b

ba

1

2

4

3 5

6

Φ’= { B | B ⊆ {1,2,3,4,5,6}
q0’={1},
δ’({1},a)={2,3}, δ’({4},a)= {2},
δ’({1},b)=∅, δ’({4},b)= ∅,
δ’({2,3},a)= ∅, δ’({3},a)= ∅,
δ’({2,3},b)= {4,5}, δ’({3},b)= {5},
δ’({4,5},a)= {2}, δ’({5},a)= ∅,
δ’({4,5},b)= {6}, δ’({5},b)= {6}
δ’({2},a)= ∅,
δ’({2},b)= {4}, F’= {{2,3},{2},{3}}
δ’({6},a)= {3},
δ’({6},b)= ∅,

1 2,3
a



  

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F>     A‘=<Φ’,Σ, δ’, q0’,F’> 

a

b

a

a

b

ba

1

2

4

3 5

6

Φ’= { B | B ⊆ {1,2,3,4,5,6}
q0’={1},
δ’({1},a)={2,3}, δ’({4},a)= {2},
δ’({1},b)=∅, δ’({4},b)= ∅,
δ’({2,3},a)= ∅, δ’({3},a)= ∅,
δ’({2,3},b)= {4,5}, δ’({3},b)= {5},
δ’({4,5},a)= {2}, δ’({5},a)= ∅,
δ’({4,5},b)= {6}, δ’({5},b)= {6}
δ’({2},a)= ∅,
δ’({2},b)= {4}, F’= {{2,3},{2},{3}}
δ’({6},a)= {3},
δ’({6},b)= ∅,

1 2,3
a

4,5
b



  

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F>     A‘=<Φ’,Σ, δ’, q0’,F’> 

a

b

a

a

b

ba

1

2

4

3 5

6

Φ’= { B | B ⊆ {1,2,3,4,5,6}
q0’={1},
δ’({1},a)={2,3}, δ’({4},a)= {2},
δ’({1},b)=∅, δ’({4},b)= ∅,
δ’({2,3},a)= ∅, δ’({3},a)= ∅,
δ’({2,3},b)= {4,5}, δ’({3},b)= {5},
δ’({4,5},a)= {2}, δ’({5},a)= ∅,
δ’({4,5},b)= {6}, δ’({5},b)= {6}
δ’({2},a)= ∅,
δ’({2},b)= {4}, F’= {{2,3},{2},{3}}
δ’({6},a)= {3},
δ’({6},b)= ∅,

1 2,3
a

4,5
b

2
a

6
b



  

Determinization by subset construction

NFSA A=<Φ,Σ, δ,q0,F>      DFSA A‘=<Φ’,Σ, δ’, q0’,F’> 

a

b

a

a

b

ba

1

2

4

3 5

6

5

4

1 2,3
a

4,5
b

2

6 3

a a

a

b

b

bb

L(A) = L(A’) = a(ba)* ∪ a(bba)*



  

ε-transitions and ε-closure
 Subset construction must account for ε-transitions
 ε-closure

– The ε-closure of some state q consists of q as well as all states that 
can be reached from q through a sequence of ε-transitions 

 q ∈ ε−closurε(q) 
 If r∈ε−closure(q) and (r, ε,q‘)∈δ, then q’∈ ε−closure(q),

− ε-closure defined on sets of states

∀ ε-closure(R) =         ε-closure(q)                (with Ρ ⊆ Φ) 
                                                                               

 Subset construction for ε-NFSA
– Compute δ’ from δ for all subsets S ⊆Φ and a∈Σ s.th.

δ’(S,a) = { s’’| ∃s∈S s.th. (s,a,s‘)∈δ  and s’’∈ ε-closure(s’) }

∪
q∈R



  

Example

 ε-NFSA for (a|b)c*

2 4

ε

ε

ε

ε
ε ε ε

εa

b
c

0

1 3

5 6 7 8 9

ε-closure for all s∈Φ:
ε-closure(0)={0,1,2},
ε-closure(1)={1},
ε-closure(2)={2},
ε-closure(3)={3,5,6,7,9},
ε-closure(4)={4,5,6,7,9},
ε-closure(5)={5,6,7,9},
ε-closure(6)={6,7,9},
ε-closure(7)={7},
ε-closure(8)={8,7,9},
ε-closure(9)={9}

ε

Transition function over subsets
δ’({0},ε)= {0,1,2},
δ’({0,1,2},a)={3,5,6,7,9},
δ’({0,1,2},b)= {4,5,6,7,9},
δ’({3,5,6,7,9},c)= {8,7,9},
δ’({4,5,6,7,9},c)= {8,7,9},
δ’({8,7,9},c)= {8,7,9}

