Finite-State Automata and Algorithms

Bernd Kiefer, kiefer@dfki.de Many thanks to Anette Frank for the slides MSc. Computational Linguistics Course, SS 2009

Overview

- Finite-state automata (FSA) What for?
 - Recap: Chomsky hierarchy of grammars and languages
 - FSA, regular languages and regular expressions
 - Appropriate problem classes and applications
- Finite-state automata and algorithms
 - Regular expressions and FSA
 - Deterministic (DFSA) vs. non-deterministic (NFSA) finite-state automata
 - Determinization: from NFSA to DFSA
 - Minimization of DFSA
- Extensions: finite-state transducers and FST operations

Finite-state automata: What for?

Chomsky Hierarchy of Languages

- Regular languages (Type-3)
- Context-free languages (Type-2)
- Context-sensitive languages (Type-1)
- Type-0 languages

Hierarchy of Grammars and Automata

- Regular PS grammar Finite-state automata
- Context-free PS grammar Push-down automata
- Tree adjoining grammars
 Linear bounded automata
- General PS grammars Turing machine

computationally more complex less efficient

Finite-state automata model regular languages

Finite-state automata model regular languages

Languages, formal languages and grammars

- Alphabet Σ : finite set of symbols
- *String*: sequence $x_1 \dots x_n$ of symbols x_i from the alphabet Σ
 - Special case: empty string ε
- Language over Σ : the set of strings that can be generated from Σ
 - Sigma star Σ^* : set of all possible strings over the alphabet Σ $\Sigma = \{a, b\}$ $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$
 - Sigma plus $\Sigma + : \Sigma + = \Sigma^* \{\varepsilon\}$
 - Special languages: $\emptyset = \{\}$ (empty language) $\neq \{\varepsilon\}$ (language of empty string)
- A formal language : a subset of Σ^*
- Basic operation on strings: concatenation
 - If $a = x_i \dots x_m$ and $b = x_{m+1} \dots x_n$ then $a \cdot b = ab = x_i \dots x_m x_{m+1} \dots x_n$
 - Concatenation is associative but not commutative
 - ε is identity element : $a\varepsilon = \varepsilon a = a$
- A grammar of a particular type generates a language of a corresponding type

Recap on Formal Grammars and Languages

- A formal grammar is a tuple $G = \langle \Sigma, \Phi, S, R \rangle$
 - Σ alphabet of *terminal symbols*
 - Φ alphabet of *non-terminal symbols* ($\Sigma \cap \Phi = \emptyset$)
 - S the *start symbol*
 - R finite set of rules $R \subseteq \Gamma^* \times \Gamma^*$ of the form $\alpha \to \beta$ where $\Gamma = \Sigma \cup \Phi$ and $\alpha \neq \varepsilon$ and $\alpha \notin \Sigma^*$
- The language L(G) generated by a grammar G
 - set of strings $w \subseteq \Sigma^*$ that can be *derived* from S according to G= $\langle \Sigma, \Phi, S, R \rangle$
- Derivation: given G= $\langle \Sigma, \Phi, S, R \rangle$ and $u, v \in \Gamma^* = (\Sigma \cup \Phi)^*$
 - a direct derivation (1 step) $w \Rightarrow_G v$ holds iff $u_1, u_2 \in \Gamma^*$ exist such that $w = u_1 \alpha u_2$ and $v = u_1 \beta u_2$, and $\alpha \rightarrow \beta \in \mathbb{R}$ exists
 - a derivation $w \Rightarrow_{G^*} v$ holds iff either w = vor $z \in \Gamma^*$ exists such that $w \Rightarrow_{G^*} z$ and $z \Rightarrow_G v$
- A language generated by a grammar G: $L(G) = \{w : S \Rightarrow_{G^*} w \& w \in \Sigma^*\}$ I.e., L(G) strongly depends on R!

- Classification of languages generated by formal grammars
 - A language is of type i (i = 0, 1, 2, 3) iff it is generated by a type-i grammar
 - Classification according to increasingly restricted types of production rules
 L-type-0 ⊃ L-type-1 ⊃ L-type-2 ⊃ L-type-3
 - Every grammar generates a unique language, but a language can be generated by several different grammars.
 - Two grammars are
 - (Weakly) equivalent if they generate the same string language
 - Strongly equivalent if they generate both the same string language and the same tree language

Type-0 languages: general phrase structure grammars

- no restrictions on the form of production rules: arbitrary strings on LHS and RHS of rules
- A grammar $G = \langle \Sigma, \Phi, S, R \rangle$ generates a language L-type-0 iff
 - all rules R are of the form $\alpha \to \beta$, where $\alpha \in \Gamma^+$ and $\beta \in \Gamma^*$ (with $\Gamma = \Sigma \cup \Phi$)
 - I.e., LHS a nonempty sequence of NT or T symbols with at least one NT symbol and RHS a possibly empty sequence of NT or T symbols
- Example:

$$G = \langle \{S,A,B,C,D,E\}, \{a\},S,R \rangle, L(G) = \{a^{2^n} \mid n \geq 1\}$$

 $S \to ACaB.$ $CB \to E.$ $aE \to Ea.$
 $Ca \to aaC.$ $aD \to Da.$ $AE \to \varepsilon.$
 $CB \to DB.$ $AD \to AC.$
 $a^{2^2} = aaaa \in L(G) \text{ iff } S \Rightarrow^* aaaa$

Type-1 languages: context-sensitive grammars

- A grammar $G = \langle \Sigma, \Phi, S, R \rangle$ generates a language L-type-1 iff
 - all rules R are of the form $\alpha A \gamma \to \alpha \beta \gamma$, or $S \to \varepsilon$ (with no S symbol on RHS) where $A \in \Phi$ and α , β , $\gamma \in \Gamma^*$ ($\Gamma = \Sigma \cup \Phi$), $\beta \neq \varepsilon$
 - I.e., LHS: non-empty sequence of NT or T symbols with at least one NT symbol and RHS a nonempty sequence of NT or T symbols (exception: $S \rightarrow \varepsilon$)
 - For all rules LHS \rightarrow RHS : |LHS| ≤ |RHS|
- Example:

$$L = \{ a^n b^n c^n \mid n \ge 1 \}$$

■ R = { S
$$\rightarrow$$
 a S B C, a B \rightarrow a b,
S \rightarrow a B C, b B \rightarrow b b,
C B \rightarrow B C, b C \rightarrow b c, c C \rightarrow c c }
 $a^{3}b^{3}c^{3}$ = aaabbbccc ∈ L(G) iff S \Rightarrow * aaabbbccc

