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Abstract k-Means is a versatile clustering algorithm widely
used in practice. To cluster large data sets, state-of-the-art
implementations use GPUs to shorten the data to knowledge
time. These implementations commonly assign points on a
GPU and update centroids on a CPU.

We identify two main shortcomings of this approach.
First, it requires expensive data exchange between proces-
sors when switching between the two processing steps point
assignment and centroid update. Second, even when pro-
cessing both steps of k-means on the same processor, points
still need to be read two times within an iteration, leading to
inefficient use of memory bandwidth.

In this paper, we present a novel approach for centroid
update that allows us to efficiently process both phases of
k-means on GPUs. We fuse point assignment and centroid
update to execute one iteration with a single pass over the
points. Our evaluation shows that our k-means approach
scales to very large data sets. Overall, we achieve up to 20×
higher throughput compared to the state-of-the-art approach.
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Fig. 1 k-Means Execution Strategies.

1 Introduction

In diverse fields of study, practitioners apply the k-means
algorithm [25, 27] to find patterns in large data sets. Espe-
cially in the area of big data, applications such as genome
data analysis [19, 41, 43] and climatology [8, 10, 22] require
high-performance k-means implementations for a short data
to knowledge time. Furthermore, many algorithms build
on k-means to cover new use cases, e.g., BIRCH [44] and
streaming k-means [38]. Thus, speeding up k-means enables
data scientists to obtain new insights by exploiting larger
data sets in higher quality. At the same time, GPUs have
become significantly faster and cheaper, promising fast ex-
ecution of machine learning algorithms. However, previous
research on GPU-accelerated relational databases [5, 6, 15,
17, 18, 21, 34, 35] has shown that algorithms require careful
design and tuning to fully exploit GPUs.

In Figure 1, we optimize k-means for GPUs, step by step.
The Cross-Processing strategy results from the two phases
in each iteration of k-means: point assignment and centroid
update. Research over the last decade focused mostly on ac-
celerating these phases on CPU or GPU separately [7, 9,
13, 16, 37, 42]. In particular, they compute the point as-
signment phase on the GPU and perform the centroid up-
date on the CPU. This split between CPU and GPU causes
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the cross-processing problem, because the split requires a
data exchange over the PCI-e bus in each iteration. In con-
trast, some approaches avoid the split by performing point
assignment and centroid update on the GPU [4, 24]. How-
ever, both types of approaches introduce artificial synchro-
nization barriers between both phases. The barriers require
these approaches to make two passes over the point data.
The resulting multi-pass problem decreases the throughput
up to a factor of two. Overall, current approaches either do
not process the centroid update on the GPU or do it in a way
that cannot efficiently fuse both phases.

In this paper, we address both problems to fully exploit
modern GPU’s processing power for k-means. Our contri-
butions are as follows 1:
1. We introduce a novel centroid update algorithm for

GPUs that solves the cross-processing problem by elimi-
nating artificial synchronization barriers between phases.

2. We introduce the Single-Pass execution strategy on GPUs
to solve the multi-pass problem by making a single pass
over the data points.

3. We show how k-means scales to very large data sets that
exceed the GPU’s dedicated memory.

4. We evaluate the Multi-Pass and Single-Pass strategies
against the state-of-the-art Cross-Processing strategy on
CPUs and GPUs in scenarios which are either data-
intensive or compute-intensive.

The remainder of the paper is structured as follows. In
Section 2, we highlight the differences between CPUs and
GPUs, and briefly explain the k-means algorithm. After that,
we outline our GPU-optimized centroid update in Section 3.
Then, we contribute our novel Single-Pass execution strat-
egy in Section 4 and show its application for arbitrary large
data sets in Section 5. In Section 6, we present our experi-
mental results. Finally, we review related work in Section 7
and conclude in Section 8.

2 Background

In this section, we present the state-of-the-art knowledge for
executing k-means on modern hardware. First, we highlight
the general differences between GPU and CPU execution in
Section 2.1. After that, we introduce k-means and its two-
phase execution pattern in Section 2.2.

2.1 CPU vs. GPU Execution

CPUs and GPUs differ significantly in their architecture
and execution model. On the one hand, CPUs are optimized
for single-thread performance using few complex cores and
large caches. On the other hand, GPUs are optimized for
data-parallel processing using many simple cores and small

1 We previously sketched our work as a two-page short paper [26].

caches. Due to these significant differences, algorithms need
to be optimized for the underlying architecture.