 012

35679

45679

 879

a

b

c

c
c
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An algorithm for subset construction

 Construction of DFSA A‘=<Φ’,Σ, δ’,q0’,F’> from NFSA A=<Φ,Σ, δ, q0,F> 

– Φ’={B| B ⊆ Φ}, if unconstrained can be 2|Φ|

with |Φ| = 33 this could lead to an FSA with 233 states 
(exceeds the range of integers in most programming languages)

– Many of these states may be useless

a,b

0
a

b

b

a

L= (a|b)a* ∪ ab+a*

21
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An algorithm for subset construction

 Construction of DFSA A‘=<Φ’,Σ, δ’,q0,F’> from NFSA A=<Φ,Σ, δ, q0,F> 

– Φ’={B| B⊆Φ}, if unconstrained can be 2|Φ|

with |Φ| = 33 this could lead to an FSA with 233 states 
(exceeds the range of integers in many programming languages)

– Many of these states may be useless

a,b

0
a

b

b

a

L= (a|b)a* ∪ ab+a*
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b

a1
a a

aa,b

a,bb

b
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An algorithm for subset construction

 Construction of DFSA A‘=<Φ’,Σ, δ’,q0,F’> from NFSA A=<Φ,Σ, δ, q0,F> 

– Φ’={B| B⊆Φ}, if unconstrained can be 2|Φ|

with |Φ| = 33 this could lead to an FSA with 233 states 
(exceeds the range of integers in many programming languages)

– Many of these states may be useless

a,b

0
a

b

b

a

L= (a|b)a* ∪ ab+a*

2

b

a1
a a

aa,b

a,bb

b

No transition can ever 
enter these states
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An algorithm for subset construction

 Construction of DFSA A‘=<Φ’,Σ, δ’,q0,F’> from NFSA A=<Φ,Σ, δ, q0,F> 

– Φ’={B| B⊆Φ}, if unconstrained can be 2|Φ|

with |Φ| = 33 this could lead to an FSA with 233 states 
(exceeds the range of integers in many programming languages)

– Many of these states may be useless

a,b

0
a

b

b

a

L= (a|b)a* ∪ ab+a*

2

b

a
a a

b

Only consider states 
that can be traversed 

starting from q0



  

An algorithm for subset construction

 Basic idea: we only need to consider states B ⊆ Φ that can ever be traversed 
by a string w∈Σ*, starting from q0‘

 I.e., those B ⊆ Φ for which B = δ’(q0,w), for some w∈Σ*, with δ’ the 
recursively constructed transition function for the target DFSA A’

 Consider all strings w∈Σ* in order of their length: ε, a,b, aa,ab,ba,bb, aaa,...

      
      l=0 (ε)                   l=1 (a,b)                               l=2,3,4, … (aa, ab, ba, bb, aaa, aab, aba, …)

– Construction by increasing lengths of strings 
– For each a∈Σ, construct transitions to known or new states according to δ 
– New target states (A’) are placed in a queue (FIFO)
– Termination: no states left on queue

     
      

0 0

12

2

b

a
12

0 2b
aa a

b



  

An algorithm for subset construction

DETERMINIZE(Φ, Σ, δ, q0, F)
q0‘← q0

Φ’ ← {q0‘}
ENQUEUE(Queue, q0‘)
while Queue ≠ ∅
   S ← DEQUEUE(Queue)
   for a∈Σ
     δ’(S,a) = ∪r∈S δ(r,a) 

     if  δ’(S,a) ∉ Φ’ 
         Φ’ ← Φ’ ∪ δ’(S,a) 
         ENQUEUE(Queue, δ’(S,a))
         if  δ’(S,a) ∩ F ≠ ∅
             F‘ ← {δ’(S,a)}
         fi
     fi
return (Φ’,Σ, δ’, q0‘, F’)

Complexity

Maximal number of states 
placed in queue is 2|Φ| 
So, worst case runtime is exponential

• determinization is a costly operation, 
• but results in an efficient FSA
  (linear in size of the input)
• avoids computation of isolated states

Actual run time depends on the 
shape of the NFSA



  

1

Minimization of FSA

 Can we transform a large automaton into a smaller one 
(provided a smaller one exists)?

 If A is a DFSA, is there an algorithm for constructing an 
equivalent minimal automaton Amin from A?

 A can be transformed to A‘:
– States 2 and 3 in A “do the same job”: once A is in state 2 or 3, it 

accepts the same suffix string. Such states are called equivalent.
– Thus, we can eliminate state 3 without changing the language of A, 

by redirecting all arcs leading to 3 to 2, instead.