Type-2 languages: context-free grammars

- A grammar $G = \langle \Sigma, \Phi, S, R \rangle$ generates a language L-type-2 iff
 - all rules R are of the form $A \to \alpha$, where $A \in \Phi$ and $\alpha \in \Gamma^*$ $(\Gamma = \Sigma \cup \Phi)$
 - I.e., LHS: a single NT symbol; RHS a (possibly empty) sequence of NT or T symbols
- Example:

$$L = \{ a^n b a^n | n \ge 1 \}$$

R = \{ S \rightarrow A S A, S \rightarrow b, A \rightarrow a \}

Type-3 languages: regular or finite-state grammar

- A grammar $G = \langle \Sigma, \Phi, S, R \rangle$ is called right (left) linear (or regular) iff
 - all rules R are of the form
 - $A \rightarrow w \text{ or } A \rightarrow wB \text{ (or } A \rightarrow Bw), \text{ where } A,B \in \Phi \text{ and } w \in \Sigma^*$
 - i.e., LHS: a single NT symbol; RHS: a (possibly empty) sequence of T symbols, optionally followed (preceded) by a NT symbol
- Example: $\Sigma = \{ a, b \}$ $\Phi = \{ S, A, B \}$ $R = \{ S \rightarrow a A, B \rightarrow b B,$ $A \rightarrow a A, B \rightarrow b$ $A \rightarrow b b B$ $S \Rightarrow a A \Rightarrow a a A \Rightarrow a a b b B \Rightarrow a a b b b b \Rightarrow a a b b b b$ B

Operations on languages

- Typical set-theoretic operations on languages
 - Union: $L_1 \cup L_2 = \{ w : w \in L_1 \text{ or } w \in L_2 \}$
 - Intersection: $L_1 \cap L_2 = \{ w : w \in L_1 \text{ and } w \in L_2 \}$
 - Difference: $L_1 L_2 = \{ w : w \in L_1 \text{ and } w \notin L_2 \}$
 - Complement of L ⊆ Σ^* wrt. Σ^* : L⁻= Σ^* L
- Language-theoretic operations on languages
 - Concatenation: $L_1L_2 = \{w_1w_2 : w_1 \in L_1 \text{ and } w_2 \in L_2\}$
 - Iteration: $L^0 = \{ \varepsilon \}$, $L^1 = L$, $L^2 = LL$, ... $L^* = \bigcup_{i \ge 0} L^i$, $L^+ = \bigcup_{i > 0} L^i$
 - Mirror image: $L^{-1} = \{w^{-1} : w \in L\}$
- Union, concatenation and Kleene star are called regular operations
- Regular sets/languages: languages that are defined by the regular operations: concatenation (\cdot) , union (\cup) and kleene star (*)
- Regular languages are *closed* under *concatenation*, *union*, *kleene star*, *intersection and complementation*

Regular languages, regular expressions and FSA

Regular languages and regular expressions

- Regular sets/languages can be specified/defined by regular expressions Given a set of terminal symbols Σ , the following are regular expressions
 - $-\varepsilon$ is a regular expression
 - For every $a \in \Sigma$, a is a regular expression
 - If R is a regular expression, then R* is a regular expression
 - If Q,R are regular expressions, then QR (Q \cdot R) and Q \cup R are regular expressions
- Every regular expression denotes a regular language
 - $L(\varepsilon) = \{\varepsilon\}$
 - $L(a) = \{a\}$ for all $a \in \Sigma$
 - $L(\alpha\beta) = L(\alpha)L(\beta)$
 - $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$
 - $L(\alpha^*) = L(\alpha)^*$

Finite-state automata (FSA)

- Grammars: generate (or recognize) languages
 Automata: recognize (or generate) languages
- Finite-state automata recognize regular languages
- A finite automaton (FA) is a tuple $A = \langle \Phi, \Sigma, \delta, q_0, F \rangle$
 - $-\Phi$ a finite non-empty set of states
 - Σ a finite alphabet of input letters
 - δ a transition function $\Phi \times \Sigma \to \Phi$
 - $-q_0 \in \Phi$ the initial state
 - $F \subseteq \Phi$ the set of final (accepting) states
- Transition graphs (diagrams):
 - states: circles
 - transitions: directed arcs between circles
 - initial state
 - final state

FSA transition graphs and traversal

Transition graph

- Traversal of an FSA
 - = Computation with an FSA

$$S = q_0 F = \{q_5, q_8\}$$

Transition function $\delta: \Phi \times \Sigma \to \Phi$

$$\delta(q_0,c)=q_1$$

$$\delta(q_0,e)=q_3$$

$$\delta(q_0,l)=q_6$$

$$\delta(q_1,l)=q_2$$

$$\delta(q_2,e)=q_3$$

$$\delta(q_3,a)=q_4$$

$$\delta(q_3,v)=q_9$$

$$\delta(q_4,r)=q_5$$

$$\delta(q_6,e)=q_7$$

$$\delta(q_7,t)=q_8$$

$$\delta(q_8,t)=q_9$$

$$\delta(q_9,e)=q_4$$

FSA transition graphs and traversal

Transition graph

- Traversal of an FSA
 - = Computation with an FSA

State diagram

δ	a	c	e	1	r	t	V
q_0	0	q_1	q_3	q_6	0	0	0
q_1	0	0	0	q_2	0	0	0
q_2	0	0	q_3	0	0	0	0
q_3	q_4	0	0	0	0	0	q_9
q_4	0	0	0	0	q_5	0	0
q_5	0	0	0	0	0	0	0
q_6	0	0	q_7	0	0	0	0
q_7	0	0	0	0	0	q_8	0
q_8	0	0	0	0	0	q_9	0
q_9	0	0	\overline{q}_4	0	0	0	0

FSA can be used for

- acceptance (recognition)
- generation

FSA traversal and acceptance of an input string

- *Traversal* of a (deterministic) FSA
 - FSA *traversal* is defined by states and transitions of A, relative to an input string $w \in \Sigma^*$
 - A configuration of A is defined by the current state and the unread part of the input string: (q, w_i) , with $q \in \Phi$, w_i suffix of w
 - A transition: a binary relation between configurations $(q,w_i) \vdash_A (q',w_{i+1})$ iff $w_i = zw_{i+1}$ for $z \in \Sigma$ and $\delta(q,z) = q'$ (q,w_i) yields (q',w_{i+1}) in a single transition step
 - Reflexive, transitive closure of $\mid -A : (q, w_i) \mid -*A (q', w_j)$ (q, w_i) yields (q', w_i) in zero or a finite number of steps

