
Inteligencia Artificial, 21(62) (2018), 25-39
doi: 10.4114/intartif.vol21iss62pp25-39

INTELIGENCIA ARTIFICIAL
http://journal.iberamia.org/

A Constraint-based Mission Planning Approach
for Reconfigurable Multi-Robot Systems

Thomas M. Roehr
DFKI GmbH Robotics Innovation Center, Bremen, Germany
thomas.roehr@dfki.de

Abstract The application of reconfigurable multi-robot systems introduces additional degrees of freedom to design robotic
missions compared to classical multi-robot systems. To allow for autonomous operation of such systems, planning approaches
have to be investigated that cannot only cope with the combinatorial challenge arising from the increased flexibility of modular
systems, but also exploit this flexibility to improve for example the safety of operation. While the problem originates from the
domain of robotics it is of general nature and significantly intersects with operations research. This paper suggests a constraint-
based mission planning approach, and presents a set of revised definitions for reconfigurable multi-robot systems including the
representation of the planning problem using spatially and temporally qualified resource constraints. Planning is performed
using a multi-stage approach, and a combined use of knowledge-based reasoning, constraint-based programming and integer
linear programming. The paper concludes with the illustration of the solution of a planned example mission.

Keywords: Reconfigurable, Multi-Robot, Constraint-based, Vehicle Routing Problem

1 Introduction
Flexibility is the primary feature of reconfigurable multi-robot systems, since their modularity adds an additional
degree of freedom to design robotic operations compared to the application of traditional multi-robot systems. For
that reason Dignum et al. [11] discuss the so-called strategic flexibility, which offers an exploitation of proactive
and reactive adjustment in the context of reconfigurable organizations. The strategic flexibility allows to tackle
a set of unforeseen tasks with a robustly equipped system that allows recovery from malfunction thanks to in-
creased redundancy. Exploiting strategic flexibility provides a strong motivation to combine increasingly capable
autonomous robotic systems with a concept for modularity.

The main benefit of reconfigurable multi-robot systems lies in the fact that resources can easily, although not
arbitrarily, be (re)used by any agent being a member of the reconfigurable system. Using this flexibility allows
to balance resource usage and hence to adapt dynamically to operational demands. While modularity can lead to
significant operational advantages it has drawbacks: if the level of modularity is chosen arbitrarily high this can
lead to less capable systems. One can observe the effect in swarm-based systems, which come with a high degree of
modularity: a swarm typically consists of cheap agents with a simple design, and thus , apart from emergent high-
level behaviors, these agents come with a rather limited applicability by design. Although the mentioned emergent
behaviors can be exploited, these behaviours remain harder to control or will be focused on a single task only. In
general, reconfigurable multi-robot systems offer a feasible solution which consists of a mix of individually capable
agents, including swarm-like units that can augment the overall robotic team. This augmentation is done either by
acting as a fully autonomous agent or as an extension unit. Roehr et al. [17] implement this idea in the context
of robotic space exploration missions in order to show the general feasibility and identify critical limitations: the

ISSN: 1137-3601 (print), 1988-3064 (on-line)
c©IBERAMIA and the authors

http://journal.iberamia.org/

26 Inteligencia Artificial 62(2018)

implemented approach validates the potential for increasing the flexibility in future robotic missions, but it also
comes with increased operational demands. Thus, they suggest the introduction of a dedicated system model in
order to automate operation of reconfigurable multi-robot systems and exploit the offered system capabilities to
improve not only efficiency, but also safety of future robotic missions. Roehr and Kirchner [19] show how planning
as essential element for automated operation for such a reconfigurable multi-robot system can be approached.

This paper details the problem definition and presents the results of the continued development of the plan-
ning approach. In Section 2 we briefly outline relevant background references for the state of the art. Section 3
introduces the planning problem, and in Section 4 we give details on the organization model and its extended use.
Section 5 outlines the revised planning approach. We close with a conclusion and outlook in Section 6.

2 Background
The initial motivation for the planning problem is given by Sonsalla et al. [21], where a reconfigurable multi-robot
system shall establish a logistics chain operation in order to support sample-return missions as part of extraterres-
trial exploration. The robotic team consists of mobile and immobile agents, which can be physically connected via
a set of electro-mechanical interfaces. By connecting one or more robots, they can form a new type of agent, com-
prising features none of the individual agents offers. The ability for reconfiguration offers novel ways of dealing
with robotic missions, but Roehr and Kirchner [19] is to our best knowledge the only approach particularly dealing
with reconfigurability. This mission planning problem can be understood as a logistic planning problem where
mobile robots can transport other immobile and mobile robots. Hence, it is closely related to the Vehicle Routing
Problem (VRP) [22]: a fleet of (most often homogeneous) mobile vehicles shall serve a set of customers, e.g.,
by delivering and/or picking up items, while minimizing a cost function – typically the overall travelled distance.
The VRP applies to transportation and logistics scenarios and comes in many variants among which Capacitated
VRP (CVRP), VRP with Time Windows (VRPTW) and VRP with Pick-up and Delivery (VRPPD) are the most
popular ones. The pickup-and delivery problem can be further distinguished into a many-to-many (M-M), one-to-
many-to-one (1-M-1), and one-to-one (1-1) problems, where the notation can be read as cardinalities for the origin,
transition point, and target of a commodity, i.e. from-to or from-via-to. The M-M variant for example accounts for
multiple commodity (good) origins and destinations, while the 1-M-1 variants assume a start and end of all vehicles
at a single depot. The majority of these approaches are either focusing on a single-commodity case, homogeneous
vehicle capacities or optimization of routing cost, were our approach has to deal with multi-commodities, hetero-
geneous vehicles, multi-depots, and fleet size optimization. Hence, a closer relation can be established to more
specialized VRP approaches, e.g., such as the Heterogeneous or mixed Fleet VRP (HFVRP) [5] which accounts
for a heterogeneous fleet and optionally with unlimited vehicle availability, or Dondo et al. [12] who approach
Multi-depot heterogeneous fleet VRP with time windows (MDHFVRPTW). The variant VRP with Trailers and
Transshipments (VRPTT) and more generalized VRP with multiple synchronization constraints (VRPMSs) [13]
adds synchronization constraints between vehicles, which form a special instance of a reconfigurable multi-agent
system containing agents or in this case vehicles of different categories: autonomous and non-autonomous, as
well as support and task vehicles. Drexl [13] formulates a graph-based modelling approach to account for the
interdependence of vehicles. He does not, however, provide an implementation of a solution approach.

