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Abstract—We propose a novel machine learning based method
for estimating the number of people present in a room (e.g. in
a shared office space) based on WiFi signal-to-noise ratio and
signal phase data provided by WiFi Channel State Information
compatible hardware. We apply random decision forests machine
learning and show that the precise number of people can be
estimated with a score of 0.66 and the occupancy levels (empty,
low, high) with a score of 0.87 at an affordable cost. We evaluate
our approach in two settings: one small room with 0–2 and
in a medium-sized office space with 0-8 people performing
their usual office desk work. Beyond determining maximum
recognition rates we systematically investigate the impact of
different design choices (antennas, training data) on system
performance. The proposed method outperforms a statistical
baseline method significantly.

I. INTRODUCTION

Knowing room occupancy levels (how many people are
in a given room) is important for a number of applications.
Examples range from evacuation coordination in emergency
situations through the optimization of office space usage to
energy management. Given the fact that today WiFi can
be found in nearly all buildings and public spaces, using
the disturbance that people cause, WiFi signals as a virtual
sensor is an attractive approach for occupancy level estimation.
However, to date, WiFi signal analysis has mostly been used
for estimation of qualitative crowd density (which is associated
with strong variation in the signal strength, see related work
section) and for the detection of movement (which cause
characteristic temporal signal fluctuations, see related work
section). The estimation of the number of people in a small
group (≤ 10) who is largely static (e.g. working at their desks)
in a shared space such as an office is a more difficult problem
as it is related to subtle, mostly static signal changes. To
address this problem we present a new sensing concept that
applies machine-learning techniques to appropriate features
extracted from the Channel State Information (CSI, [1], [2])
data.

II. RELATED WORK AND PAPER CONTRIBUTIONS

Different sensors have been proposed to estimate the occu-
pancy level of spaces. These include surveillance cameras [3],

thermal sensors [4], pressure sensors [5], acoustic sensors
[6] and floor pressure sensors [7]. Compared with most
of the above sensing modalities WiFi signals ubiquitous in
most environments. Work so far includes strategies evaluating
subjects beacons (i.e. smartphones) for crowd density estima-
tion by collaborative mobile sensors [8] by citywide mobile
participatory sensors [9] or by stationary sensors [10] based
on device identifier and received signal strength indicator
(RSSI) features. RSSI methods are suitable for qualitative
crowd density estimation, indoor localization and many other
interesting applications, but its limits arise when subtle signal
variations due to few mostly static people being present need
to be measured. The work most similar to ours was done
by Depatla et al. [11] and Xi et.al [12]. However, having
in common to build on top of CSI towards crowd counting,
their objective and method is different. In [11] they focus
on a continuously walking crowd and build a mathematical
motion model based on RSSI, compared to the CSI approach
presented in this paper. In [12] they build on continuously
moving people and apply a logistic function and deploy a
dense grid of sensors in the environment. Our objective is
going one step further by defining a method for occupancy
level estimation in a challenging environment with mostly
static/sitting people.

In this paper we present a WiFi-CSI scan-based method to
estimate the fill level within a shared office space. The main
contributions are as follows:

1 We propose a method to estimate the exact number of
people and the occupancy level (empty, low, high) in
office rooms while measuring WiFi signal-to-noise ratio
and signal phase with different kinds of antenna setups.

2 We present two experimental evaluations on a small
office room and a medium-sized shared office space.

III. METHODS

A. Background
The interaction of WiFi signals with the environment is a

complex process that involves absorption, reflections (multi-
path) and a variety of wave specific effects (refraction, interfer-
ence etc.). When looking at phenomena that are determined by
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Fig. 1: Experimental environment. Wireless signals are influ-
enced due to multiple effects, i.e. blocking in the line-of-sight
and multi-paths due to objects as well as human bodies. The
challenge is to measure and learn from such transient signal
variations.

high degree of signal blockage (e.g. detecting a dense crowd)
much of the complexity can be ignored as the received signal
strength (given by RSSI) can be used for analysis. However,
when considering subtle influences caused by a small number
of largely static people a more complex metric is needed. In the
IEEE 802.11n standard such a metric is provided by Channel
State Information that captures signal strength and phase
information for Orthogonal Frequency Division Multiplexing
(OFDM) subcarriers and between each pair of transmit-receive
antennas. It has originally been defined to allow the sender to
improve the link via transmit beam-forming (see [1]).

B. Experimental Environment

One small-sized (20m2) and one medium-sized (60m2)
sized shared office space were selected. In the small office
0-2 people were present, and in the medium office space 0-
8 people were present doing their work at desks as usual.
The omni-directional antenna of the sensor was placed at one
side of the room and the directional antennas of the sensor
were positioned with a 1m sideways displacement to the omni-
directional antenna at line of sight between the desk locations
and each sender antenna (see Figure 1).

C. Ground Truth

Collecting ground truth was a multi-step procedure. Firstly,
we installed a video camera in accordance to the people during
the experiment. Secondly, after the experiment the camera
images were manually annotated each 5 seconds with the
exact seat position of each person. Thirdly, the total number
of people was derived from the individual person annotations.

D. Hardware

We configured a prototype sensing unit based on an INTEL
NUC mini PC running Ubuntu with a MIMO Intel 5300 card
with customized external antenna connections. We connected

one omni-directional antenna and two displaced (1m) direc-
tional antennas. As a signal source we used a conventional
MIMO WiFi access point with 1m displaced antennas.