The architecture of modern GPUs is organized in tens of
compute units. A compute unit physically runs 32 threads
in a batch [31]. Logically, multiple batches inside the same
compute unit form a work group, and all threads in a work
group execute code in a lock-step manner. There are two
methods available to synchronize threads. First, fine-grained
synchronization maintains a barrier within a work group,
which all threads must reach before execution continues.
In contrast, coarse-grained synchronization requires that all
threads terminate and restart their GPU program.

To manage data, GPUs provide a memory hierarchy con-
taining global memory, local memory, and multiple layers
of caches. Global memory is shared among all work groups
inside the GPU. In general, threads in a work group coa-
lesce adjacent accesses to global memory to a single opera-
tion. Modern GPUs provide up to 32 GB capacity, which is
cached in a global L2-cache (1.5-4MB) and a per-compute
unit L1-cache (16-32KB). In contrast, local memory is dis-
joint from global memory, and is shared among all threads in
the same work group. Local memory provides a capacity be-
tween 32-64KB and faster access compared to global mem-
ory. Unlike the hardware-controlled L1 and L2 caches, ac-
cesses to local memory are explicitly managed in software.

Compared to CPUs, GPUs introduce a different work
scheduling strategy. In particular, GPUs are able to schedule
multiple work groups simultaneously. Thus, multiple work
groups use distinct partitions in local memory, which poten-
tially reduces performance. While all modern GPU proces-
sors support atomic memory instructions for global mem-
ory, only some support them for local memory. In contrast,
CPUs rely heavily on single-thread performance and out-
of-order execution. Furthermore, they provide larger caches
but a lower degree of parallelism. Overall, GPUs and CPUs
have different strengths and weaknesses. To exploit their ca-
pabilities efficiently, an algorithm has to take their individual
differences into account to achieve peak performance.

2.2 k-Means Algorithm

k-Means [25, 27] represents a popular algorithm for
cluster analysis in modern machine learning applications. It
partitions N observations into k clusters such that each ob-
servation belongs to the cluster with the nearest mean. The
input to k-means is a set of points in an Rd space spanned
by d features, and a parameter k that specifies the number
of clusters. k-Means produces a centroid per cluster and a
label per point as output. A centroid defines the mean of the
points forming a cluster, while a label identifies the cluster
to which a point belongs.

The actual processing of k-means is performed in two
phases [3]. First, during the point assignment phase, a point
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Fig. 3 Feature Sum strategy: Partitioned Features. Each color repre-
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is assigned to the cluster of its nearest centroid. The nearest
centroid is determined by the Euclidean distance. Second,
during the centroid update phase, the means are recalculated
for each cluster. Both phases together form one k-means it-
eration that is repeated either until the mean squared error of
the old and new centroids converges below an ε or a defined
iteration limit is exceeded.

3 Efficient Centroid Update

In this section, we discuss different strategies to compute the
centroid update efficiently on GPUs. Our efficient GPU im-
plementation allows us to perform k-means completely on
the GPU, which eliminates the labels transfer over PCI-e
required by Cross-Processing. In general, centroid update
consists of two phases: first, computing the Feature Sum and
second, the Mass Sum. We discuss these individually in Sec-
tions 3.1 and 3.2, as they require different approaches. The
new centroids are obtained by dividing feature sum vectors
by the mass sum vector.

3.1 Feature Sum

During the Feature Sum subphase, k-means adds up the
individual feature values of all points that belong to the same
cluster and stores the result in a vector of feature sums. As a
result, Feature Sum is logically equivalent to a SQL group-
by aggregation query, where we group by the centroid IDs
and sum each feature of the points separately. We discuss
the relation to group-by in Section 7.

Cluster Merge. We now describe the design of Cluster
Merge, depicted in Figure 2. The points are stored in column

major format, such that each feature of a point is stored in a
separate array. Together, the arrays represent a matrix.

In Cluster Merge, each thread processes a point (i.e., all
features, see 1 in Figure 2) and aggregates the point in its
local hash table (see 2 in Figure 2) using the point’s label
(cluster ID) as key. In a final step, all threads merge their
partial results with a reduction [14] to the final feature sum
vector (see 3 in Figure 2).

Cluster Merge allocates thread-local memory per thread
to store feature sums for each cluster (i.e., the working set).
This has the benefit that no atomic writes or other thread
synchronization mechanisms slow down performance when
scaling the number of threads.

However, Cluster Merge requires a large amount of
cache space per thread. Each thread requires 4×k×d bytes
of additional cache space to store its working set. Thus, we
can either scale the number of threads and face cache thrash-
ing, or we use too few threads and, as a result, underutilize
the GPU processors and memory controllers.