While much of the research in VRP originates from the area of operational research, Coltin and Veloso [6, 7,
8] investigate a pick-up and delivery variant in the context of multi-robot systems and also apply their approach
to a taxi problem with ridesharing. They implement optimal approaches as well as meta-heuristics, in particular
simulated annealing, and Very Large Neighborhood Search (VLNS) [3] their application of VLNS results not only
in a scalable approach, but also proves a general benefit of using transfers in a pickup and delivery scenario. In
Section 3 we will outline the distinction between existing VRP and our approach, and provide additional constraints
for our mission planning problem.

3 Mission Representation
The planning problem presented in the following aims to solve the problem of planning and scheduling a mission
performed by a reconfigurable multi-robot system. While a mission can initially be seen as a task assignment for
a multi-robot system, here it comes with an essential difference: agents are able to dynamically form physical
coalitions referred to as composite agents. These composite agents are formed for three main reasons. Firstly,

Inteligencia Artificial 62(2018) 27

to perform agent transport: one carrier agent attaches one or multiple (most likely, but not necessarily) immobile
systems. Secondly, to provide functionality: some functionality is only available as so-called super-additive effect
and requires two or more agents to join so that this functionality becomes available only for this composite agent,
but not for the individual agents. Thirdly, to increase the functional redundancy: for agents that are assigned to
fulfil requirements, we assume that adding relevant resources improves the redundancy and safety of operation,
and effectively the likelihood of a successful performance of an agent.

While most VRP assume homogeneous agents, the team of agents in a reconfigurable multi-robot system is
formed by heterogeneous agents; agents with individual capabilities and functionalities, as well as limitations
to reconfigure and constraining attributes such as an overall transport capacity. We will look at a mission as a
particular (minimal) partitioning problem of an agent team to achieve a requested agent- and function-distribution
over space and time.

3.1 Definitions & Assumptions

In the following we introduce the basic notation, definitions and assumptions regarding reconfigurable multi-robot
systems. The provided definitions describe a modular multi-agent system, which can form composite agents from
a set of available agents:

Definition 3.1. An atomic agent a represents a monolithic physical robotic system, where A = {a1, . . . , |A|}, is
the set of all atomic agents, and a ∈ A or equivalently {a} ⊆ A.

Definition 3.2. A mechanically coupled system of two or more atomic agents is denoted a composite agent CA,
where CA ⊆ A, and |CA| > 1.

Definition 3.3. The type of an atomic agent a is denoted â and equivalently for a composite agent CA the type is
denoted ĈA. The set of all agent types is denoted θ(A) = {1, . . . , |θ(A)|}, with the corresponding type-partitioned
sets A1, . . . , A|θ(A)|, where A = A1 ∪ · · · ∪A|θ(A)|.

Definition 3.4. A (general) agent is denoted GA, where GA ⊆ A, and GA 6= ∅. A (general) agent rep-
resents the wrapping concept for atomic and composite agents, with the corresponding type-partitioned sets
GA1, . . . , GA|θ(A)|, where GA = GA1 ∪ · · · ∪GA|θ(A)|

Definition 3.5. A (general) agent type ĜA will be represented as a function γ
ĜA

: θ(A) → N0, which maps an
atomic agent type â to the cardinality câ of the type partition, such that câ = |GAâ|. The set of all constructible
general agent types from a set of atomic agents A is denoted θ(Â); it represents the collection of all general agent
types that are found in the powerset of all agents PA.

Note, that a general agent type can equivalently be represented as tuple set of agent type and type cardinality:
ĜA = {(â1, c1), . . . , (ân, cn)}, where ai ∈ A and ci = |GAi|. ĜA ⊇ ĜA′ ⇐⇒ ∀(ai, ci) ∈ ĜA, (âi, c′i) ∈
ĜA′ : ci ≥ c′i, where i = 1 . . . |A|.

Definition 3.6. A set of atomic agents A is denoted an agent pool and it can be represented by a general agent
type ĜA, such that ∀a ∈ A : γ

ĜA
(â) = |Aâ|.

Definition 3.7. An atomic agent role râ represents an anonymous agent instance of an atomic agent type â.

Definition 3.8. A coalition structure of an agent set A is denoted CSA and is represented by a set of disjunct
general agents CSA = {GA0, . . . , GAn}, where GA0 ∪ · · · ∪GAn = A, and ∀i, j ∧ i 6= j : GAi ∩GAj = ∅.

3.2 Assumptions

Our design of the organization model and planning system for a reconfigurable multi-robot system, which both
will be detailed in the following section, is based on a set of assumptions to simplify the modelling approach.

Assumption 3.1. Each atomic and composite agent can be mapped to a single agent type only.

28 Inteligencia Artificial 62(2018)

t0 t1 t2 t3 t4 t5 . . .

l0

l1

[](∅,Ĉ0)

[](F0,{(â0, 3)})[](∅,Ĉ1)

Figure 1: A mission specification example based on a space-time representation

A reconfigurable multi-robot system requires coupling interfaces, e.g., an electro-mechanical interface [10], to
create physical linking between atomic agents to establish a composite system. Although multiple links could be
considered between any two agents, interfaces cannot be arbitrarily coupled and the following assumption holds:

Assumption 3.2. A mechanical coupling between two atomic agents can only be established through a single link
and two and only two compatible physical coupling interfaces.

3.3 Mission specification
The mission specification is a temporal database description, and it defines the initial, intermediate and goal state
for a reconfigurable multi-robot system. A valid mission specification is described by the following two definitions:

Definition 3.9. A spatio-temporal requirement is a spatio-temporally qualified expression (stqe) s which describes
the functional requirements and agent instance requirements for a given time-interval and a particular location: s
= (F , ĜAr)@(l, [ts, te]), where F is a set of functionality constants, ĜAr is the general agent type representing
the required atomic agent type cardinalities, l ∈ L is a location variable, and ts, te ∈ T are temporal variables
describing a temporal interval with the implicit constraint ts < te. Variables associated with s will also be referred
to using the following notation: Fs,ĜA

s

r,l
s,tss, and tse.