E. Measurement and Features Computation
To precisely measure the phase information the sender and

receiver must be perfectly synchronized. Unfortunately, com-
mercial WiFi devices have non-negligible carrier frequency
offsets. Nevertheless we can identify and calculate the signal
phase difference by the two signal streams coming from both
sender antennas synchronously. The signal phase difference is
calculated for each of the 30 subcarriers (based on OFDM)
and for each sensor-antenna plus dual-sender antenna group.
Based on the phase difference we define the mean, variance,
minimum and maximum antenna group signal phase difference
within a 1 second time windows. The signal-to-noise ratio
(SNR) is extracted for each pair of sender and sensor antenna
(in total six SNR measurements per carrier). Based on the SNR
we defined the features mean, variance, minimum and max-
imum SNR within 1 second time windows. For each sensor
antenna the total number of features is 360 (2*40*30 (SNR)
+ 4*30 (phase)). We observed that changes in the window
parameter (from 1 to 10 seconds in 1 second steps) have
insignificant influence to the classification result (±2% F1-
Score). However smaller window sizes require significantly
more classifier training time.

F. Machine Learning Based Fingerprinting
Each people arrangement, according to ground truth, is used

as a fingerprint of the people count. 70% of the fingerprint
were either used in the training step and 30% was used as
the test set. Together with the ground truth targets we trained
random decision forests (10 decision trees) machine learning
classifier. We also compared the results to other classifiers
such as SVM and ensemble RandomForest classifier resulting
in similar results but are up to 14 times slower during training
time.

IV. EVALUATION

V. RESULTS

A. Small-Sized Office Space (20m2)
We evaluated the 3-class classifier with the CSI approach

with signal-to-noise ratio and the signal phase difference
features with a f1-score of 0.73 while classifying between 0,
1 or 2 persons in the room (see Table I). For comparison,
we evaluated the classifier with the traditional signal strength
approach with a score of 0.50.

Antennas Features Classification results

F1-Score Precision Recall

ALL RSSI 0.50 0.50 0.51
ALL SNR&phase 0.73 0.73 0.73

TABLE I: Small office (20 m2) experiment results. SNR and
phase method in comparison with traditional RSSI method.
Exact classification between 0, 1 or 2 persons in room.



B. Medium-Sized Office Space (60m2)

We compared a baseline pure statistical hourly knowledge,
derived from the ground truth, to the the 9-class classifier,
while estimating 0,1,2,3,4,5,6,7 or 8 persons in the shared
office space. Our reference method has a score of 0.27 and
our new method has a score of 0.67 (see Table II). The results
are inferior compared to a simple hourly statistical evaluation
which is due to fluctuations of office space fill level over days.

The main objective of this research is considering different
levels of complexity of the sensor setup. Our method based
on the sensor information of just a single omni-directional
antenna results in a score of 0.61, with two carefully placed
directional antennas a score of 0.62, and with the combination
of omni-directional directed antennas in a score of 0.67
(see Table III for detailed scores).

Due to background knowledge of the actual need for oc-
cupancy level granularity (empty, low, high occupancy) we
derived a 3-class classification problem from the ground truth
information (0, 1-3 or 4-8 persons). This results in score of
0.87 (see Table IV).

Another important objective is the amount of data used in
machine learning for training the classifier as labeled training
data is costly to acquire. In Figure 2 we visualize the amount
of training data from 10% to 100%, which is always a subset
of the whole data set, together with the resulting score. With
the 9-class problem (exact people count) we see a nearly
continuous increase in the score with increasing training data.
With the simplified 3-class problem (0, 1-3, 4-8 persons) we
see a plateau once we reach 50% of the training data available.

Approach Classification Results

F1-Score Precision Recall

Baseline statistics 0.26 0.27 0.26

SNR&PHASE, all antennas 0.67 0.66 0.66

TABLE II: Medium office (60m2) experiment results on base-
line statistical classifier sampling the number of persons per
class from a distribution created for every hour (distribution
was estimated from the Ground Truth).

Fig. 2: Relation between the amount of labeled training data
(costly to acquire) and the classification score. a) 9-class
classification (exact people count). b) 3-class classification
(empty, low, high occupancy level).

Antennas Feature Sets Classification results

F1-Score Precision Recall

OMNI SNR 0.59 0.59 0.59
PHASE 0.51 0.52 0.52
SNR&PHASE 0.61 0.61 0.60

DIRECTIONAL SNR 0.61 0.61 0.61
PHASE 0.52 0.53 0.52
SNR&PHASE 0.62 0.62 0.62

ALL SNR 0.65 0.65 0.65
PHASE 0.58 0.58 0.57
SNR&PHASE 0.67 0.66 0.66

TABLE III: Medium office (60m2) experiment results. Com-
parison between different antenna setups and signal character-
istics: 1 omni-directional antenna, 2 directional antennas, or
1 omni-directional + 2 directional antennas. Using multiple
features on signal characteristics of signal-to-noise (SNR) and
signal phase (PHASE) measurements. Classification between
0,1,2,3,4,5,6,7,8 persons in shared office space.

Class Range Classification results

F1-Score Precision Recall

0,1,2,3,4,5,6,7,8 0.67 0.66 0.66

0,1–3,4–8 0.87 0.87 0.87

TABLE IV: Medium office (60m2) experiment results. Same
setup as in Table III but in comparison to classification on
0,1–3 and 4–8 persons in shared office space.

VI. CONCLUSIONS AND FUTURE WORK

We presented a challenging problem in occupancy level
estimation, a method and the evaluation. We outperformed
both the statistical baseline method and the traditional signal
strength approach. We presented results on the exact people
count and on the occupancy level (empty, low, high). While
additional antennas results in an increased estimation score,
the amount of training data is the most significant factor.
Future work will focus on deep learning and time series based
estimation approaches to enhance the estimation. The data set
and ground truth annotation will be made available to the
public.
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