Partitioned Features. Our Partitioned Features strat-
egy, shown in Figure 3, optimizes Feature Sum for the hard-
ware architecture of GPUs. The key idea of Partitioned Fea-
tures is to exchange data through workgroup-based synchro-
nization. Each thread is responsible for a particular feature
instead of a complete data point. Conceptually, each thread
in the same workgroup processes a different feature of the
same data point. Depending on the number of features, a
workgroup processes multiple points at once. This allows
us to reduce the working set (and thus cache thrashing) of
each thread to 4× k bytes (compared to 4× k× d for Clus-
ter Merge). This approach requires a barrier within the work
group, which is generally fast on GPUs because threads ex-
ecute in lockstep.

The key differences to Cluster Merge are as follows.
First, Partitioned Features shares a local hash table per work-
group (see 2 in Figure 3). Each workgroup consists of t
threads, where each thread stores one sum per centroid (k
sums in total). Thus, each hash table has a size of k × t

elements. Since each thread writes exclusively to its own
k sums within the shared hash table, no atomic writes are
needed. Second, each thread of the same workgroup reads
one feature of the same point and adds it to the feature sum
of the cluster indicated by the label. The whole workgroup
processes a horizontal partition of the point data (see 1

in Figure 3). This way, a single hash table per workgroup
is sufficient to store the intermediate result and accesses to
the point data can be coalesced. As in Cluster Merge, each
point’s label is read from global memory only once. Sharing
the label among threads introduces a barrier within the work
group. In a final step, all work groups reduce their partial
results to obtain the final feature sum vector (see 3 in Fig-
ure 3). Depending on the data set, the number of features d
can be less than or greater than the number of threads per
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work group (i.e., d < t or d > t). We handle these cases
by either processing multiple points in the same work group
(d < t, depicted in Figure 3), or by partitioning features of
the same point over multiple work groups (d > t).

In conclusion, our Partitioned Features strategy achieves
better cache-efficiency than Cluster Merge through workgroup-
based synchronization. Thus, Partitioned Features runs with
a higher number of threads on GPUs compared to Cluster
Merge, which results in more efficient GPU execution.

3.2 Mass Sum

Mass Sum is the second subphase in centroid update. It
calculates a histogram which counts the number of points
for every cluster. In contrast to a general histogram compu-
tation, Mass Sum uses the point label as index to directly ac-
cess a bucket, instead of first calculating the bucket’s index.
Three differences distinguish Mass Sum from Feature Sum:
a) it has only one dimension, b) the labels are counted, thus
no point data is read, and c) it increments integers instead of
adding floating point numbers. The last property is relevant
because GPUs are faster at atomic integer increments than
atomic floating point additions.

Depending on k, different approaches are needed to bal-
ance synchronization cost between threads and merging cost
for combining intermediate results. Thus, we consider four
strategies for Mass Sum: Global Atomic, Partitioned Global,
Partitioned Local, and Partitioned Private.

Global Atomic. The simplest way to compute a his-
togram on a GPU is to use one global histogram that is up-
dated by all threads. We refer to this approach as Global
Atomic, because all threads need to synchronize globally on
each bucket using atomics to ensure a correct result. Global
Atomic is the most simple strategy and performs well for
a large number of clusters (>1000). However, for a small
number of clusters, it causes heavy contention. For these
cases, we need a different strategy.

Partitioned Global (Local). We provide each work
group of threads a dedicated histogram stored in global
memory to reduce contention between threads (Partitioned
Global). This way, threads in different workgroups do not
need to synchronize, which significantly improves perfor-
mance. This comes at the cost of merging the individual
histograms at the end of the computation by a parallel re-
duction step. If the hardware supports atomic additions in
local memory [32], we store the histograms in GPU local
memory (Partitioned Local). Without hardware support, we
fall back to Partitioned Global.

Partitioned Private. Partitioned Private provides each
thread with its own copy of the histogram residing in local
memory. Partitioned Private incurs no contention over buck-
ets in case of a small number of clusters, in contrast to the
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Fig. 4 Fusing point assignment and centroid update by synchronizing
threads per workgroup.

Partitioned Local strategy. Note that Partitioned Private in-
curs higher merging overhead than the previous strategies
and also requires more space in local memory. This strategy
outperforms the other approaches if k is small.

To summarize, a Multi-Pass strategy for the GPU re-
quires an efficient centroid update on GPUs. In our analy-
sis, we separate centroid update into logically distinct sub-
phases, Feature Sum and Mass Sum. In Feature Sum, we
address the large working set of Cluster Merge by intro-
ducing the space-efficient Partitioned Features strategy. For
Mass Sum, we note that Partitioned Private and Partitioned
Local operate in processor cache, but have different trade-
offs. With these improvements, centroid update is a cache-
efficient, Multi-Pass k-means strategy for GPUs.