Acceptance

- Decide whether an input string w is in the language L(A) defined by FSA A
- An FSA A accepts a string w iff $(q_0, w) \models^*_A (q_f, \varepsilon)$, with q_0 initial state, $q_f \subseteq F$
- The language L(A) accepted by FSA A is the set of all strings accepted by A I.e., $w \in L(A)$ iff there is some $q_f \subseteq F_A$ such that $(q_0, w) \models *_A (q_f, \varepsilon)$

Regular grammars and Finite-state automata

- A grammar $G = \langle \Sigma, \Phi, S, R \rangle$ is called right linear (or regular) iff all rules R are of the form $A \to w$ or $A \to wB$, where $A, B \in \Phi$ and $w \in \Sigma^*$
 - Σ ={a, b}, Φ ={S,A,B}, R={S \rightarrow aA, A \rightarrow aA, A \rightarrow bbB, B \rightarrow bB, B \rightarrow b} S \Rightarrow aA \Rightarrow aaA \Rightarrow aabbB \Rightarrow aabbbB \Rightarrow aabbbb
 - The NT symbol corresponds to a state in an FSA: the future of the derivation only depends on the identity of this state or symbol and the remaining production rules.
 - Correspondence of type-3 grammar rules with transitions in a (non-deterministic) FSA:
 - $A \rightarrow w B \equiv \delta(A, w) = B$
 - $A \rightarrow W \equiv \delta(A, w) = q, q \in \Phi$
 - Conversely, we can construct an FSA from the rules of a type-3 language
- Regular grammars and FSA can be shown to be equivalent
- Regular grammars generate regular languages
- Regular languages are defined by concatenation, union, kleene star

Deterministic finite-state automata

- Deterministic finite-state automata (DFSA)
 - at each state, there is at most one transition that can be taken to read the next input symbol
 - the next state (transition) is *fully determined by current configuration*
 - δ is functional (and there are no ε-transitions)
- Determinism is a useful property for an FSA to have!
 - Acceptance or rejection of an input can be computed in *linear time* $\theta(n)$ for inputs of length n
 - Especially important for processing of LARGE documents
- Appropriate problem classes for FSA
 - Recognition and acceptance of regular languages, in particular string manipulation, regular phonological and morphological processes
 - Approximations of non-regular languages in morphology, shallow finitestate parsing, ...

Multiple equivalent FSA

■ FSA for the language L_{lehr} = { lehrbar, lehrbarkeit, belehrbar, belehrbar, unbelehrbar, unbelehrbarkeit, unlehrbar, unlehrbarkeit }

DFSA for L_{lehr}

be lehr

un be lehr

keit

Regular expression and FSA for L_{lehr} : (un | ϵ) (be lehr | lehr) bar (keit | ϵ)

(non-deterministic) un be lehr keit

Equivalent FSA (non-deterministic)

Defining FSA through regular expressions

- FSA for even mildly complex regular languages are best constructed from regular expressions!
- Every regular expression denotes a regular language

-
$$L(\varepsilon) = \{\varepsilon\}$$

•
$$L(\alpha\beta) = L(\alpha)L(\beta)$$

-
$$L(a) = \{a\}$$
 for all $a \in \Sigma$ • $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$

•
$$L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$$

•
$$L(\alpha^*) = L(\alpha)^*$$

- Every regular expression translates to a FSA (Closure properties)
 - An FSA for a (with $L(a) = \{a\}$), $a \in \Sigma$:
 - An FSA for ε (with $L(\varepsilon) = \{\varepsilon\}$), $\varepsilon \in \Sigma$:
 - Concatenation of two FSA F_A and F_B :
 - $\Sigma_{AB} = \Sigma_{A}$ (Σ initial state)
 - $\Phi_{AB} = \Phi_{B}$ (Φ set of final states)

$$\forall \ \delta_{AB} = \delta_{A} \cup \delta_{B} \cup \{\delta(\langle q_i, \varepsilon \rangle, q_i) \mid q_i \in \Phi_{A}, \ q_i = \Sigma_{B} \}$$

Defining FSA through regular expressions

- union of two FSA F_A and F_B :
 - $S_{AB} = S_0$ (new state)
 - $F_{AB} = \{ s_i \}$ (new state)

$$\forall \delta_{AB} = \delta_{A} \cup \delta_{B}$$

$$\cup \{\delta(\langle q_{0}, \epsilon \rangle, q_{z}) \mid q_{0} = S_{AB}, (q_{z} = S_{A} \text{ or } q_{z} = S_{B})\}$$

$$\cup \{\delta(\langle q_{z}, \epsilon \rangle, q_{i}) \mid (q_{z} \in F_{A} \text{ or } q_{z} \in F_{B}), q_{i} \in F_{AB}\}$$

- Kleene Star over an FSA F_A :
 - $S_{A^*} = S_0$ (new state)
 - $F_{A*} = \{ q_i \}$ (new state)

$$\forall \ \delta_{AB} = \delta_{A} \cup \\ \cup \{ \delta(\langle q_{j}, \epsilon \rangle, q_{z}) \mid q_{j} \in F_{A}, \ q_{z} = S_{A}) \} \\ \cup \{ \delta(\langle q_{0}, \epsilon \rangle, q_{z}) \mid q_{0} = S_{A^{*}}, \ (\ q_{z} = S_{A} \text{ or } q_{z} = F_{A^{*}}) \} \\ \cup \{ \delta(\langle q_{z}, \epsilon \rangle, q_{i}) \mid q_{z} \in F_{A}, \ q_{i} \in F_{A^{*}} \}$$

Defining FSA through regular expressions

- ε -transition: move to $\delta(q, \varepsilon)$ without reading an input symbol
- FSA construction from regular expressions yields a non-deterministic FSA (NFSA)
 - Choice of next state is *only partially determined* by the current configuration,
 i.e., we cannot always predict which state will be the next state in the traversal

Non-deterministic finite-state automata (NFSA)