0 2
b

c
a

3 a1

0 2
b,c

b a

A A‘ A is equivalent to A‘
i.e., L(A) = L(A‘)

A‘ is smaller than A
i.e., |Φ| > |Φ‘|

b

aa



  

Minimization of FSA

 Right language of a state:
– For A=<Φ,Σ, δ, q0,F> a DFSA, the right language L→(q) of a state 

q∈Φ is the set of all strings accepted by A starting in state q:
L→(q) = {w∈Σ* | δ*(q,w) ∈F}

– Note: L→(q0) = L(A)
 State equivalence:

– For A=<Φ,Σ, δ, q0,F> a DFSA, 
if q,q’∈Φ, q and q‘ are equivalent (q ≡ q’) iff  L→(q) = L→(q’) 

– ≡ is an equivalence relation  (i.e., reflexive, transitive and symmetric)

– ≡ partitions the set of states Φ into a number of disjoint sets Q1 .. Qn of 

equivalence classes s.th. ∪i=1..m Qi = Φ and q ≡ q’ for all q,q’∈ Qi 

  A DFSA can be minimized
    if there are pairs of states q,q‘∈Φ that are equivalent
  Two states q,q’ are equivalent iff they accept the same right language.
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Partitioning a state set into equivalence classes

a

0

a

a

b

b

b

a

a

a

C1

C4

C0

C2

C3

All classes Ci consist
of equivalent states qj=i..n 
that accept identical 
right languages L→(qj)

Whenever two states q,q‘
belong to different classes,
L→(q) ≠ L→(q‘)

Equivalence classes 
on state set defined by ≡

Minimization:
elimination of equivalent states



  

Minimization of a DFSA 

     A DFSA A=<Φ,Σ, δ, q0,F> that contains equivalent states q, q’

     can be transformed to a smaller, equivalent DFSA A’=<Φ’,Σ, δ’, q0,F’> where
 Φ’ = Φ\{q’},  F’=F\{q’}, 
 δ’ is like δ with all transitions to q’ redirected to q:

   

 Two-step algorithm
– Determine all pairs of equivalent states q,q’
– Apply DFSA reduction until no such pair q,q’ is left in the automaton

 Minimality
– The resulting FSA is the smallest DFSA (in size of Φ) that accepts L(A):
     we never merge different equivalence classes, so we obtain one state per class. 

 We cannot do any further reduction and still recognize L(A). 
 As long as we have >1 state per class, we can do further reduction steps.

 A DFSA A=<Φ,Σ, δ, q0,F> is minimal iff  there is no pair of distinct but equivalent 
states ∈Φ, i.e.  ∀ q, q’∈Φ :  q ≡ q’  ⇔  q = q’

δ’(s,a) = q if δ(s,a) = q’;
δ’(s,a) = δ(s,a) otherwise



  

Example

5

1

7

3

2 6

4

a

0

a

a

b

b

b

a

a

a

1

7

3

2

4

0 a

bb

b

a

a

a



  

Example
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Algorithm

MINIMIZE(Φ, Σ, δ, q0, F)
main
  EqClass[] ← PARTITION(A)
  q0 ← EqClass[q0]
  for <q,a,q‘>∈δ 
       δ(q,a) ← min(EqClass[q‘])
  for q∈  Φ 
        if  q ≠ min(EqClass[q]) 
         Φ ← Φ\{q} 
         if  q∈  F
             F ← F\{q}

MINIMIZE
• PARTITION(A): 
   - determines all eqclasses of states in A
   -  returns array EqClass[q] of eq. classes of q
•  redirect all transitions <q,a,q‘>∈δ to point 
   to min(EqClass[q’])
•  remove all redundant states from Φ and F 



  

Computing partitions: Naïve partitioning

NAIVE_PARTITION(Φ, Σ, δ, q0, F)
for each q∈Φ
  EqClass[q] ← {q}
for each q∈Φ 
      for each q‘∈Φ 
        if  EqClass[q] ≠ EqClass[q‘] ∧ CHECKEQUIVALENCE(Aq,Aq‘) = True 
            EqClass[q] ← EqClass[q] ∪ EqClass[q‘]
            EqClass[q‘] ← EqClass[q]

NAIVE_PARTITION
•  array EqClass of pointers to disjoint sets for equivalence classes
•  first loop: initializing EqClass by {q}, for each q∈Φ
•  second nested loop: if we find new equivalent states q ≡ q’, 
                                    we merge the respective equivalence classes EqClasses 
                                    and reset EqClass[q] to point to the new merged class
Runtime complexity:   loops: 0(|Φ|2 )   CheckEquivalence: 0(|Φ|2 · |Σ|) ⇒ 0(|Φ|4 · |Σ|) !