4 Single-pass GPU k-Means

All state-of-the-art k-means algorithms on GPUs compute
point assignment and centroid update in two separate phases.
During each phase, the point data is read from global mem-
ory, which leads to inefficient use of memory bandwidth. In
this section, we show how both phases can be combined to
process one iteration with a single pass over the point data.
We illustrate the difference between single and multi-pass
execution in Figure 4.

Fusing point assignment and centroid update is not triv-
ial due to the data layout necessary for per-thread accesses.
In point assignment, threads access individual points (rows
of data). In contrast, during centroid update, threads access
individual features of points (columns of data). To fuse these
phases, we need to overcome the differences in data layout.
Our key idea is to cache data in local memory and transpose
it on-the-fly from a row-oriented to a column-oriented for-
mat. We need to solve two challenges: transposing the data
layout of the points and efficiently synchronize threads.

Transposing the Data Layout. Transposing data in
cache requires sufficient space in local memory to store one
point per thread (i.e., 4 × t × d bytes, with t threads). Ad-
ditionally, there must be enough space left for the working
set of the centroid update algorithm. The Partitioned Fea-
tures strategy is essential for this key idea to work on GPUs:
in contrast to Cluster Merge, the working set of Partitioned
Features is very small. Thus, we use the remaining space to
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transpose the data in local memory. Concretely, the Cluster
Merge strategy with Partitioned Private (Mass Sum) uses
4t(kd + k + d) bytes of local memory, whereas the Parti-
tioned Features strategy uses 4t(2k+d+1) bytes, assuming
t threads per work group.

Block-wise Synchronization. Threads in Partitioned
Features write to distinct features of the new centroids, but,
because of the transpose, each thread processes multiple
points. Thus, each thread reads labels computed by other
threads. Our solution is that threads exchange labels only
within a work group. To this purpose, we synchronize the
work group with a thread barrier between point assignment
and centroid update, depicted in Figure 4(b).

In summary, the key to fuse point assignment and cen-
troid update is to use the Partitioned Features strategy (Fea-
ture Sum) and Partitioned Private strategy (Mass Sum) as
the centroid update algorithm. Only then do we have enough
cache space to efficiently transpose the layout of point data.

5 Supporting Very Large Data Sets

In this section, we extend our GPU-based execution
strategies to handle data sets larger than GPU global mem-
ory. The key idea is to divide the point data into chunks, such
that at least two chunks fit into global memory (Figure 5).
Then, a dispatcher selects and transfers chunks to global
memory via PCI-e. In parallel to ongoing transfers, the GPU
computes a k-means iteration for each chunk, and adds the
output to a partial result. This partial result resides in global
memory and consists of partial sums and counts per cluster,
as previously described in Feature Sum and Mass Sum. Op-
tionally, chunks are also processed on CPU. In this case, as
multiple processors are used, chunks residing in the mem-
ory attached to a processor can be processed in-place using
operator placement [5]. After all chunks are processed, the
partial results of the CPU and the GPU are merged by sum-
ming and dividing results to obtain new centroids.

In contrast to previous chunking approaches [24, 40],
we aggregate results of chunks locally on the GPU, instead
of transferring each individual result to main memory over
PCI-e. Thus, we merge in parallel on the GPU and reduce
transfer overhead.

6 Evaluation

In this section, we evaluate our k-means strategies. We re-
view our setup in Section 6.1. In Section 6.2, we present our
results, and discuss them in Section 6.3.

6.1 Setup and Configuration

First, we introduce our methodology and experimental
setup. After that, we describe our applied hardware tuning
settings and data set. Finally, we introduce the experiments
that we use to evaluate our strategies.

Methodology and Environment. We evaluate our im-
plementation on a CPU and a GPU. Our implementation
is based on OpenCL and we measure runtime of OpenCL
kernels. CPU experiments are conducted on an Intel Core
i7-6700K (“Skylake”) at 3.4 GHz with 4 cores (8 hyper-
threads) and 32 GB RAM. GPU experiments use an Nvidia
GeForce GTX 1080 (“Pascal”) with 8 GB memory. The test
machine runs Ubuntu 16.04 LTS and we use Intel OpenCL
Runtime 16.1.1 for CPU code, and Nvidia OpenCL 1.2
(CUDA 8.0.0) for GPU code. Unless stated otherwise, on
the GPU we exclude data transfer time to dedicated mem-
ory to avoid biased observations of execution time.