- Non-determinism
 - Introduced by ε-transitions and/or
 - Transition being a relation Δ over $\Phi \times \Sigma^* \times \Phi$, i.e. a set of triples $\langle q_{\text{source}}, z, q_{\text{target}} \rangle$ Equivalently: Transition function δ maps to a set of states: δ : $\Phi \times \Sigma \to \wp(\Phi)$
- A non-deterministic FSA (NFSA) is a tuple $A = \langle \Phi, \Sigma, \delta, q_0, F \rangle$
 - Φ a finite non-empty set of states
 - Σ a finite alphabet of input letters
 - δ a transition function $\Phi \times \Sigma^* \to \wp(\Phi)$ (or a finite relation over $\Phi \times \Sigma^* \times \Phi$)
 - $q_0 \in \Phi$ the initial state
 - $F \subseteq \Phi$ the set of final (accepting) states
- Adapted definitions for transitions and acceptance of a string by a NFSA
 - $(q,w) \mid -A (q',w_{i+1}) \text{ iff } w_i = zw_{i+1} \text{ for } z \in \Sigma^* \text{ and } q' \in \delta(q,z)$
 - An NDFA (w/o ε) *accepts* a string w iff there is *some traversal* such that $(q_0, w) \models_A (q', \varepsilon)$ and $q' \subseteq F$.
 - A string w is *rejected* by NDFA A iff A does not accept w, i.e. *all configurations* of A for string w are rejecting configurations!

Equivalence of DFSA and NFSA

- Despite non-determinism, NFSA are not more powerful than DFSA: they accept the same class of languages: regular languages
- For every non-deterministic FSA there is deterministic FSA that accepts the same language (and vice versa)
 - The corresponding DFSA has in general more states, in which it models the sets of possible states the NFSA could be in in a given traversal
- There is an algorithm (via subset construction) that allows conversion of an NFSA to an equivalent DFSA

Efficiency considerations: an FSA is most efficient and compact iff

- It is a DFSA (efficiency) \rightarrow Determinization of NFSA
- It is minimal (compact encoding) \rightarrow Minimization of FSA

Equivalence of DFSA and NFSA

- FSA A_1 and A_2 are equivalent iff $L(A_1) = L(A_2)$
- Theorem: for each NFSA there is an equivalent DFSA
- Construction: $A = \langle \Phi, \Sigma, \delta, q_0, F \rangle$ a NFSA over Σ
 - define $eps(q) = \{ p \in \Phi \mid (q, \varepsilon, p) \in \delta \}$
 - define an FSA A'= $\langle \Phi', \Sigma, \delta', q_0', F' \rangle$ over sets of states, with $\Phi' = \{B \mid B \subseteq \Phi\}$ $q_0' = \{eps(q_0)\}$ $\delta'(B,a) = \bigcup \{eps(p) \mid q \in B \text{ and } \exists p \in B \text{ such that } (q, a, p) \in \delta \}$ $F' = \{B \subset \Phi \mid B \cap F \neq \emptyset \}$
- A' satisfies the definition of a DFSA. We need to show that L(A) = L(A')
- Define $D(q, w) := \{ p \in \Phi \mid (q, w) \vdash_A^* (p, \varepsilon) \}$ and $D'(Q, w) := \{ P \in \Phi' \mid (Q, w) \vdash_{A'}^* (P, \varepsilon) \}$

Equivalence of DFSA and NFSA: Proof

Prove: $D(q_0, w) = D'(\{q_0\}, w)$ by induction over length of w

- |w| = 0: by definition of D and D'
- Induction step: |w| = k+1, w = v a, by hypothesis:

$$\begin{split} & D(q_0, v) = D'(\{q_0\}, v) = \{p_1, p_2, \dots, p_k\} = P \\ & \text{by def. of D: } D(q_0, w) = \bigcup_{p \in P} \{\text{eps}(q) \mid (p, a, q) \in \delta \} \\ & \text{by def. of } \delta' \text{: } D'(\{p_1, p_2, \dots, p_k\}, a) = \bigcup_{p \in P} \{\text{eps}(q) \mid (p, a, q) \in \delta \} \end{split}$$

it follows:

$$D'(\{q_0\}, w) = \delta'(D'(\{q_0\}, w), a) = D'(\{p_1, p_2, ..., p_k\}, a)$$
$$= \bigcup_{p \in P} \{eps(q) \mid (p, a, q) \in \delta \} = D(q_0, w) \text{ q.e.d.}$$

■ Finally, A and A' only accept if $D'(\{q_0\}, w) = D(q_0, w)$ contain a state $\in F$

Determinization by subset construction

NFSA A=
$$\langle \Phi, \Sigma, \delta, q_0, F \rangle$$

$$L(A)=a(ba)* \cup a(bba)*$$

A'=
$$<\Phi', \Sigma, \delta', q_0', F'>$$

Subset construction:

Compute δ ' from δ for all subsets $S \subseteq \Phi$ and $a \in \Sigma$ s.th. δ ' $(S,a) = \{ s' | \exists s \in S \text{ s.th. } (s,a,s') \in \delta \}$

Determinization by subset construction

NFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ A'= $\langle \Phi', \Sigma, \delta', q_0', F' \rangle$

$$L(A)=a(ba)^* \cup a(bba)^*$$

NFSA $A=<\Phi,\Sigma,\delta,q_0,F>$ $A'=<\Phi',\Sigma,\delta',q_0',F'>$

$$-$$
1 a 2,3

$$A' = <\Phi', \Sigma, \delta', q_0', F'>$$

$$\Phi' = \{ B \mid B \subseteq \{1,2,3,4,5,6\}$$

 $q_0' = \{1\},$

$$\delta'(\{1\},a)=\{2,3\},\ \delta'(\{1\},b)=\emptyset,$$

$$\delta'(\{2,3\},a) = \emptyset,$$

$$\delta'(\{2,3\},b)=\{4,5\},$$

$$\delta'(\{4,5\},a)=\{2\},$$

$$\delta'(\{4,5\},b)=\{6\},$$

$$\delta'(\{2\},a)=\emptyset$$
,

$$\delta'(\{2\},b)=\{4\},$$

$$\delta'(\{6\},a)=\{3\},$$

$$\delta'(\{6\},b)=\emptyset$$
,

$$\delta'(\{4\},a)=\{2\},$$

$$\delta'(\{4\},b)=\emptyset$$

$$\delta'(\{3\},a)=\emptyset$$
,

$$\delta'(\{3\},b)=\{5\},$$

$$\delta'(\{5\},a) = \emptyset$$

$$\delta'(\{5\},b)=\{6\}$$

$$F' = \{\{2,3\},\{2\},\{3\}\}\}$$

NFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ A'= $\langle \Phi', \Sigma, \delta', q_0', F' \rangle$

