Intelligent Dependable Autonomous Systems

DFKI Research Fellow Talk
Achim Wagner
2022-03-17
Overview

• Motivation
• Trustworthy AI and Dependability
• Dependability of Dynamical Systems
• Production Scenarios
 o Production Level 4
 o Multi-Agent AI Systems and Behavior Decomposition
 o Collaborative Robotics
 o Fault-Tolerant Control
 o Hybrid Modelling
• Conclusion
• Future Research
Motivation: Development of Safety-Critical Applications

Automotive

Production

complex
distributed
dynamical
collaborative
autonomous

Avionics

Medical Technology

Source: Prevent

Source: Boeing Dreamliner

Source: Klinikum Jena

Source: http://www.huffingtonpost.de
Trustworthy AI and Dependability

Ethical Principles

- (i) Respect for human autonomy
- (ii) Prevention of harm
- (iii) Fairness
- (iv) Explicability

Technical Requirements

- Technical robustness and safety
- Resilience to attack and security
- Fallback plan and general safety
- Accuracy
- Reliability and Reproducibility

Dependability of Dynamical Systems - Linguistic

What is Dependability?

- [Carter, 1982]: A system is dependable if it is trustworthy enough that reliance can be placed on the service it delivers
- [Laprie, 1992]: Dependability is that property of a computing system which allows reliance to be justifiably placed on the service it delivers
- [Dubrova, 2013]: Dependability is the ability of a system to deliver its intended level of service to its users

Dynamical (autonomous mobile robot) Systems

- [Rüdiger, 2007]: Dependability in general is the capability of a system to successfully and safely fulfil its mission.
Dynamical System – Behavior Description

[Willems, 1991]: A dynamical system Σ is a triple $\Sigma = (\mathbb{T}, \mathbb{W}, \mathcal{B})$ with $\mathbb{T} \subseteq \mathbb{R}$ the time axis, \mathbb{W} the signal space, and $\mathcal{B} \subseteq \mathbb{W}^T$ the behavior.

![Graph showing dynamical system behavior with function $w_1(t)$, $w_2(t)$, and $w_3(t)$ on the y-axis and time t on the x-axis.]

Functional representation

- State space

 \[
 \dot{x}(t) = f(x(t), u(t))
 \]

- Output

 \[
 y(t) = g(x(t), u(t))
 \]

- Initial condition

 \[
 x(t_0) = x_0
 \]
Dependability of Dynamical Systems - Formal

\[D(t) = 1 - \frac{1}{m} \sum_{j=1}^{d} a_j \left[1 - A_j \left(u(t), y_r(t), y(t), \Theta_j \right) \right] dt \]

\[A_{\text{performance}} = \exp \left(- \frac{\varepsilon_p}{y_p} \right) \]

\[A_{\text{safety}} = 1 - \exp \left(- \frac{\delta_s}{y_s} \right) \]

Dependability Optimization: Robot Control

$$y_p = 0.2, y_s = 0.08, y_{max} = 0.8, y_{min} = -0.8, \ a_p = 0.4, a_{sp} = a_s = 0.3$$

Damped mechanical oscillator

$X(t) = \frac{k}{m} \cdot s^3 + \frac{b}{m} \cdot s^2 + \frac{m}{m} \cdot s$
Dependable Robotics Research Group (Univ. Heidelberg): Autonomous Mobile Robots and Assistance Systems

- Mobile Robots
- Rehabilitation Systems
- Bionic Exoskeletons
- Surgical Robots
Production Level 4
(Autonomous Human-Centered Shared Production)

Source: SmartFactory-KL
Vision: Multi-Agent Systems

- **Multi-agent AI systems**
 - Diverse AI technologies and combinations: knowledge-based, hierarchical planning and model-based machine learning
 - AI components in different hierarchy layers
 - Unified, reusable and scalable solutions

- **Autonomous modular production**
 - Semantic Self-description capabilities of technical modules, optimization of configurations and processes
 - Human assistance with awareness of human capabilities
 - Highly reactive and safe solutions
Information Structure

- RFID
- LIDAR
- Camera
- LOV
- UWB
- 5G

Sensor Data

Information

Decision Making

Actions

Knowledge

Smart Maintenance

Smart Assembly

Robot Assistance
Behavior Decomposition for Autonomous Mobile Robot

RNBC (Recursive Nested Behavior-based Control) Structure
Badreddin1989; Bartolein2007; Wagner2010; Wagner2016
Collaborative Robots