Definition 3.10. The robotic mission is a tupleM = 〈ĜA, STR,X ,OM〉, where the agent pool ĜA describes
the available set of agents, STR is a set of spatio-temporally qualified expressions, X is a set of constraints, and
OM represents the organization model.

The initial state is defined by the earliest timepoint and binds available agents to their starting depot. The
earliest timepoint is t0 ∈ T and ∀t ∈ T, t 6= t0 : t > t0. Figure 1 illustrates a mission specification, where

ĜA = {(â0, 3), (â1, 2)},

STR = {(∅, Ĉ0)@(l0, [t0, t1]), (∅, Ĉ1)@(l1, [t0, t1]),

(F0, {(â0, 3)})@(l1, [t3, t5])}
X = {t0 < t1, . . . , t4 < t5}

OM = {mobile(â0),¬mobile(â1), . . .}

Ĉ0 = {(â0, 2), (â1, 1)}, Ĉ1 = {(â0, 1), (â1, 1)}, l0, l1 are location variables and t0, . . . , t5 are timepoint variables.
Two general agents Ĉ0 and Ĉ1 are assigned to location l0 and l1 respectively. Two stqes related to the interval
[t0, t1] define the initial agent assignments; no functional requirements are part of the initial state description. The
goal state is defined over the interval [t3, t5] and requires a functionality set F0 in combination of least 3 agents of
type â0 at location l1.

3.4 Mission constraints
A mission can be detailed by constraints in the constraint setX . The only initially required constraints are temporal
ones to describe the starting state, e.g., in the presented example all stqes relating to a start at t0, e.g., cardinality
constraints allow to set upper and lower bounds on the usage of agents and functionalities to reduce the com-
binatorial challenge. Other optional constraints can be added to detail and constrain the evolution of a mission.
The following list describes the available constraint types; minimum constraints come with a corresponding max
constraint implementation:

Inteligencia Artificial 62(2018) 29

temporal qualitative timepoints describe time intervals, where timepoint constraints are provided using point
algebra (<,>,=) [9].

duration minDuration(s, t), s ∈ STR : sets a lower bound of time t for the duration of the time interval
associated with the stqe s.

min cardinality minCard(s, â, cmin), s ∈ STR : represents a minimum cardinality constraint so that |GAâ| ≥
cmin

all distinct allDistinct(S, â) describes the constraint: ∀s ∈ S :
⋂
Aâ,s = ∅, where S ⊆ STR, and Aâ,s

represents the subset of agents of type â which are associated with the stqe s.
min distinct minDistinct(S, â, n) describes the constraint: ∀si, sj ∈ S, i 6= j :

∣∣|Aâ,si | − |Aâ,sj |∣∣ ≥ n, where
n ≥ 0, S ⊆ STR, and Aâ,s represents the partition of A which contains only agents of type â which are
associated with the stqe s.

all equal allEqual(S,Ae) describes the constraint: ∀s ∈ S∃Ae : Ae = Asr, where Ae ⊆ A, S ⊆ STR.
min equal minEqual(S,Ae) describes the constraint: ∀s ∈ S∃Ae : Ae ⊂ Ase, where Ae ⊂ A, S ⊂ STR.
min-function minFunc(s, f): requirement for a functionality f to be available at stqe s: f ∈ Fs
min-property minProp(s, f, p, n) constrains the property pf of a functionality f to be pf ≥ n, where the

constraint implies minFunc(s, f)

To handle service preferences within this representation, e.g., when a particular agent should visit two distinct
locations, equality constraints are required. An equality constraints can define partial or full paths for the same
instances of agents, e.g., to control that the same agent visiting location l0 at timepoint t0 will also visit location
l1 at t1. Detailing functionality request with min and max property constraints are motivated by informed repair
strategies, e.g., a property constraint can demand a mobile agent with a particular transport capacity. In Section 4
we will detail this reasoning further.

3.5 Distinction & Observation

Existing VRP based approaches most often only consider a subset of the presented constraints, while the mission
planning problem formulation embeds the following VRP properties: time windows, capacity constraints, het-
erogeneous agents, fleet size minimization and vehicle synchronization. Furthermore, additional special features
are introduced: (i) it is not only accounted for commodity demand, but rather a combination of commodities and
vehicles that provide certain functional properties; (ii) the use of qualitative temporal constraints (in contrast to
hard or soft quantitative time windows), which enables partially ordered requirements and increase the flexibility
to synchronize agent activities; (iii) the mix-in of a multi-pickup multi-delivery problem in contrast to a single
drop-off.

4 Organization Modeling

To reason upon a reconfigurable multi-robot system a special so-called organization model is introduced which
describes all resources that can be part of a reconfigurable multi-robot team: atomic agents as well as their func-
tionalities and properties thereof. As detailed in [19] the organization model builds upon an ontological description,
which: (a) encodes information about resources that are associated with agent types, (b) associates interfaces with
agent types, (c) defines compatibility between interfaces, (d) allows the identification of feasible, and (e) allows
inferencing functionality of composite agents.

In combination of all features the organization model serves as main reasoner to identify composite agents and
coalition structures, which are suitable to support a set of time and location bounded functional requirements.

The following sections will describe agent properties, and the details of identifying feasible composite agents,
and subsequently suitable agent with respect to a given functionality.

4.1 Atomic agent type

Each agent type is associated with the following essential attributes:
mobility mobile(â) defines whether an agent of type â is mobile or not.