$$\begin{array}{c|c} & a \\ \hline & 2,3 \\ \hline \end{array} \begin{array}{c} b \\ \hline \end{array} \begin{array}{c} 4,5 \\ \hline \end{array}$$

$$A' = <\Phi', \Sigma, \delta', q_0', F'>$$

 $\delta'(\{6\},a)=\{3\},$

 $\delta'(\{6\},b)=\emptyset$

$$\Phi' = \{ B \mid B \subseteq \{1,2,3,4,5,6\} \}$$

$$q_0' = \{1\},$$

$$\delta'(\{1\},a) = \{2,3\}, \qquad \delta'(\{4\},a) = \{2\},$$

$$\delta'(\{1\},b) = \emptyset, \qquad \delta'(\{4\},b) = \emptyset,$$

$$\delta'(\{2,3\},a) = \emptyset, \qquad \delta'(\{3\},a) = \emptyset,$$

$$\delta'(\{2,3\},b) = \{4,5\}, \qquad \delta'(\{3\},b) = \{5\},$$

$$\delta'(\{4,5\},a) = \{2\}, \qquad \delta'(\{5\},a) = \emptyset,$$

$$\delta'(\{4,5\},b) = \{6\}, \qquad \delta'(\{5\},b) = \{6\}$$

$$\delta'(\{2\},a) = \emptyset,$$

$$\delta'(\{2\},b) = \{4\}, \qquad F' = \{\{2,3\},\{2\},\{3\}\}$$

NFSA $A=<\Phi,\Sigma,\delta,q_0,F>$ $A'=<\Phi',\Sigma,\delta',q_0',F'>$

$$A' = <\Phi', \Sigma, \delta', q_0', F'>$$

 $\delta'(\{2\},b)=\{4\},$

 $\delta'(\{6\},a)=\{3\},$

 $\delta'(\{6\},b)=\emptyset$

$$\Phi' = \{ B \mid B \subseteq \{1,2,3,4,5,6\} \}$$

$$q_0' = \{1\},$$

$$\delta'(\{1\},a) = \{2,3\}, \qquad \delta'(\{4\},a) = \{2\},$$

$$\delta'(\{1\},b) = \emptyset, \qquad \delta'(\{4\},b) = \emptyset,$$

$$\delta'(\{2,3\},a) = \emptyset, \qquad \delta'(\{3\},a) = \emptyset,$$

$$\delta'(\{2,3\},b) = \{4,5\}, \qquad \delta'(\{3\},b) = \{5\},$$

$$\delta'(\{4,5\},a) = \{2\}, \qquad \delta'(\{5\},a) = \emptyset,$$

$$\delta'(\{4,5\},b) = \{6\}, \qquad \delta'(\{5\},b) = \{6\}$$

$$\delta'(\{2\},a) = \emptyset,$$

 $F' = \{\{2,3\},\{2\},\{3\}\}$

NFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$

DFSA A'= $<\Phi',\Sigma,\delta',q_0',F'>$

$$L(A) = L(A') = a(ba)^* \cup a(bba)^*$$

ε-transitions and ε-closure

- Subset construction must account for ε-transitions
- ε-closure
 - The ε-closure of some state q consists of q as well as all states that can be reached from q through a sequence of ε-transitions
 - $q \in \epsilon$ -closur $\epsilon(q)$
 - If $r \in \varepsilon$ -closure(q) and $(r, \varepsilon, q') \in \delta$, then $q' \in \varepsilon$ -closure(q),
 - ε-closure defined on sets of states

$$\forall \ \epsilon\text{-closure}(R) = \bigcup_{q \in R} \epsilon\text{-closure}(q) \qquad (\text{with } P \subseteq \Phi)$$

- Subset construction for ε-NFSA
 - Compute δ ' from δ for all subsets $S \subseteq \Phi$ and $a \in \Sigma$ s.th. $\delta'(S,a) = \{ s'' | \exists s \in S \text{ s.th. } (s,a,s') \in \delta \text{ and } s'' \in \epsilon\text{-closure}(s') \}$

Example

 $\bullet \text{ ϵ-NFSA for } (a|b)c^* + \underbrace{0 \underbrace{\varepsilon^{(1)} \underbrace{a}_{(3)} \varepsilon}_{\varepsilon} \underbrace{\delta}_{(4)} \underbrace{\varepsilon^{(3)} \varepsilon}_{\varepsilon} \underbrace{\delta}_{(5)} \underbrace{\varepsilon^{(4)} \underbrace{\delta}_{(5)} \underbrace{\varepsilon}_{(5)} \underbrace{\delta}_{(5)} \underbrace{\varepsilon}_{(5)} \underbrace{\delta}_{(5)} \underbrace{\varepsilon}_{(5)} \underbrace{\delta}_{(5)} \underbrace{\varepsilon}_{(5)} \underbrace{\varepsilon}_{$

ε-closure for all $s \in \Phi$: ε-closure(0)= $\{0,1,2\}$, ε-closure(1)= $\{1\}$, ε-closure(2)= $\{2\}$, ε-closure(3)= $\{3,5,6,7,9\}$, ε-closure(4)= $\{4,5,6,7,9\}$, ε-closure(5)= $\{5,6,7,9\}$, ε-closure(6)= $\{6,7,9\}$, ε-closure(7)= $\{7\}$, ε-closure(8)= $\{8,7,9\}$, ε-closure(9)= $\{9\}$

Transition function over subsets

$$\delta'(\{0\},\epsilon) = \{0,1,2\},\$$

$$\delta'(\{0,1,2\},a) = \{3,5,6,7,9\},\$$

$$\delta'(\{0,1,2\},b) = \{4,5,6,7,9\},\$$

$$\delta'(\{3,5,6,7,9\},c) = \{8,7,9\},\$$

$$\delta'(\{4,5,6,7,9\},c) = \{8,7,9\},\$$

$$\delta'(\{8,7,9\},c) = \{8,7,9\},\$$

- Construction of DFSA A'= $<\Phi',\Sigma,\delta',q_0',F'>$ from NFSA A= $<\Phi,\Sigma,\delta,q_0,F>$
 - $-\Phi'={B|B⊆Φ}$, if unconstrained can be $2^{|\Phi|}$ with $|\Phi|=33$ this could lead to an FSA with 2^{33} states (exceeds the range of integers in most programming languages)
 - Many of these states may be useless