Hardware Tuning. To reach peak performance on each
processor, we evaluate every OpenCL kernel with differ-
ent tuning settings. Tuning settings include caching in local
memory (disabled on CPUs to avoid memcopy), memory
access patterns, vector lengths, and work group sizes. We
format data in a column-oriented layout.

Data Sets. Our measurements use synthetically gener-
ated data sets following Arthur and Vassilvitskii [3]. Thus,
we first sample 10 centroids using a uniform random distri-
bution in a hypercube, where each dimension ranges from
-100 to 100. Then, for each centroid, we sample an equal
number of points from a normal distribution in a radius of
10 around the centroid. We measure throughput on 2 GB
data sets with varying k and d values. The 2 GB data set
size amortizes runtime system overheads while minimizing
experiment runtime. We set the number of features as d ∈
{2, 4, 8, . . . , 256} and adjust the number of points N such
that data size remains constant.

Experiments. We conduct eight experiments that inves-
tigate scalability of parameters on GPUs. The first and sec-
ond experiment are microbenchmarks to determine the best
strategies for Feature Sum and Mass Sum. The third ex-
periment compares different k-means strategies and breaks
down execution times for each strategy. Experiments four
and five examine the scaling behavior of each strategy while
varying either the k or the d values. We transfer varying
chunk sizes over PCI-e in experiment six. Experiment seven
investigates scalability for datasets exceeding the memory
capacity of the GPU. The last experiment evaluates the cost-
effectiveness of a GPU-based k-means and a distributed
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Fig. 6 Comparison of Feature Sum strategies.

CPU-based k-means. We choose these experiments because
they explore the parameter space and analyze the trade-offs
of different strategies. We report mean and standard devia-
tion (if above 5%) over 30 iterations.

Baselines. We compare our results to two open-source
frameworks, Armadillo [36] version 8.400 on the CPU and
Rodinia [9] version 3.1 on the GPU. Armadillo is a linear al-
gebra library for C++. It uses a Single-Pass k-means strategy
on the CPU with OpenMP multi-threading support. We run 8
threads. Rodinia features a CUDA k-means benchmark that
uses the Cross-Processing strategy. Due to limited hardware
texture memory and lack of data streaming support, Rodinia
is constrained to 512 MB data size. We extrapolate results
to 2 GB. In addition to Rodinia, we have implemented our
own Cross-Processing strategy optimized for our hardware.

6.2 Results

In this section, we present our evaluation results.

6.2.1 Feature Sum Strategies

We compare two strategies to compute Feature Sum (Fig-
ure 6): the Cluster Merge proposed by Li et al. [24] and
our Partitioned Features strategy. We investigate two param-
eters: the number of features and the number of clusters, be-
cause both parameters impact performance and size of the
working set. We investigate two settings for the number of
clusters, k = 4 and k = 64. Note thatN decreases for higher
values of d, because we keep data size constant.

Observations on GPU. Cluster Merge and Partitioned
Features show equal throughput if both parameters are set
to small values, i.e., k = 4 and d ≤ 16. However, Parti-
tioned Features outperforms Cluster Merge when k = 64

or d > 16. The reason is that less work groups fit into lo-
cal memory, because Cluster Merge’s working set grows
with higher values of k and d. Consequently, the GPU’s
hardware scheduler runs less work groups (i.e., lower oc-
cupancy), thus reducing parallelism. If k×d > 384, Cluster
Merge falls back to global memory, because the working
set of a single work group does not fit into local memory.
For Partitioned Features, we observe a small drop in perfor-
mance for increasing k and d.
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Observations on CPU. The throughput of Cluster Merge
halves for both settings of k and continues to drop for
k = 64. Partitioned Features is initially slower than Cluster
Merge. However, Partitioned Features does not fall back to
L2 cache for k = 64, because features are partitioned over
multiple threads. Overall, Cluster Merge and Partitioned
Features have similar performance on CPUs.

6.2.2 Mass Sum Strategies

In Figure 7, we evaluate the throughput of different Mass
Sum strategies for a varying k. Since Mass Sum accesses
only labels, d has no impact on performance.

Observations on GPU. Partitioned Private performs
best until k = 16. After this point, the growing working set
decreases the GPU occupancy, which decreases throughput.
Starting from k = 128, Partitioned Local outperforms Par-
titioned Private. Partitioned Global’s throughput increases
above k = 4, as there are less write contentions. Global
Atomic achieves very low throughput, due to write con-
tention involving thousands of threads.

Observations on CPU. Partitioned Private has sufficient
cache space for stable throughput. In contrast, Partitioned
Local and Global achieve five times lower throughput than
Partitioned Private. Global Atomic also has low throughput,
despite having less write contentions than on GPU.