30 Inteligencia Artificial 62(2018)

transport capacity tcap(â) defines the maximum total capacity (measured in storage units) of an agent of type â
to transport others, and tcap(âi, âj) defines the maximum capacity of an agent type âi to transport an agent
type âj .

capacity consumption tcon(â) defines the number of storage units an agent of type â consumes temporarily when
being transported (currently this is set to 1 by default);

velocity vnom(â) defines the nominal velocity of an agent type â, vnom ≥ 0 for mobile atomic agent types and
vnom = 0 for immobile

power pw(â) defines the nominal required power to operate an agent of type â
mass mass(â) defines the mass of an agent
energy energy(â) defines the available electrical energy that initially comes with an atomic agent

4.2 General and composite agent type

Some properties of composite agents can be inferred from their compositing atomic agents: Avella et al. [4] (though
in the context of route constraints) label these as ’numerical totalisable’, e.g., here mass and energy, which can be
easily represented as sum of the property values of each atomic agent forming the composite agent. Inferring
the capacity, in contrast, can be complex due to geometrical packaging constraints. The present model, however,
currently ignores geometrical packing constraints and checks only connectivity based on interface compatibility.

4.3 Feasible agents

The main feature of a reconfigurable multi-robot system is the possibility for physical interconnection, but the not
all composite agents are feasible. The compatibility and availability of connecting interfaces can restrict the design
of a fully connected composite agent. Interfaces can come in different variants, e.g., for the reference system in
[18] a male and female (also referred to as EmiPassive and EmiActive). But only one male and one female interface
can be coupled. Atomic agents can comprise any number of interfaces, but based on Assumption 3.2 exactly one
interface can be used for the connection to another agent’s interface. For a successful connection, both interfaces
need to be compatible.

Checking feasibility is a matching problem for graph G = (V,E), with constraints for the existence of edges,
where a vertex v ∈ V represents a single interface. We denote IA as the set of all interfaces of a set of agent
A, so that V = IA with the corresponding partitioning IA = I0 ∪ I1 ∪ . . . In, where n = |A| − 1 and the set
of interfaces of an agent a0 is represented as I0 = {i0,0, i0,1, . . . , i0,|I0|−1}. The adjacency matrix is an m ×m
Matrix C, where m = |IA|, and ∀i, j ∈ IA : ci,j = 0, 1 (rows and columns are annotated with the interface):

i0,0 i0,1 · · · in,|In|


i0,0 ci0,0,i0,0 ci0,0,i0,1 · · · ci0,0,in,|In|

i0,1 ci0,1,i0,0 ci0,1,i0,1 · · · ci0,1,in,|In|
...

...
...

. . .
...

in,|In| cin,|In|,i0,0 cin,|In|,i0,0 · · · cin,|In|,in,|In|

Checking connectivity means search for a valid assignment for the adjacency matrix C, while the following
constraints hold for this symmetric matrix, where cp,q = cq,p, p, q ∈ IA:

∀ak ∈ A, p, q ∈ Ik : cp,q = 0 (1)

∀ak ∈ A, p ∈ Ik :
∑
q∈IA

cp,q ≤ 1 (2)

∀ak, al ∈ A :
∑
p∈Ik

∑
q∈Il

cp,q ≤ 1 (3)

Inteligencia Artificial 62(2018) 31

Figure 2: A feasible link structure for a composite agent after solving the assignment problem. Edges are annotated
with the interface corresponding to the source vertex. Agent models and interfaces are related to the reference
system described in [17].

Constraint 1 defines that no self links are allowed for an atomic agent, while Constraint 2 restricts each interface
to be part of maximum one link only. Finally, Constraint 3 enforces Assumption 3.2, so that two atomic agents
have to be connected by one link.

The assignment problem is solved using constraint-based programming and implemented using Generic con-
straint development environment (Gecode) [20], where the matrix entries represent the constraint-satisfaction prob-
lem (CSP) variables, each with the domain Dc = {0, 1}. Since a single agent might have multiple interfaces of the
same type, the corresponding column assignments in the adjacency matrix are interchangeable, and create redun-
dant solutions. We use symmetry breaking to reduce the number of redundant solutions, and to further speed the
assignment process up, variable assignments are done in order of the least constrained agents, i.e.

a∗ = argmin
ak∈A

1

|Ik|
∑
q∈IA

∑
p∈Ik

c∗p,q (4)

, where

c∗p,q =

{
1 if cp,q is already assigned
0 otherwise

In practice, we will also add a small fractional random bias which serves as tie breaker when between variables
with equally constrained agents.

Figure 2 shows the result of a successful assignment procedure, for a set of seven agents, where the agent
Sherpa comprises four male and two female interfaces, Payload one of each, CoyoteIII two male and BaseCamp
five male.

4.4 Suitable agents
An atomic agent is associated with a set of resources, being either physical components or virtual ones such as
capabilities and functionalities it can offer; the same holds for composite agents. Additionally, virtual resources
can depend upon other resources, leading to a hierarchical dependency structure. In order to resolve the func-
tional requirements of the mission specification to actual suitable agent type which support the requirements, the
organization model provides a mapping function: µ : PF → Pθ(A), where PF represents the powerset of all
functionalities, and Pθ(Â) denotes the powerset of all general agent types. The function µ thus maps a set of
functions to a set of general agent types which support this set of functions and forms feasible agents. The orga-
nization model encodes functionality based on resource availability, where resources can be physical devices and
capabilities belonging to an agent. Thus, the organization model allows to infer functionality from a given agent
type and its associated resource structure: µ−1 : Pθ(Â) → PF . Thereby, the organization allows to map from
agents to functionalities and back. An additional generalization can be achieved, when the mapping does not only
account for a set of functionalities, but a set of arbitrary resource types which can be associated with a general
agent. Currently, however, we have restricted the mapping to functionality.

32 Inteligencia Artificial 62(2018)

Each agent type is associated with a maximum cardinality for a resource type, which reflects its initial and
original state. Note, that setting the maximum cardinality still allows to lower the bound, in contrast to defining
the exact cardinality. Therefore, the current modeling approach is prepared to consider resource failure or removal
in future extensions.

