Using Artificial Neural Networks to Derive Process Model Activity Labels from Process Descriptions

Mirco Pyrtek, Philip Hake, Peter Loos

In: Proceedings der 15. Internationalen Tagung Wirtschaftsinformatik. Internationale Tagung Wirtschaftsinformatik (WI-2020) March 9-11 Potsdam Germany Universität Potsdam Potsdam 3/2020.


Recently, Artificial Neural Networks (ANN) have shown high potential in the area of Natural Language Processing (NLP). In the area of sentence compression, the application of ANNs has proven to outperform existing rule-based approaches. Nevertheless, these approaches require a decent amount of training data to achieve high accuracy. In this work, we aim at employing ANNs to derive process model labels from process descriptions. Since the amount of publicly available pairs of text and process model is scarce, we employ a transfer learning approach. While training the compression model on a large corpus consisting of sentence-compression pairs, we transfer the model to the problem of deriving label descriptions. We implement our approach and conduct an experimental evaluation using pairs of process descriptions and models. We found that our transfer learning model keeps high recall while losing performance on precision and compression rate.

Weitere Links

Using_Artificial_Neural_Networks_to_Derive_Process_Model_Activity_Labels_from_Process_Descriptions.pdf (pdf, 609 KB)

German Research Center for Artificial Intelligence
Deutsches Forschungszentrum für Künstliche Intelligenz