6.2.3 Runtime Performance

From the previous experiments, we observed that we achieve
a fast centroid update using the Partitioned Feature strategy
(Feature Sum) and the Partitioned Private strategy (Mass
Sum). We derive three major strategies that we compare.
The Cross-Processing strategy performs the point assign-
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Fig. 10 Performance of strategies for varying number of clusters on
CPU and GPU with 4 features.

ment on the GPU and performs the centroid update on
the CPU, transferring the labels to the CPU between steps
(state-of-the-art). The Multi-Pass strategy uses our fast cen-
troid update and performs point assignment and centroid
update on the same processor (Section 3). The Single-Pass
strategy fuses our centroid update routine with point assign-
ment and processes one k-means iteration with one pass over
the point data (Section 4). In this experiment, we compare
the overall strategy execution times per-processor and break
down the individual execution times. In Figure 8, we show
the execution times of all strategies for k = 4 and d = 4.
For strategies with multiple phases, we show the relative
time spent per phase in percent in Figure 9.

Observations. The Cross-Processing strategy is domi-
nated by the Feature Sum and label transfers from GPU to
CPU. On the CPU, the Multi-Pass strategy has the highest
execution time and is dominated by point assignment and
Feature Sum. The Single-Pass strategy halves the execution
time because it needs to read the point data only once. On
the GPU, the Multi-Pass strategy outperforms the Cross-
Processing strategy by a factor of 9.1. The Single-Pass strat-
egy improves the performance by a factor of 2 compared to
the Multi-Pass strategy and by a factor of 19.3 compared to
the Cross-Processing strategy.

6.2.4 Scaling Clusters

In Figure 10, we investigate the impact of different numbers
of clusters k on the throughput. We observe that throughput
generally decreases as k increases.
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Fig. 11 Performance of strategies for varying number of features on
CPU and GPU with 4 clusters.

Observations on GPU. The Single-Pass strategy outper-
forms the Multi-Pass strategy for k ≤ 16 by up to a factor
of 2. The Multi-Pass strategy outperforms the Single-Pass
strategy starting from k = 32. Both strategies converge to
the same performance of the Cross-Processing strategy start-
ing from k = 128. This is because the point assignment
dominates execution time with growing k.

Observations on CPU. The Single-Pass strategy out-
performs the Cross-Processing strategy until k ≥ 16. Start-
ing from this point, the single and Multi-Pass strategies
have very similar performance and are outperformed by the
Cross-Processing strategy.2

6.2.5 Scaling Features

In Figure 11, we scale the number of features d and mea-
sure the throughput. We set the number of clusters to k = 4.
As we keep data size constant with scaling d, the number of
data points N halves with every doubling of d. Thus, com-
putational complexity does not change for point assignment
and Feature Sum. However, the computational complexity
of Mass Sum scales with 1

d .
Observations on GPU. The Single-Pass strategy outper-

forms the Multi-Pass strategy for d < 32. For greater d, the
performance of both strategies is similar and outperforms
Cross-Processing.

Observations on CPU. The Single-Pass strategy con-
sistently outperforms the Multi-Pass strategy and the Ar-
madillo baseline.

6.2.6 Chunk Transfers

We investigate the impact of chunk sizes on our chunk-
wise transfer strategy in two parts: First, we observe only
the transfer from main memory to GPU memory (see Fig-
ure 12(a)). Second, we observe a three-stage pipeline (see
Figure 12(b)). In this pipeline, each chunk is copied into a
pinned buffer in main memory, then transferred via PCI-e,
and finally processed on the GPU. To measure the transfer,
we call an empty GPU function on each chunk. We show the
mean and standard deviation (if above 5%) over 100 trans-

2 Note that the Cross-Processing strategy uses the GPU for point
assignment, whereas Single-Pass and Multi-Pass are executed on CPU
only. Therefore we include the Cross-Processing strategy in both plots.
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Fig. 13 Performance of strategies for increasing data size on CPU and
GPU with (a) 4 and (b) 64 clusters, and 4 features.

fers. As an upper bound, we show the maximum bandwidth
measured by Nvidia’s bandwidth utility.

Observations. The transfer without memcpy() (up to
11.4 GB/s) nearly reaches the throughput limit of 12.2 GB/s.
We achieve maximum throughput with chunk sizes be-
tween 8 and 64 MB. In contrast, when running the complete
pipeline, we observe a maximum throughput of 9.8 GB/s
with chunk sizes of 4, 8, 16, and 512 MB. However, all
measurements are within 5% of the maximum observation.