Support is defined for an agent type and a single resource concept c as follows (cf. Roehr and Kirchner [19]):

support(â, c, f) =
cardmax(c, â)

cardmin(c, f)
(5)

, where cardmin and cardmax return the minimum and maximum required cardinality of resource instances.
Accordingly, support of a function f with respect to a resource class c can be categorized as follows:

support(â, c, f) =


0 no support
≥ 1 full support
> 0 and < 1 partial support

(6)

Since composite agents might comprise a high level of redundancy, the introduction of a saturation bound shall
reduce the number of agents which have to be considered when a given set of functionalities is demanded. We
define the functional saturation bound for an atomic agent type â with respect to functionality f using the inverse
of support:

FSB(â, f) = max
c∈C

1

support(â, c, f)
, (7)

where C is a set of resource classes and ∀c ∈ C : cardmin(c, f) ≥ 1 to account only for relevant resource classes.
If there is no support for a c ∈ C such that support(â, c, f) then FSB(â, f) = ∞. Similarly, the bound for a set
of functions F is defined as:

FSB(â,F) = max
f∈F

FSB(â, f) (8)

Identifying functionality support for a general agent type is equivalent to an atomic agent type, but to compute
the maximum resource cardinalities the following holds:

cardmax(c, ĜA) =
∑
â∈ĜA

γ
ĜA

(â)cardmax(c, â) (9)

, where c ∈ C. Minimum resource cardinalities will be computed equivalently using cardmin(c, â).
The number of general agent types that can support some functionality can be large, but it can be observed that

for a supported set of functionalities a set of minimal general agent types Gmin exists.

Definition 4.1. A general agent type which supports a given set of functionalities and whose agent type cardinali-
ties cannot be further reduced is denoted minimal with respect to the given set of functionalities.

Hence, a minimal general agent type represents a lower bound to satisfy functionality requirements with a given
combination of agent types.

5 Mission planning
The primary goal is to provide a valid assignment for the provided mission specification (cf. Section 3), while
fleet size minimization and total cost minimization are secondary. The actual planning process is based on several
stages in order to generate solutions:
(1) temporal ordering of all timepoints using a temporal constraint network
(2) upper and lower bounding of agent type cardinality for each spatio-temporal requirement
(3) generation of agent role timelines according to unification constraints and agent type cardinalities
(4) flow optimization to transfer immobile agents with mobile agents
(5) quantification of timepoints, based on transition times

Inteligencia Artificial 62(2018) 33

Stage (1) creates a sequence of ordered timepoints, which is a necessary precondition for all next stages in order
to identify concurrent resource usage and creating a commodity flow network. Stage (2) identifies the minimally
required set of agent roles, and is for this reason a key element for minimization of the resources in use. Stage (3)
takes all mission constraints into account in order to suggest a feasible agent role assignment. This assignment is
the basis for local optimization in stage (4).

Constraint-based programming is involved in the reasoning of the organization model, and the planning stages
(1),(2), and (3). Each of these stages involves the definition of appropriate branching strategies, and symmetry
breaking conditions, and (3) uses of special implemented constraint propagator. If at any listed stage the search
process fails, backtracking will be performed to the previous stage. The following sections will describe the details
of the individual stages:

5.0.1 Temporal Ordering of Timepoints

To generate valid timelines and identify resource conflicts the approach requires a fully ordered set of time-
points. The generation of a fully constrained set of timepoints is based on qualitative temporal reasoning using
point algebra with the set of relations REL = {>,<,=} [16]. Consistency of the Temporal Constraint Net-
work (TCN) is checked using a CSP which is defined by a set timepoint variables T = {t1, t2, . . . , t|T |}, a set
D = {D1, D2, . . . , D|T |} to represent the domain values for each timepoint t ∈ T , and a constraint set C with
constraints of the form C = 〈tn, reli, tm〉, where n,m = 1, . . . , |T |, and reli ∈ REL. A constraint is fulfilled if
the relation described by c ∈ C between two timepoint variables is fulfilled.

The final domain for each variable is restricted to a singleton: |Di| = 1 and permitted values are Di ⊆
{1, 2, . . . , |T |}. If a full assignment of values can be found, the TCN is consistent, and the ordering of timepoints
corresponds to the ordering of the assigned values. The qualitative temporal reasoning is sufficient to synchro-
nize tasks, but only the quantification of time in the last stage of the planning approach will verify the temporal
consistency of a solution.

5.0.2 Bounding agent type cardinality

To perform an upper and lower bounding of agent type cardinality a matrix based representation for spatio-temporal
requirements and agent types is used, where xi,j represents the cardinality of agent type âj ∈ Â and si ∈ STR.
The following matrix representation with annotated rows and columns illustrates the meaning of each related CSP
variable:

â0 â1 · · · ân


s0 x0,0 x0,1 · · · x0,n

s1 x1,0 x1,1 · · · x1,n

...
...

...
. . .

...
sm xm,0 xm,1 · · · xm,n

(10)

, where n = |Â| − 1, and m = |STR| − 1. Each variable x has an initial domain of positive integers Dx =
{0, 1, . . .}.

Since resource availability is restricted, the general agent type ĜA which is part of the mission specification
defines an upper bound for all agent type cardinalities, which will be referred to as ĜAUB for readability.

Spatio-temporal requirements, however, can overlap, i.e. when they refer to the same location and their time
intervals overlap. For a set of overlapping spatio-temporal requirements Ω = {si, . . . , sj}, si, sj ∈ STR the upper
bound is enforced as follows:

∀âj ∈ Â :
∑
si∈Ω

xi,j ≤ γĜAUB
(âj) (11)

The organization model is required to translate the requirements for functionalities into requirements for (suit-
able) general agent types, and apply the functional saturation bound. Lower bounds for each spatio-temporal
requirement result from the combination of demanded functionalities and the given minimum agent type cardi-
nalities. This lower bound represents a set of minimal general agents which is translated into the spatio-temporal

34 Inteligencia Artificial 62(2018)

requirement’s CSP variable domain. This domain is considered in the CSP by using extensional constraints for the
assignment of model cardinalities, thus restricting model combination to minimal general agents. The extensional
constraints enforce an exact assignment, but any full assignment of model cardinalities is only a lower bound for
the subsequent agent role assignment stage. If no assignment can be found, too few resources are available to fulfil
the mission requirements; the planning continues with another assignment of the temporal constraint network if
possible or fails otherwise.

5.0.3 Agent roles

Subsequent to the CSP branching on bounded agent type cardinalities, a candidate assignment of agent roles to
spatio-temporal constraints can be computed using a set of integer variables yi,k,j , for si ∈ STR, âk ∈ Â, and
0 ≤ j ≤ γ

ĜAUB
(âk), which have the domain D = {0, 1}:

râ00 · · · râk0 · · · rânl


s0 y0,0,0 · · · y0,k,0 · · · y0,n,l

s1 y1,0,0 · · · y1,k,0 · · · y1,n,l

...
...