- Construction of DFSA A'= $<\Phi',\Sigma, \delta',q_0,F'>$ from NFSA A= $<\Phi,\Sigma, \delta, q_0,F>$
 - $-\Phi'={B|B⊆Φ}$, if unconstrained can be $2^{|Φ|}$ with |Φ|=33 this could lead to an FSA with 2^{33} states (exceeds the range of integers in many programming languages)

Many of these states may be useless

- Construction of DFSA A'= $<\Phi',\Sigma, \delta',q_0,F'>$ from NFSA A= $<\Phi,\Sigma, \delta, q_0,F>$
 - $-\Phi'={B|B⊆Φ}$, if unconstrained can be $2^{|Φ|}$ with |Φ|=33 this could lead to an FSA with 2^{33} states (exceeds the range of integers in many programming languages)

Many of these states may be useless

No transition can ever enter these states

- Construction of DFSA A'= $<\Phi',\Sigma, \delta',q_0,F'>$ from NFSA A= $<\Phi,\Sigma, \delta, q_0,F>$
 - $-\Phi'={B|B⊆Φ}$, if unconstrained can be $2^{|Φ|}$ with |Φ|=33 this could lead to an FSA with 2^{33} states (exceeds the range of integers in many programming languages)

Many of these states may be useless

 $L=(a|b)a^* \cup ab^+a^*$

Only consider states that can be traversed starting from q_0

- Basic idea: we only need to consider states $B \subseteq \Phi$ that can ever be traversed by a string $w \in \Sigma^*$, starting from q_0
- I.e., those $B \subseteq \Phi$ for which $B = \delta'(q_0, w)$, for some $w \in \Sigma^*$, with δ' the recursively constructed transition function for the target DFSA A'
- Consider all strings $w \in \Sigma^*$ in order of their length: ε , a,b, aa,ab,ba,bb, aaa,...

- Construction by increasing lengths of strings
- For each $a \in \Sigma$, construct transitions to known or new states according to δ
- New target states (A') are placed in a queue (FIFO)
- Termination: no states left on queue

```
DETERMINIZE(\Phi, \Sigma, \delta, q_0, F)
q_0 \leftarrow q_0
\Phi' \leftarrow \{q_0'\}
ENQUEUE(Queue, q_0')
while Queue \neq \emptyset
   S \leftarrow DEQUEUE(Queue)
  for a \in \Sigma
    \delta'(S,a) = \bigcup_{r \in S} \delta(r,a)
    if \delta'(S,a) \notin \Phi'
        \Phi' \leftarrow \Phi' \cup \delta'(S,a)
        ENQUEUE(Queue, \delta'(S,a))
        if \delta'(S,a) \cap F \neq \emptyset
            F' \leftarrow \{\delta'(S,a)\}
        fi
    fi
return (\Phi', \Sigma, \delta', q_0', F')
```

Complexity

Maximal number of states placed in queue is $2^{|\Phi|}$ So, worst case runtime is exponential

- determinization is a costly operation,
- but results in an efficient FSA (linear in size of the input)
- avoids computation of isolated states

Actual run time depends on the shape of the NFSA

Minimization of FSA

- Can we transform a large automaton into a smaller one (provided a smaller one exists)?
- If A is a DFSA, is there an algorithm for constructing an equivalent minimal automaton A_{min} from A?

A is equivalent to A' i.e., L(A) = L(A')

A' is *smaller* than A i.e., $|\Phi| > |\Phi'|$

- A can be transformed to A':
 - States 2 and 3 in A "do the same job": once A is in state 2 or 3, it accepts the same suffix string. Such states are called equivalent.
 - Thus, we can eliminate state 3 without changing the language of A, by *redirecting* all arcs leading to 3 to 2, instead.

Minimization of FSA

- A DFSA can be minimized if there are *pairs of states* $q,q' \in \Phi$ that are *equivalent*
- Two states q,q' are *equivalent* iff they accept the *same right language*.
- Right language of a state:
 - For A= $<\Phi$,Σ, δ, q₀,F> a DFSA, *the right language L*→(q) *of a state* q ∈ Φ is the set of all strings accepted by A starting in state q: L→(q) = {w∈ Σ* | δ*(q,w) ∈ F}
 - Note: L→ (q_0) = L(A)
- State equivalence:
 - For A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ a DFSA, if $q, q' \in \Phi$, q and q' are equivalent $(q \equiv q')$ iff $L^{\rightarrow}(q) = L^{\rightarrow}(q')$
 - \equiv is an equivalence relation (i.e., reflexive, transitive and symmetric)
 - − ≡ partitions the set of states Φ into a number of disjoint sets Q_1 .. Q_n of equivalence classes s.th. $\bigcup_{i=1..m} Q_i = \Phi$ and $q \equiv q$ for all $q,q \in Q_i$

Partitioning a state set into equivalence classes

All classes C_i consist of equivalent states $q_{j=i..n}$ that accept identical right languages $L^{\rightarrow}(q_i)$

Whenever two states q,q' belong to different classes, $L^{\rightarrow}(q) \neq L^{\rightarrow}(q')$

Equivalence classes on state set defined by \equiv

Minimization: elimination of equivalent states

Minimization of a DFSA

A DFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ that contains *equivalent states q, q'* can be transformed to a smaller, equivalent DFSA A'= $\langle \Phi', \Sigma, \delta', q_0, F' \rangle$ where

- $\Phi' = \Phi \setminus \{q'\}, \quad F' = F \setminus \{q'\},$ $\delta'(s,a) = q \text{ if } \delta(s,a) = q';$
- δ ' is like δ with all transitions to q' redirected to $q\delta$ '(s,a) = δ (s,a) otherwise
- Two-step algorithm
 - Determine all pairs of equivalent states q,q'
 - Apply DFSA reduction until no such pair q,q' is left in the automaton
- Minimality
 - The resulting FSA is the smallest DFSA (in size of Φ) that accepts L(A): we never merge different equivalence classes, so we obtain one state per class.
 - We cannot do any further reduction and still recognize L(A).
 - As long as we have >1 state per class, we can do further reduction steps.
- A DFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ is *minimal* iff there is no pair of distinct but equivalent states $\in \Phi$, i.e. $\forall q, q' \in \Phi : q \equiv q' \Leftrightarrow q = q'$