Thus, we conclude that main memory copies slow down
throughput by 20%. In contrast, chunk sizes have only a
small impact on overall PCI-e throughput.

6.2.7 Data Scaling

In this experiment, we investigate the scalability of our
Single-Pass and Multi-Pass strategies in the case when data
exceeds the size of GPU memory (Figure 13). We scale the
size of point data from 1 MB to 16 GB and consider data-
intensive (k = 4) as well as compute-intensive (k = 64)
scenarios with d = 4 features. We use 16 MB chunks, based
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Fig. 14 Cost comparison of different EC2 instances for k-means.

on our results in Section 6.2.7. To emphasize the transfer
process, we transfer all data to the GPU and do not cache
any data in GPU memory.

Observations on GPU. Our Single-Pass and Multi-Pass
strategies always cluster points with full PCI-e bandwidth.
This is possible because we fully overlap data transfer with
computation and our strategies complete the clustering be-
fore the next chunk arrives. We also show the pure execu-
tion times of both strategies and relate them to the band-
widths of PCI-e (measured) and the novel NVLink (pro-
jected) interconnects. In the data-intensive case, only the
Single-Pass strategy is able to fully utilize the bandwidth
of both PCI-e and NVLink interconnects. With NVLink,
the Multi-Pass strategy would be bound by computation and
not data transfer. In contrast, in the compute-intensive sce-
nario both strategies perform equally, both strategies satu-
rate PCI-e, and neither strategy would saturate NVLink.

Observations on CPU. We observe that the Single-Pass
strategy consistently outperforms the Multi-Pass strategy in
both scenarios. Furthermore, when compute-intensive, the
GPU outperforms the CPU by a factor of up to 2.6. In the
data-intensive scenario, the GPU performs as well as the
CPU. The reason is that our CPU is incapable of cluster-
ing faster than the PCI-e bandwidth. Thus overall, the GPU
processes data at least as fast as the CPU despite having to
transfer data to the GPU. In line with related work [15, 40],
in this experiment we show the feasibility of GPU copro-
cessing for data-intensive algorithms.

6.2.8 Comparing Performance per $: CPU vs. GPU

In Figure 14, we compare the performance per dollar of
different Amazon EC2 [2] instance models. We show the-
oretical peak performance for computation and memory
bandwidth, with prices per hour. Amazon classifies instance
models into specialized categories. We are primarily inter-
est the GPU models classified as “Accelerated Computing”,
thus “g3.4xlarge” and “NC6 v2”. All EC2 instances use
recent Intel Haswell and Broadwell CPUs. “g3.4xlarge” in-
stances are “r4.4xlarge” instances with an Nvidia Tesla M60.
For GPU instances, we consider only GPU performance.

Observations. Out of all CPU instances, the “c4.8xlarge”
model offers the best value for computation and for mem-
ory bandwidth, at $1.591 per hour for 1670.4 GFLOPS
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and 60 GB/s (prices from 25. May 2018). Nevertheless,
“g3.4xlarge” provides 6.1× and 4.2× better value in both
metrics, at $1.140 per hour for 7365 GFLOPS and 320 GB/s.
Compared to a base “r4.4xlarge”, the advantage is even
11.6× and 8.7×, respectively, at $1.064 per hour for 588.8
GFLOPS and 34.16 GB/s.

We conclude that GPUs add at least 4× the performance
for each dollar to CPU instances. Thus, exploiting GPUs in
EC2 represents a worthwhile investment for data analysis.

6.3 Discussion

Centroid Update Strategies. In our experiments, we showed
that the Cluster Merge strategy of Feature Sum has a per-
formance difference of two orders-of-magnitude between
d = 2 and d = 256. In the worst case, Feature Sum is
4.6× slower on GPU than on CPU, thus motivating the
Cross-Processing strategy. In contrast, our Partitioned Fea-
tures strategy improves such cases by up to 96.7× on the
GPU. Furthermore, we showed that, unlike on CPU, there
is no single, best Mass Sum strategy on GPU. Rather, Par-
titioned Private performs up to 1.7× faster than Partitioned
Local while k ≤ 64. Falling back from local to global mem-
ory incurs a penalty of 1.83×. In sum, Partitioned Features
and Partitioned Private/Local lay the foundation for efficient
centroid update on GPUs.

Run-Time Results. In analyzing k-means as a whole,
we discovered that the Cross-Processing strategy (Centroid
Update on CPU) is often more than ten times slower com-
pared to the Multi-Pass strategy (centroid update on GPU).
The main reason is the aforementioned slow centroid update
in combination with the cross-processing problem. Further-
more, avoiding the multi-pass problem yields another fac-
tor of two between Multi-Pass and Single-Pass strategies on
both processor types.