.
...

sm ym,0,0 · · · ym,k,0 · · · ym,n,l

(12)

, where l = γ
ĜAUB

(ân)− 1, m = |STR| − 1, and n = |Â| − 1.
Additional constraints are applied to guarantee unary agent role usage for time-overlapping constraints, and the

general mission constraints described in Section 3 can directly be translated into low level CSP constraints, e.g.,
such as equality constraints minEqual, maxEqual as well as distinction constraints. Since agent roles of the same
agent type are interchangeable symmetry breaking is applied to reduce the number of redundant solutions. While
constraint propagation will reduce the corresponding domain and will lead to value assignment, full assignment of
variables will only be performed for agent roles that (a) have an assignment apart from the single starting location,
and (b) are mobile. To the first kind of agent roles we will also refer to as active agent roles. This partial assignment
allows to extract full timelines for active mobile agents and partial timelines for active immobile agents. Both form
the basis for a multi-commodity flow problem which is solved using integer linear programming.

5.0.4 Timeline Generation

Variable assignment for a single agent role variable assignment have to fulfill another important property: they have
form a path in a temporal-expanded network. Ford and Fulkerson [14] have shown that networks can represent
flow over time, and we similarly rely on what we call a temporal-expanded network to compute a flow-based
representation for the mission planning problem. The temporal-expanded network has a bound on the number of
edges by allowing only edges between vertices which are related to neighbouring timepoints and point forward in
time:

Definition 5.1. A time-expanded network for a set of timepoints T and a set of locations L is a graph G = (V,E)
with the following properties: Each vertex in V corresponds to a unique location timepoint tuple vl,t = (l, t), where
l ∈ L, and t ∈ T . The set of edges is restricted: e ∈ E =⇒ e = (vtn,li , vtn+1,lj), where n = 0, . . . , |T | − 1 and
i, j = 1, . . . , |L|. Without loss of generality t0 ≤ t1 ≤ · · · ≤ t|T |−1.

A custom (path) propagator has been implemented to exploit the structure of the network and enforce a con-
strained path in the network. This leads to a faster assignment process of agent role variables.

5.0.5 Multi-commodity flow

When the role assignment process is completed (fully for the mobile agents, and partially for the immobile ones),
it is straightforward to translate the agent role timelines into a multi-commodity min-cost flow problem [2]: mobile
agents represent transport providers, while immobile agents will be treated as individual commodities. Thus, edges
in the network are either ’local’ connections since they refer to the same location, or they are part of mobile agent
routes. While we assume that local connections have infinite capacity, edges created as result of a mobile agent

Inteligencia Artificial 62(2018) 35

transition have an upper capacity bound defined by the transport capacity of the corresponding mobile agent. All
available mobile agents span a flow network over which commodities, or here immobile agents, can be routed to
their target destinations. But agents are not restricted to a single target destination, so that requirements partially
define a route for each agent. Therefore, the flow network represents all immobile agent requirements by mini-
mum trans-flow requirements. Although bundling all agent types into one commodity would lead to a compact
representation, route requirements for individual agents could not be set properly. Hence, each immobile agent
role corresponds to a commodity, and role usage requirement are translated in to minimum transition requirements
as already mentioned.

Mobile and immobile agent routes are transformed into a multi-commodity min-cost flow problem with unit
commodity cost [2]:

min
∑
k,m

xkm

s.t.
∑

em∈An

xkm −
∑

em∈Bn

xkm =


S+
k if n = sk

−S−k if n = tk , ∀ n, k
0 otherwise

xkm ≥ lkm ∧ xkm ≤ ukm
, where

G = (V,E)

K = number of commodities, k = {1, . . . ,K}
m = {1, . . . ,M},M = |E|
em = edge between node i and node j, i.e. (i,j)
xkm = flow for commodity k in arc em
ckm = unit cost for commodity k in arc em

ukm, l
k
m = upper/lower bound for commodity k flow

through edge m
sk, tk = source/target of commodity k, sk ∈ V

S+
k , S

−
k = supply/demand of sk ∈ V
Bn = set of incoming edges of node n
An = set of outgoing edges of node n

To solve the network flow problem, the problem is first translated into a standard representation (CPLEX LP)
so that different LP solvers can be used to solve the optimization problem (here: SCIP [1] and GLPK [15]). Any
feasible and optimal solution of the network flow problem is also a feasible, but not necessarily an optimal solution
for the mission assignment problem.

5.0.6 Quantification of time

A full solution still requires the quantification of temporal intervals: the qualified temporal network is therefore
converted into a quantitative simple temporal network where the transitions between locations (and stqes) are based
on the time required for the mobile systems to perform the location transitions and to form composite agents. Any
min and max duration constraints will also apply at this planning stage.

5.1 Search & Solution repair
The previously described constraints lead to the generation of role timelines, and the CSP framework Gecode [20]
has been used for the implementation. All role timelines are not only checked for feasibility via the multi-
commodity min-cost flow optimization, but at the same time locally optimized. Still, finding a feasible solution for
a highly restricted set of resources can be a significant challenge. Several strategies can be considering for search,

36 Inteligencia Artificial 62(2018)

and our initial approach interprets lower agent type cardinality bounds as exact bounds - with the intention to keep
the fleet size minimal and enlarge only when necessary. Hence, in the case when no optimal solution can be found,
the infeasible (LP) solution is analysed to identify open flaws, i.e. unfulfilled minimum commodity trans-flow
requirements. Upon identification of all flaws, a repair heuristic can be applied which injects additional transport
provider requirements, thereby triggering either the change of existing mobile agent routes, or an increase of the
lower agent type cardinality. The min-property constraint is used to augment the mission and restart the search
after the local repair. For highly constrained missions, the repair process can reduce the number of flaws, but is
slow at finding feasible solutions, hence showing that the heuristic is currently insufficient for complex setups.