  

Computing partitions: Dynamic Programming

 Source of inefficiency: naive algorithm traverses the whole automaton to 
determine, for pairs q,q‘, whether they are equivalent 

 Results of previous equivalence checks can be reused

p q a
ba

p‘ q‘ a
a

b

q     q‘≡

  If q    q‘,  L→(q) ≠ L→(q’), 
  therefore,
  for all <p,p‘> s.th. δ-1(p,a)=q and δ-1(p’,a)=q’
  for some a∈Σ, p     p’.

≡

≡p     p‘≡

   Thus, non-equivalence results can be propagated
●  Propagation from final/non-final pairs: L→(q) ≠ L→(q’) if q ∈F ∧ q’∉F
●  Propagation from pairs <q,q’> where δ(q,a) is defined but δ(q’,a) is not.



  

Propagation of non-equivalent states

Non-equivalence check for states <q,q‘>
– Only one of q, q’ is final
– For some a∈Σ, δ(q,a) is defined, δ(q’,a) is not

Propagation (I): Table filling algorithm 
                          (Aho, Sethi, Ullman)
 represent equivalence relation as a table
   Equiv, cells filled with boolean values
  initialize all cells with 1;
    reset to 0 for non-equivalent states
  main loop: call of PROPAGATE for non-
    equivalent states from LocalEquivalenceCheck 

LocalEquivalenceCheck(q,q‘)
if (q∈F and q‘∉F) or (q∉F and q‘∈F)
    return (False)
if ∃a∈Σ s.th. only one of δ(q,a), δ(q’,a)   
     is defined 
    return (False)
return (True)

PROPAGATE(q,q‘)
for a∈Σ
    for p∈δ-1(q,a),
       for p’∈δ-1(q’,a)
          if Equiv[min(p,p’),max(p,p’)]=1
              Equiv[min(p,p’),max(p,p’)] ← 0
              PROPAGATE(p,p‘)



  

Propagation of non-equivalent states

LocalEquivalenceCheck(q,q‘)
if (q∈F and q‘∉F) or (q∉F and q‘∈F)
    return (False)
if ∃a∈Σ s.th. only one of δ(q,a), δ(q’,a)   
     is defined 
    return (False)
return (True)

PROPAGATE(q,q‘)
for a∈Σ
    for p∈δ-1(q,a),
       for p’∈δ-1(q’,a)
          if Equiv[min(p,p’),max(p,p’)]=1
              Equiv[min(p,p’),max(p,p’)] ← 0
              PROPAGATE(p,p‘)

TableFillingPARTITION(Φ, Σ, δ, q0, F)
for q,q‘∈Φ, q<q’
    Equiv[q,q’] ← 1
for q∈Φ
     for q‘∈Φ, q<q’
          if  Equiv[q,q’]=1 and 
                   LocalEquivalenceCheck(q,q’)=False
              Equiv[q,q’] ← 0
              PROPAGATE(q,q‘)

Runtime Complexity: 0(|Φ|2 · |Σ|) 
• PROPAGATE is never called twice on a
  given pair of states (checks 
Equiv[q,q’]=1)
Space requirements: 0(|Φ|2) cells



  

More optimizations

 Hopcroft and Ullman: space requirement 0(|Φ|), by 
associating states with their equivalence classes

 Hopcroft: Runtime complexity of 0(|Φ| · log|Φ| · |Σ|), by 
distinction of active/non-active blocks 



  

Brzozowski‘s Algorithm

Minimization by reversal and determinization

DFSA A
reverse

NFSA A-1

determinize
DFSA A-1

reverse

NFSA (A-1)-1
determinizeDFSA (A-1)-1

Reversal
•  Final states of A— : set of initial states of A
•  Initial state of A— : F of A
•  δ–(q,a) = {p∈Φ | δ(p,a)=q }
•  L(A-1) = L(A)-1

L(A) L(A)-1

L(A)

L(A)



  

Why does it yield a minimal DFSA A‘?

DFSA A
rev

NFSA A-1

det
DFSA A-1

rev
NFSA (A-1)-1 DFSA (A-1)-1

Consider the right languages of states q, q‘ in NFSA (A-1)-1:

• If for all distinct states q, q‘ L→(q) ≠ L→(q’), i.e. L→(q) ∩ L→(q’) = ∅,
  it holds that each pair of states q,q’ recognize different right languages, 
  and thus, that the NFSA (A-1)-1 satisfies the minimality condition for a DFSA.