Scalability Results. We observed further, that parame-
ters are impacted unequally. When scaling the number of
clusters k, computational complexity increases, which trans-
forms k-means from a memory-bound algorithm for k ≤ 32

to a compute-bound algorithm for larger k. Even though
computational complexity remains constant when scaling
the number of features d for fixed k, performance decreases.
If the memory footprint of point assignment grows, the GPU
occupancy decreases and point assignment eventually falls
back to global memory.

Performance per $. Finally, we showed that GPUs are
a valuable investment. On Amazon EC2, a virtual instance
with one GPU provides more than 4× better compute and
memory performance per dollar than instances without a
GPU. Thus, for an equal amount of money, k-means can an-
alyze more data and more diverse parameter values.

7 Related Work

While early GPU-based k-means implementations where
limited to OpenGL [7, 37], recent languages such as OpenCL
or CUDA are designed for computational tasks and enable
advanced optimizations. In particular, these languages allow
us to avoid materialization of intermediate results.

Avoiding materialization is especially relevant for as-
signing points to clusters, because it is space- and memory-
intensive to materialize all point-to-centroid distances. This
can be further optimized through caching centroids [13] and
data points [24] in GPU local memory or L1 cache. Our
point assignment subphase builds on this approach and adds
low-level optimizations to further increase efficiency.

Optimizations that reduce the computational complex-
ity of point assignment emphasize our work, because high
k-values do not make k-means computation-bound. Specifi-
cally, Hall and Hart [16] apply Elkan’s kd-tree approach [11]
to a GPU implementation. They propose to store centroids in
a kd-tree, such that finding the nearest centroid requires less
comparisons for large k. These optimizations are orthogonal
and complementary to our work.

GPUMiner [12] reduces transfer overhead for the labels
in the Cross-Processing strategy with bitmap compression.
In contrast, we update centroids directly on the GPU with
our Multi-Pass and Single-Pass strategies to eliminate this
source of overhead entirely.

Although updating centroids on GPUs [24] or MICs [23]
(i.e., Intel Xeon Phi) has been proposed previously, we eval-
uate this Multi-Pass strategy for a wide range of cluster
and feature parameters. In particular, we show that Clus-
ter Merge is inefficient on GPUs and introduce new op-
timizations with our cache-efficient Partitioned Features
strategy. Regarding the individual subphases of centroid up-
date, researchers proposed different solutions using GPUs.
First, Feature Sum was implemented by using SQL group-
by aggregation [20, 33], which has been implemented on
CPUs [29] and GPUs [17, 21]. However, Feature Sum in k-
means and relational-style group-by aggregation differ sig-
nificantly. In particular, having tens or hundreds of features
is common in data sets, but aggregating over this many at-
tributes is uncommon in relational queries (e.g., TPC-H [1]).
Thus, to the best of our knowledge, we are the first who
optimize coprocessor-optimized grouped aggregation for
this use case. Second, Mass Sum on GPU could exploit
histogram computation [30]. These general implementa-
tions sort pixel values into buckets, which requires, e.g.,
divisions or branches. Frequent branch divergence reduces
performance on GPUs [39]. In contrast, in our Mass Sum
strategies, labels directly index into buckets and thus avoid
branches. Furthermore, our Partitioned Local strategy uses
hardware-native atomic operations in local memory, which
were emulated in software at the time of previous work [32].
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CPU implementations that compute k-means in a sin-
gle data pass exist [28, 36]. However, on GPUs, we require
a different approach because our Single-Pass strategy must
reshuffle data between threads on-the-fly.

8 Conclusion

In this paper, we propose a GPU-optimized algorithm for
k-means. Our algorithm centers around a highly-optimized
strategy for updating centroids on GPUs. In our algorithm,
we solve two fundamental problems of previous approaches:
cross-processing and multi-pass execution. In contrast to
previous approaches, we focus on reducing cache space us-
age through architectural features of GPU hardware, such
that we are able to increase the effective parallelism. As a
result, we propose a highly-optimized strategy for k-means
that runs entirely on a GPU and requires only a single pass
over the data. The evaluation shows that the Single-Pass
strategy achieves up to 2× and 20× higher throughput than
the Multi-Pass and Cross-Processing strategies, respectively.
Finally, we show that our approach scales to large data sets
exceeding the GPUs memory capacity. In our experiments,
our GPU strategies performed at least as well as a CPU de-
spite transferring data over PCI-e. Finally, our Single-Pass
strategy was the only strategy that was capable of saturating
the bandwidth of the NVLink interconnect for bandwidth-
intensive scenarios.
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