An alternative is offered by the relaxation of cardinality bounds. In order to speed up finding an initial feasible
solution, it is beneficial not to interpret the lower agent type cardinalities as exact bounds. Allowing an additional
set of mobile systems (still within the number of the available ones) can reduce the time to find a feasible solution,
but leads to higher redundancies and therefore less efficient solutions, since more agents will be required.

Figure 3: Example of a feasible solution for a full mission with locations = {lander,b1,b2,b4,b6}, timepoints =
{t0,t1,. . . ,t10,t14}. Fillbars indicate the consumed capacity of mobile agents. Color-coded boxes represent unique
agent roles (only for better visualization limited to 16 per agent type): green = fulfilled requirement, gray =
presence without a requirement.

Figure 3 shows a computed feasible solution. The general agents available for the mission are 3 Sherpa, 2
CREX, 3 Coyote II, 16 Payload, and 5 BaseCamp, where some agent interfaces are listed in the upper left corner
of the figure. The assignment at the location lander shows, that only a subset of atomic agent is required for
the solution. Fulfilled atomic agent requirements are highlighted as green squares, while the presence of systems
without requirements is shown in green. These requirements, however, only represent one feasible set of atomic
agent requirements which has been inferred from required functionalities. This solution has been computed within
few seconds but only for a relaxed cardinality bound with two additional mobile agent roles (per mobile agent
type).

Inteligencia Artificial 62(2018) 37

5.2 Mission solution & cost function

The overall state of the agent organization, i.e. current connection state of atomic and composite agents is reflected
by the coalition structure. In order to cost factor the dynamics in an agent organization two related concepts have
to be used: policies and heuristics. Policies are required to define rules for selection and attribution. For example
in the case of a transport multiple mobile robot may be available to perform this transport. To decide which one
to take, a transport policy has been introduced, which chooses the agent with the largest transport capacity. For
attribution energy consumption in a composite agent serves as main example. Since multiple power sources might
exist is such system, a consumption policy has to distribute the consumption to all energy providers. Here, for the
default policy each provider takes a share relative to its contribution to the overall energy capacity of the composite
agent. Heuristics serve to interpolate a organizational state and estimate final mission costs: a duration heuristic for
moving between locations relies on the information about the distance and the nominal speed of the transporting
agent. Energy cost are depending upon the duration heuristic by relating duration to the power consumption of
a composite system. Any reconfiguration changes this coalition structure, but requires a transition time, so that
ρ(CSAi , CS

A
j) defines the time to transition from one coalition structure CSAi to another CSAj . This cost heuristic

assumes the same location of all agents in A.
The objectives of the planner is to find a solution that balances the overall energy consumed with the level of

safety:
distance d(a,Ms) travelled distance of an agent a in missionMs

operation time op(a,Ms) = d(a,Ms)/vnom(a) duration of operation of an agent a
energy E(a,M), where E(a,Ms) = op(a,Ms) · pw(â) overall consumed energy by agent a to performMs;

E(M) =
∑
a∈A overall consumed energy per mission

safety SAF (Ms) = mins∈STR saf(s) represents the minimal safety level (here: redundancy) of the mission,
where saf(s) defines the safety metric associated with an stqe s based on the available (general) agent and
with respect to the required set of resources; currently a redundancy based model is used to estimate the
probability of survival based on an agent’s set of component required to provide the functionalities in F (cf.
[19] for details), such that 0 ≤ saf(s) ≤ 1.

fulfillment SAT (M) = 1
|STR|

∑
s∈STR sat(s) represents the ratio of fulfilled requirements, where

sat(s) =

{
0 , unfulfilled
1 , fulfilled

This following cost function reflects a balancing of three general mission aspects: efficiency through the energy
cost function, efficacy through checking the level of fulfillment, and safety as redundancy dependant survival
metric; for balancing the parameters α, β and gamma can be used:

cost(Ms) = αE(Ms) + βSAT (Ms) + γSAF (Ms)

Figure 3 shows an example of a feasible solution. Each such solution can be translated into action plans for
individual agent roles. Each vertex of the solution network serves as synchronization point and assumes recon-
figuration operation to account for necessary coalition structure changes; the reconfiguration cost are annotated
accordingly, along with the safety metric. Overall cost for the provided solution network are computed by con-
structing a simple temporal constraint network [9] where the bounds are defined by the transition times of the
mobile agents.

6 Conclusion & Future Work

This paper presents the continued work for developing a planning system for a reconfigurable multi-robot sys-
tem. The planner relies on constraint-based programming to specify and solve missions involving reconfigurable
multi-robot systems, which is combined with multi-commodity flow optimization as local search. Furthermore,
it suggests a multi-objective optimization target involving efficacy, efficiency and safety. The approach presented
in this paper does not only result in a planning system for reconfigurable multi-robot system, but also in a tool
which allows to analyse the effects of using reconfigurable multi-robot systems in robotics missions. Future work

38 Inteligencia Artificial 62(2018)

will firstly focus on introducing better plan repair heuristics, and the extended use of meta-heuristic search strate-
gies to improve the performance and scalability of the embedded local search approach. Secondly, a resource
augmentation stage will be added in order to use previously unused resources to raise the level of safety.

Acknowledgments
This work was supported by the German Space Agency (DLR) under grant agreement 50RA1301 and 50RA1701,
and the project Hi-Digit Pro 4.0.

References
[1] Tobias Achterberg et al. “Constraint Integer Programming: A New Approach to Integrate CP and MIP”. In:

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems.
Vol. 5015 LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 6–20. ISBN: 354068154X. DOI:
10.1007/978-3-540-68155-7_4.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Michigan, US: Prentice Hall, 1993, p. 846.

[3] Ravindra K. Ahuja, James B. Orlin, and Dushyant Sharma. “Very large-scale neighborhood search”. In:
International Transactions in Operational Research 7.4-5 (Sept. 2000), pp. 301–317. ISSN: 0969-6016.
DOI: 10.1111/j.1475-3995.2000.tb00201.x.

[4] Pasquale Avella, Maurizio Boccia, and Antonio Sforza. “Resource constrained shortest path problems in
path planning for fleet management”. In: Journal of Mathematical Modelling and Algorithms 3.1 (2004),
pp. 1–17. ISSN: 1570-1166. DOI: 10.1023/B:JMMA.0000026675.50719.ce.