• If there were states q,q’ in NFSA (A-1)-1 s.th. L→(q) ∩ L→(q’) ≠ ∅,
  there would be some string w that leads to two distinct states in DFSA A-1.
  This contradicts the determinicity criterion of a DFSA. 

• Determinization of NFSA (A-1)-1 does not destroy the property of minimality

det

qo

DFSA A-1
a

a

b
c

d rev qo

NFSA (A–1) -1 a

a

b
c

d



  

Applications of FSA: String Matching

 Exact, full string matching
– Lexicon lookup: search for given word/string in a lexicon
– Compile lexicon entries to FSA by union
– Test input words for acceptance in lexicon-FSA 

Word
list

recognition/application/lookup
of input word w in/to FSA Alexicon:

(q0,w) |–*Alexicon (qf, ε) is true, 

with q0 initial state and qf ⊆ F
transition table!

compile 
to FSA

traversal and recognition (acceptance)



  

Applications of FSA: String Matching

 Substring matching 
– Identify stop words in stream of text
– Stem recognition: small, smaller, smallest 

 Make use of full power of finite-state operations!
– Regular expression with any-symbols for text search

 ?∗ small( ε | er | est) ?∗
 ?∗ ( a | the | …) ?∗

– Compilation to NFSA, convert to DFSA
– Application by composition of FST with full text   

 FSAtext stream  FST∘ small  : if defined, search term is substring of text



  

Application of FSA: Replacement

 (Sub)string replacement
– Delete stop words in text

– Stemming: reduce/replace inflected forms to stems: smallest → small
– Morphology: map inflected forms to lemmas (and PoS-tags): 

good, better, best → good+Adj
– Tokenization: insert token boundaries
– …

⇒ Finite-state transducers (FST)



  

From Automata to Transducers

q3
q0 q1 q2 q4 q5

l e a v e
q3

q0 q1 q2 q4 q5

l e a v e

l e f t ε

Automata
 recognition of an input string w

 define a language
 accept strings, with transitions 

defined for symbols ∈Σ

Transducers
 recognition of an input string w
 generation of an output string w‘

 define a relation between languages
 equivalent to FSA that accept pairs of 

strings, with transitions defined for 
pairs of symbols <x,y> 

 operations: replacement 
● deletion  <a, ε>, a ∈Σ -{ε}
● insertion <ε, a>, a ∈Σ -{ε}
● substitution <a, b>, a,b ∈Σ, a ≠ b



  

Transducers and composition

 An FSTs encodes a relation between languages
 A relation may contain an infinite number of ordered pairs,

e.g. translating lower case letters to upper case

 The application of a transducer to a string may also be viewed as 
composition of the FST with the (identity relation on the string)

a lower/upper case transducer
a:A,
b:B,
c:C,...

x:X y:Y z:Z z:Z y:Y
a path through the lower/upper 
case transducer, for string xyzzy

q5q4q4q3
q0 q1 q2

l e f v e

l e f t ε
+VBD

ε

  l   e  f  t
  L   E  F T

q5q4q4q3
q0 q1 q2

l e f v e

L E F T ε
+VBD

ε
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Off-the-shelf finite-state tools

 Xerox finite-state tools
– http://www.xrce.xerox.com/competencies/content-analysis/fst/

> Xerox Finite State Compiler  (Demo) 
– XFST Tools (provided with Beesley and Karttunen: Finite-State 

Morphology, CSLI Publications)
 Geertjan van Noord’s finite-state tools

– http://odur.let.rug.nl/~vannoord/Fsa/
 FSA Utilities at John Hopkins

– http://cs.jhu.edu/~jason/406/software.html
 AT&T FSM Library

– http://www.research.att.com/sw/tools/fsm/



  



  

Exercises

 Write a program for acceptance of a string by a DFSA. 
Then extend it to a finite-state transducer that can translate a surface form to lemma 
+ POS, or between upper and lower case.

 Determinize the following NFSA by subset construction.
A1=<{p,q,r,s},{a,b},δ1,p,{s}> where δ1 is as follows:

 Construct an NFSA with ε-transitions from the regular expression (a|b)ca*, 
according to the construction principles for union, concatenation and kleene star.
Then transform the NFSA to a DFSA by subset construction.

 Find a minimal DFSA for the FSA A=<{A,..,E},{0,1}, δ3,A,{C,E}> 
(using the table filling algorithm by propagation).

-CE
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CBB
DBA
10δ3

sss
-sr
rrq
pp,qp
baδ1
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