Example

Example

Algorithm

```
\begin{aligned} & \text{MINIMIZE}(\Phi, \Sigma, \delta, q_0, F) \\ & \textbf{main} \\ & \text{EqClass}[] \leftarrow \text{PARTITION}(A) \\ & q_0 \leftarrow \text{EqClass}[q_0] \\ & \textbf{for} < & q, a, q' > \in \delta \\ & \delta(q, a) \leftarrow \min(\text{EqClass}[q']) \\ & \textbf{for} \ q \in \Phi \\ & \textbf{if} \ q \neq \min(\text{EqClass}[q]) \\ & \Phi \leftarrow \Phi \backslash \{q\} \\ & \textbf{if} \ q \in F \\ & F \leftarrow F \backslash \{q\} \end{aligned}
```

MINIMIZE

- PARTITION(A):
 - determines all eqclasses of states in A
 - returns array EqClass[q] of eq. classes of q
- redirect all transitions $\langle q, a, q' \rangle \in \delta$ to point to min(EqClass[q'])
- remove all redundant states from Φ and F

Computing partitions: Naïve partitioning

```
NAIVE_PARTITION(\Phi, \Sigma, \delta, q_0, F)

for each q \in \Phi

EqClass[q] \leftarrow \{q\}

for each q \in \Phi

for each q' \in \Phi

if EqClass[q] \neq EqClass[q'] \wedge CHECKEQUIVALENCE(A_q, A_{q'}) = True

EqClass[q] \leftarrow EqClass[q] \cup EqClass[q']

EqClass[q'] \leftarrow EqClass[q]
```

NAIVE_PARTITION

- array EqClass of pointers to disjoint sets for equivalence classes
- first loop: initializing EqClass by $\{q\}$, for each $q \in \Phi$
- second nested loop: if we find new equivalent states $q \equiv q'$,

we merge the respective equivalence classes EqClasses

and reset EqClass[q] to point to the new merged class

Runtime complexity: loops: $0(|\Phi|^2)$ CheckEquivalence: $0(|\Phi|^2 \cdot |\Sigma|) \Rightarrow 0(|\Phi|^4 \cdot |\Sigma|)$!

Computing partitions: Dynamic Programming

- Source of inefficiency: naive algorithm traverses the whole automaton to determine, for pairs q,q', whether they are equivalent
- Results of previous equivalence checks can be reused

If $q \not\equiv q'$, $L^{\rightarrow}(q) \not\equiv L^{\rightarrow}(q')$, therefore, for all $\langle p,p' \rangle$ s.th. $\delta^{-1}(p,a) = q$ and $\delta^{-1}(p',a) = q'$ for some $a \in \Sigma$, $p \not\equiv p'$.

- Thus, non-equivalence results can be propagated
 - Propagation from final/non-final pairs: $L^{\rightarrow}(q) \neq L^{\rightarrow}(q')$ if $q \in F \land q' \notin F$
 - Propagation from pairs $\langle q,q' \rangle$ where $\delta(q,a)$ is defined but $\delta(q',a)$ is not.

Propagation of non-equivalent states

```
LocalEquivalenceCheck(q,q')

if (q \in F \text{ and } q' \notin F) or (q \notin F \text{ and } q' \in F)

return (False)

if \exists a \in \Sigma s.th. only one of \delta(q,a), \delta(q',a)

is defined

return (False)

return (True)
```

```
\begin{split} PROPAGATE(q,q') \\ \textbf{for} \ a \in \Sigma \\ \textbf{for} \ p \in \delta^{\text{-1}}(q,a), \\ \textbf{for} \ p' \in \delta^{\text{-1}}(q',a) \\ \textbf{if} \ Equiv[\min(p,p'),\max(p,p')] = 1 \\ Equiv[\min(p,p'),\max(p,p')] \leftarrow 0 \\ PROPAGATE(p,p') \end{split}
```

Non-equivalence check for states <q,q'>

- Only one of q, q' is final
- For some a∈ Σ, δ (q,a) is defined, δ (q',a) is not

Propagation (I): Table filling algorithm (Aho, Sethi, Ullman)

- represent equivalence relation as a table
 Equiv, cells filled with boolean values
- initialize all cells with 1;reset to 0 for non-equivalent states
- main loop: call of PROPAGATE for nonequivalent states from LocalEquivalenceCheck

Propagation of non-equivalent states

```
LocalEquivalenceCheck(q,q')

if (q \in F \text{ and } q' \notin F) or (q \notin F \text{ and } q' \in F)

return (False)

if \exists a \in \Sigma s.th. only one of \delta(q,a), \delta(q',a)

is defined

return (False)

return (True)
```

```
\begin{split} & PROPAGATE(q,q^{'}) \\ & \textbf{for } a {\in} \, \Sigma \\ & \textbf{for } p {\in} \, \delta^{\text{-1}}(q,a), \\ & \textbf{for } p^{'} {\in} \, \delta^{\text{-1}}(q^{'},a) \\ & \textbf{if } Equiv[min(p,p^{'}),max(p,p^{'})] {=} 1 \\ & Equiv[min(p,p^{'}),max(p,p^{'})] \leftarrow 0 \\ & PROPAGATE(p,p^{'}) \end{split}
```

```
Runtime Complexity: 0(|\Phi|^2 \cdot |\Sigma|)
• PROPAGATE is never called twice on a given pair of states (checks Equiv[q,q']=1)
Space requirements: 0(|\Phi|^2) cells
```

```
TableFillingPARTITION(\Phi, \Sigma, \delta, q_0, F)

for q, q' \in \Phi, q < q'

Equiv[q, q'] \leftarrow 1

for q \in \Phi

for q' \in \Phi, q < q'

if Equiv[q, q'] = 1 and

LocalEquivalenceCheck(q, q') = False

Equiv[q, q'] \leftarrow 0

PROPAGATE(q, q')
```

More optimizations

- Hopcroft and Ullman: space requirement $0(|\Phi|)$, by associating states with their equivalence classes
- Hopcroft: Runtime complexity of $0(|\Phi| \cdot \log|\Phi| \cdot |\Sigma|)$, by distinction of active/non-active blocks

Brzozowski's Algorithm

Minimization by reversal and determinization

Reversal

- Final states of A⁻: set of initial states of A
- Initial state of A⁻: F of A
- $\delta^{-}(q,a) = \{ p \in \Phi \mid \delta(p,a) = q \}$
- $L(A^{-1}) = L(A)^{-1}$

Why does it yield a minimal DFSA A'?