[5] Roberto Baldacci, Maria Battarra, and Daniele Vigo. “Routing a heterogeneous fleet of vehicles”. In: Opera-
tions Research/ Computer Science Interfaces Series. Vol. 43. Springer, 2008, pp. 3–27. ISBN: 9780874216561.
DOI: 10.1007/978-0-387-77778-8_1. arXiv: arXiv:1011.1669v3.

[6] Brian Coltin and Manuela Veloso. “Online pickup and delivery planning with transfers for mobile robots”.
In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, May 2014, pp. 5786–
5791. ISBN: 978-1-4799-3685-4. DOI: 10.1109/ICRA.2014.6907709.

[7] Brian Coltin and Manuela Veloso. “Ridesharing with passenger transfers”. In: Intelligent Robots and Sys-
tems (IROS 2014). 2014.

[8] Brian Coltin and Manuela Veloso. “Scheduling for Transfers in Pickup and Delivery Problems with Very
Large Neighborhood Search”. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence. Québec City, Québec, Canada, 2014, pp. 2250–2256. ISBN: 9781577356790.

[9] Rina Dechter. “Temporal Constraint Networks”. In: Constraint Processing. Ed. by Rina Dechter. The Mor-
gan Kaufmann Series in Artificial Intelligence. San Francisco: Morgan Kaufmann, 2003. Chap. 12, pp. 333–
362. ISBN: 978-1-55860-890-0. DOI: 10.1016/B978-155860890-0/50013-X.

[10] Alexander Dettmann et al. “Heterogeneous Modules with a Homogeneous Electromechanical Interface in
Multi-Module Systems for Space Exploration”. In: Proceedings of the 2011 IEEE International Conference
on Robotics and Automation (ICRA ’11). Shanghai, China: ESA, May 2011, pp. 1964–1969.

[11] Virginia Dignum, ed. Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organi-
zational Models. IGI Global, 2009. ISBN: 9781605662572.

[12] Rodolfo Dondo and Jaime Cerdá. “A cluster-based optimization approach for the multi-depot heterogeneous
fleet vehicle routing problem with time windows”. In: European Journal of Operational Research 176.3
(2007), pp. 1478–1507. DOI: 10.1016/j.ejor.2004.07.077.

[13] Michael Drexl. “Applications of the vehicle routing problem with trailers and transshipments”. In: European
Journal of Operational Research 227.2 (2013), pp. 275–283. DOI: 10.1016/j.ejor.2012.12.015.

[14] Lester Randolph Ford and Delbert Ray Fulkerson. Flows in networks. Tech. rep. Santa Monica, California:
The RAND Corporation, 1963, p. 152.

http://dx.doi.org/10.1007/978-3-540-68155-7_4
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00201.x
http://dx.doi.org/10.1023/B:JMMA.0000026675.50719.ce
http://dx.doi.org/10.1007/978-0-387-77778-8_1
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1109/ICRA.2014.6907709
http://dx.doi.org/10.1016/B978-155860890-0/50013-X
http://dx.doi.org/10.1016/j.ejor.2004.07.077
http://dx.doi.org/10.1016/j.ejor.2012.12.015

Inteligencia Artificial 62(2018) 39

[15] Free Software Foundation. GLPK (GNU Linear Programming Kit). Available at: https://www.gnu.
org/software/glpk, (Accessed: 1 October 2015). 2015.

[16] Rina Detcher. Constraint Processing. Vol. 33. Morgan Kaufmann Publishers Inc., 2003, p. 480. ISBN: 978-
1-55860-890-0.

[17] Thomas M. Roehr, Florian Cordes, and Frank Kirchner. “Reconfigurable Integrated Multirobot Exploration
System (RIMRES): Heterogeneous Modular Reconfigurable Robots for Space Exploration”. In: Journal of
Field Robotics 31.1 (Jan. 2014), pp. 3–34. ISSN: 15564959. DOI: 10.1002/rob.21477.

[18] Thomas M. Roehr and Ronny Hartanto. “Towards safe autonomy in space exploration using reconfigurable
multi-robot systems”. In: Proceedings of the International Symposium on Artificial Intelligence, Robotics
and Automation in Space (i-SAIRAS 2014). ESA, 2014.

[19] Thomas M. Roehr and Frank Kirchner. “Spatio-Temporal Planning for a Reconfigurable Multi-Robot Sys-
tem”. In: Proceedings of the 4th Workshop on Planning and Robotics (PlanRob). Ed. by Alberto Finzi and
Erez Karpas. London, 2016, pp. 135–146.

[20] Christian Schulte and Guido Tack. “View-based propagator derivation”. In: Constraints 18.1 (2012), pp. 75–
107. ISSN: 1383-7133. DOI: 10.1007/s10601-012-9133-z. arXiv: arXiv:0908.2050v1.

[21] Roland Sonsalla et al. “Towards a Heterogeneous Modular Robotic Team in a Logistic Chain for Extrater-
restrial Exploration”. In: Proceedings of the International Symposium on Artificial Intelligence, Robotics
and Automation in Space. Montreal, Canada: ESA, 2014.

[22] Paolo Toth and Daniele Vigo, eds. Vehicle Routing: Problems, Methods, and Applications, Second Edition.
2nd ed. MOS-SIAM, 2014. ISBN: 1611973597. DOI: 10.1137/1.9781611973594.

https://www.gnu.org/software/glpk
https://www.gnu.org/software/glpk
http://dx.doi.org/10.1002/rob.21477
http://dx.doi.org/10.1007/s10601-012-9133-z
http://arxiv.org/abs/arXiv:0908.2050v1
http://dx.doi.org/10.1137/1.9781611973594

	Introduction
	Background
	Mission Representation
	Definitions & Assumptions
	Assumptions
	Mission specification
	Mission constraints
	Distinction & Observation

	Organization Modeling
	Atomic agent type
	General and composite agent type
	Feasible agents
	Suitable agents

	Mission planning
	Temporal Ordering of Timepoints
	Bounding agent type cardinality
	Agent roles
	Timeline Generation
	Multi-commodity flow
	Quantification of time

	Search & Solution repair
	Mission solution & cost function

	Conclusion & Future Work