Nigora Gafur et al., 2021
Planning und Model-Predictive Control

\[J_i(x_i^k, u_i^k) := (x_i^{N_p} - x_i^f)^T Q_i^f (x_i^{N_p} - x_i^f) + \sum_{k=0}^{N_p-1} ((x_i^k - x_i^f)^T Q_i^x (x_i^k - x_i^f) + u_i^k R_i^u u_i^k + (u_i^{k+1} - u_i^k)^T R_i^d (u_i^{k+1} - u_i^k)) \]
Planning und Model-Predictive Control

\[J_i(x_i^k, u_i^k) := (x_{i+1}^{N_p} - x_i^f)^T Q_i^f (x_{i+1}^{N_p} - x_i^f) + \sum_{k=0}^{N_p-1} ((x_i^k - x_{i+1}^f)^T Q_i^x (x_i^k - x_{i+1}^f) + \\
(u_i^k R_i^u u_i^k + (u_i^{k+1} - u_i^k)^T R_i^u (u_i^{k+1} - u_i^k)) \]

Pose level

Trajectory level

Pose_d → Pose_model → Pose_a

Trajectory_d → Trajectory_model → Trajectory_a

Physical action_d → Physical action_model → Physical action_a

Model-Predictive Controller (MPC)

Process Model

Process State_model

Process

Trajectory_test
Planning und Model-Predictive Control

Piece Set level

Piece Set\(_{\text{d}}\) ➔ Planner ➔ Piece Set\(_{\text{a}}\)

Pose level

Pose\(_{\text{d}}\) ➔ MPC Loop Model (MPC – Process) ➔ Pose\(_{\text{model}}\) ➔ Pose\(_{\text{a}}\)

Trajectory level

Trajectory\(_{\text{d}}\) ➔ Model-Predictive Controller (MPC) ➔ Trajectory\(_{\text{model}}\) ➔ Trajectory\(_{\text{a}}\)

Process level

Physical action\(_{\text{d}}\) ➔ Process Model ➔ Process State\(_{\text{model}}\) ➔ Physical action\(_{\text{a}}\)
Robot Pick-and-Place with MPC and Collision Avoidance

Nigora Gafur et al., 2022
Fault-Tolerant Control

- Actuators
- Physical Process
- Sensors
- Products

Controller

FDD

- Nominal Model
 - Feature Generation
 - Change Detection
 - Fault Classification

Adaptation

Fault Detection and Diagnosis (FDD)
Hybrid Data-Driven Modelling for Inverse Control of Hydraulic Excavators

- Development of Hybrid models based on expert knowledge and data
- Low effort system modelling
- Simplified general expert model available
- Only small set of experimental data available

<table>
<thead>
<tr>
<th></th>
<th>Boom RMSE</th>
<th>Cylinder R2</th>
<th>Arm Cylinder RMSE</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Box</td>
<td>54.97</td>
<td>0.951</td>
<td>91.85</td>
<td>0.955</td>
</tr>
<tr>
<td>Hybrid 1</td>
<td>21.38</td>
<td>0.993</td>
<td>31.39</td>
<td>0.994</td>
</tr>
<tr>
<td>Hybrid 2</td>
<td>22.06</td>
<td>0.992</td>
<td>31.72</td>
<td>0.994</td>
</tr>
<tr>
<td>Black Box</td>
<td>21.27</td>
<td>0.993</td>
<td>31.21</td>
<td>0.994</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Boom RMSE</th>
<th>Cylinder R2</th>
<th>Arm Cylinder RMSE</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Box</td>
<td>102.58</td>
<td>0.951</td>
<td>127.38</td>
<td>0.975</td>
</tr>
<tr>
<td>Hybrid 1</td>
<td>31.11</td>
<td>0.994</td>
<td>37.35</td>
<td>0.995</td>
</tr>
<tr>
<td>Hybrid 2</td>
<td>33.26</td>
<td>0.994</td>
<td>36.72</td>
<td>0.995</td>
</tr>
<tr>
<td>Black Box</td>
<td>51.06</td>
<td>0.988</td>
<td>37.14</td>
<td>0.995</td>
</tr>
</tbody>
</table>
Conclusion

- Design of dependable production systems can be facilitated by design principles and a specific methodology
 - Formal specification of dependability properties and dependability measure
 - Explicit Description of *desired* and *not desired* system behavior
 - Information Structure is important factor for system design
 - Appropriate system decomposition for managing complexity
 - Identification of critical system variables and dependencies is challenging

- Role of Artificial Intelligence
 - Information extraction, knowledge representation, and decision making
 - Improving model accuracy and reducing effort by combining knowledge and data
 - Prediction of system behavior for optimal planning and control
 - Modelling of human behavior for advanced assistance
Future AI-Driven Dependability Research

Production processes

Machine Behavior

Worker assistance

Product Quality

Tracking/Visualization
Thank You for Attention!
References