Consider the right languages of states q, q in NFSA $(A^{-1})^{-1}$:

- If for all distinct states q, q' $L \rightarrow (q) \neq L \rightarrow (q')$, i.e. $L \rightarrow (q) \cap L \rightarrow (q') = \emptyset$, it holds that each pair of states q,q' recognize different right languages, and thus, that the NFSA $(A^{-1})^{-1}$ satisfies the minimality condition for a DFSA.
- If there were states q,q' in NFSA $(A^{-1})^{-1}$ s.th. $L^{\rightarrow}(q) \cap L^{\rightarrow}(q') \neq \emptyset$, there would be some string w that leads to two distinct states in DFSA A^{-1} . This contradicts the *determinicity* criterion of a DFSA.
- Determinization of NFSA (A⁻¹)⁻¹ does not destroy the property of minimality

Applications of FSA: String Matching

- Exact, full string matching
 - Lexicon lookup: search for given word/string in a lexicon
 - Compile lexicon entries to FSA by union
 - Test input words for acceptance in lexicon-FSA

Applications of FSA: String Matching

- Substring matching
 - Identify stop words in stream of text
 - Stem recognition: <u>small</u>, <u>small</u>er, <u>small</u>est
- Make use of full power of finite-state operations!
 - Regular expression with any-symbols for text search
 - ?* small($\epsilon \mid er \mid est$) ?*
 - ?* (a | the | ...) ?*
 - Compilation to NFSA, convert to DFSA
 - Application by composition of FST with full text
 - FSA_{text stream} FST_{small}: if defined, search term is substring of text

Application of FSA: Replacement

- (Sub)string replacement
 - Delete stop words in text
 - Stemming: reduce/replace inflected forms to stems: $smallest \rightarrow small$
 - Morphology: map inflected forms to lemmas (and PoS-tags):
 good, better, best → good+Adj
 - Tokenization: insert token boundaries
 - **–** ...
 - ⇒ Finite-state transducers (FST)

From Automata to Transducers

Automata

recognition of an input string w

- define a language
- accept *strings*, with transitions defined for *symbols* $\in \Sigma$

Transducers

- recognition of an input string w
- generation of an output string w'

- define a *relation* between languages
- equivalent to FSA that accept *pairs of strings*, with transitions defined for pairs of symbols <*x*,*y*>
- operations: *replacement*
 - deletion $\langle a, \varepsilon \rangle$, $a \in \Sigma \{\varepsilon\}$
 - insertion $\langle \varepsilon, a \rangle$, $a \in \Sigma \{\varepsilon\}$
 - substitution $\langle a, b \rangle$, $a,b \in \Sigma$, $a \neq b$

Transducers and composition

- An FSTs encodes a relation between languages
- A relation may contain an infinite number of ordered pairs,
 e.g. translating lower case letters to upper case

a lower/upper case transducer

a path through the lower/upper case transducer, for string xyzzy

■ The application of a transducer to a string may also be viewed as *composition* of the FST with the (identity relation on the string)

Literature

- H.R. Lewis and C.H. Papadimitriou: Elements of the Theory of Computation. Prentice-Hall, New Jersey (Chapter 2).
- J. Hopcroft and J. Ullman: Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Massachusetts, (Chapter 2,3).
- B.H. Partee, A. ter Meulen and R.E. Wall: Mathematical Methods in Linguistics, Kluwer Academic Publishers, Dordrecht (Chapter 15.5,15.6, 17)
- D. Jurafsky and J.H. Martin: Speech and Language Processing. An introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall, New Jersey (Chapter 2).
- C. Martin-Vide: Formal Grammars and Languages. In: R. Mitkov (ed): Oxford Handbook of Computational Linguistics, (Chapter 8).
- L. Karttunen: Finite-state Technology. In: R. Mitkov (ed): Oxford Handbook of Computational Linguistics, (Chapter 18).

Off-the-shelf finite-state tools

- Xerox finite-state tools
 - http://www.xrce.xerox.com/competencies/content-analysis/fst/
 - > Xerox Finite State Compiler (Demo)
 - XFST Tools (provided with Beesley and Karttunen: Finite-State Morphology, CSLI Publications)
- Geertjan van Noord's finite-state tools
 - http://odur.let.rug.nl/~vannoord/Fsa/
- FSA Utilities at John Hopkins
 - http://cs.jhu.edu/~jason/406/software.html
- AT&T FSM Library
 - http://www.research.att.com/sw/tools/fsm/

Research Centre Europe

Research - Content Analysis

Past Projects >

Demos.

XEROX FINITE-STATE COMPILER

This page allows you to create a <u>finite-state network</u> from a <u>regular expression</u> and to <u>apply</u> the resulting network to strings. You can also try out some of our <u>Examples</u>.

COMPILATION:

Type a regular expression in this area and submit it to the compiler by pressing the SUBMIT button. The compilation result will appear in a **new** browser window. Clear with RESET.

lacktriangledown Display the <u>structure of the network</u> (if it has not more than 50 states).

Regular expression

```
(a|b)*c b+ (a|c) d;
```

Network

```
484 bytes. 5 states, 9 arcs, Circular. Sigma: a b c d

s0: a -> s0, b -> s0, c -> s1. s1: b -> s2. s2: a -> s3, b -> s2, c -> s3, d -> fs4. s3: d -> fs4. fs4: (no arcs)
```

Exercises

- Write a program for acceptance of a string by a DFSA.
 Then extend it to a finite-state transducer that can translate a surface form to lemma + POS, or between upper and lower case.
- Determinize the following NFSA by subset construction. $A_1 = \langle \{p,q,r,s\}, \{a,b\}, \delta_1, p, \{s\} \rangle$ where δ_1 is as follows:

$\delta_{_1}$	a	b
p	p,q	p
q	r	r
r	S	-
S	S	S

- Construct an NFSA with ε-transitions from the regular expression (a|b)ca*, according to the construction principles for union, concatenation and kleene star. Then transform the NFSA to a DFSA by subset construction.
- Find a minimal DFSA for the FSA A= $\{A,..,E\},\{0,1\},\delta_3,A,\{C,E\}>$ (using the table filling algorithm by propagation).

δ_3	0	1
Á	В	D
В	В	C
C	D	Е
D	D	Е
Е	C	_