Skip to main content Skip to main navigation

Publications

Displaying results 1 to 10 of 30.
  1. Matthew Hoffman; Nando de Freitas; Arnaud Doucet; Jan Peters

    An Expectation Maximization Algorithm for Continuous Markov Decision Processes with Arbitrary Reward

    In: David A. Van Dyk; Max Welling (Hrsg.). Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics. International Conference on Artificial Intelligence and Statistics (AISTATS-2009), April 16-18, Clearwater Beach, Florida, USA, Pages 232-239, JMLR Proceedings, Vol. 5, JMLR.org, 2009.

  2. Jan Peters; Jun Morimoto; Russ Tedrake; Nicholas Roy

    Robot learning [TC Spotlight]

    In: IEEE Robotics & Automation Magazine, Vol. 16, No. 3, Pages 19-20, IEEE, 2009.

  3. Hirotaka Hachiya; Takayuki Akiyama; Masashi Sugiyama; Jan Peters

    Adaptive importance sampling for value function approximation in off-policy reinforcement learning

    In: Neural Networks, Vol. 22, No. 10, Pages 1399-1410, Elsevier, 2009.

  4. Marc Peter Deisenroth; Carl Edward Rasmussen; Jan Peters

    Gaussian process dynamic programming

    In: Neurocomputing, Vol. 72, No. 7-9, Pages 1508-1524, Elsevier, 2009.

  5. Duy Nguyen-Tuong; Matthias W. Seeger; Jan Peters

    Model Learning with Local Gaussian Process Regression

    In: Advanced Robotics, Vol. 23, No. 15, Pages 2015-2034, Taylor & Francis Online, 2009.

  6. Carsten Binnig; Donald Kossmann; Tim Kraska; Simon Loesing

    How is the weather tomorrow?: towards a benchmark for the cloud

    In: Benoît Dageville; Carsten Binnig (Hrsg.). Proceedings of the 2nd International Workshop on Testing Database Systems. International Workshop on Testing Database Systems (DBTest-2009), June 29, Providence, RI, USA, ACM, 2009.

  7. Kristian Kersting; Babak Ahmadi; Sriraam Natarajan

    Counting Belief Propagation

    In: Jeff A. Bilmes; Andrew Y. Ng (Hrsg.). UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. Conference in Uncertainty in Artificial Intelligence (UAI-2009), June 18-21, Montreal, QC, Canada, Pages 277-284, AUAI Press, 2009.

  8. Learning Preferences with Hidden Common Cause Relations

    In: Wray L. Buntine; Marko Grobelnik; Dunja Mladenic; John Shawe-Taylor (Hrsg.). Machine Learning and Knowledge Discovery in Databases, European Conference. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD-2009), September 7-11, Bled, Slovenia, Pages 676-691, Lecture Notes in Computer Science, Vol. 5781, Springer, 2009.

  9. Hannes Schulz; Kristian Kersting; Andreas Karwath

    ILP, the Blind, and the Elephant: Euclidean Embedding of Co-proven Queries

    In: Luc De Raedt (Hrsg.). Inductive Logic Programming, 19th International Conference. International Conference on Inductive Logic Programming (ILP-2009), July 2-4, Leuven, Belgium, Pages 209-216, Lecture Notes in Computer Science, Vol. 5989, Springer, 2009.

  10. Saket Joshi; Kristian Kersting; Roni Khardon

    Generalized First Order Decision Diagrams for First Order Markov Decision Processes

    In: Craig Boutilier (Hrsg.). IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence. International Joint Conference on Artificial Intelligence (IJCAI-2009), July 11-17, Pasadena, California, USA, Pages 1916-1921, Morgan Kaufmann Publishers Inc. 2009.