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Abstract
Analyses of large 3D particle datasets typically involve many different exploration and visualization steps. Interactive
exploration techniques are essential to reveal and select interesting subsets like clusters or other sophisticated structures.
State-of-the-art techniques allow for context-aware selections that can be refined dynamically. However, these techniques
require large amounts of memory and have high computational complexity which heavily limits their applicability to large
datasets. We propose a novel, massively parallel particle selection method that is easy to implement and has a processing
complexity of O(n∗ k) (where n is the number of particles and k the maximum number of neighbors per particle) and requires
only O(n) memory. Furthermore, our algorithm is designed for GPUs and performs a selection step in several milliseconds
while still being able to achieve high-quality results.
CCS Concepts
•Human-centered computing → Visualization systems and tools; Interaction techniques; Scientific visualization;

1 Introduction

Data visualization and exploration are essential concepts to ana-
lyze 3D particle datasets. A crucial technique for different analyses
is the selection of interesting subsets or patterns [Tuk77]. In con-
trast to simple 2D selection methods that work well with 2D data,
3D selection tasks are more challenging due to the high number
of degrees of freedom; especially in the case of particle datasets
that typically contain several hundred thousand of data points. In
the case of 3D particle datasets, the selection is a 3D selection vol-
ume that can be difficult to specify and is time consuming and error
prone to refine [ONI05]. In order to determine a sub-volume based
on user input, dataset attributes like scalar properties per particle
(data point) or the particle density are typically used.

Over the years, a variety of different selection techniques have
been developed to provide feasible solutions for these kind of
datasets. The state-of-the-art methods are context-aware selection
techniques (CAST) [YEII12, YEII16] that work on 2D selection
lassos which are drawn by the user. A user’s intended selection
is determined based on the lasso, the current camera view and the
attributes of the dataset used. Specialized methods from the CAST-
algorithm family can be used in different scenarios; for example,
the selection of volumes by clicking or the selection of sub-volumes
by analyzing the drawn contour of the lasso. These methods use a
particle density estimator to compute density information that is re-
quired for the selection process. Although they deliver high-quality
selections, they require multiple processing steps with high compu-
tational complexity. The high memory consumption (due to global
uniform grids) and computation times dramatically limit their ap-
plicability in general.

In order to circumvent these limitations, we propose a novel se-

lection method called Screen Space Particle Selection (SSPS). It
also uses the basic idea of a 2D lasso-based selection via mouse
or touch input. Like the CAST algorithms, our method works on
scalar properties per particle and density information. In contrast
to existing selection methods, we do not use a global density in-
formation grid but apply a method based on the smoothed particle
hydrodynamics (SPH) model. Using this approach, we can realize
fast and efficient computations of the density per particle. Further-
more, we do not perform any operations that require an explicit
3D grid in memory (like the Marching Cubes algorithm [LC87]).
Instead, we render the visualized dataset once into several screen
space buffers and perform all analyses in screen space. This decou-
ples the computational complexity of the selection analyses from
the actual dataset. We determine the intended selection based on
the drawn lasso by first computing a selection mask (a weighted 2D
selection shape) and mapping the selection information back into
3D space. Finally, we apply an SPH-based flood-filling algorithm
to actually select the desired particles in the dataset. Our method
is designed to run on massively-parallel processors like graphics-
processing units (GPUs). The allows us to compute a particle se-
lection in a few milliseconds even on large datasets.

2 Related Work

Single or multiple object selection are well-known tasks and have a
long tradition in the field of HCI and visualization. Especially ray-
casting and image plane methods are popular approaches for the
selection of individual 3D objects [Min95, PFC∗97]. The selection
concepts of pointing or touching in stereoscopic settings [DFK12,
DSG∗14] or in virtual reality [VSB∗10] are also widely spread.
They focus on the selection of a relatively small number of objects,
either in 2D or 3D space. However, analyses of large amounts of
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Figure 1: A visualization of the general processing pipeline. Particle data (1) from the dataset is rendered using the default rendering
pipeline. An intermediate result is a depth image (2) that is used for further processing. The composed image (3) is displayed to the user
and they can perform lasso selection operations (4). A selection lasso (5) is derived from the user input and is also displayed to the user
(6). The lasso and depth information are used to resolve the intended region of interest, called the focus area (7). The actual 3D particle
selection operation (9) uses a specially designed density estimation (8) and information from the focus area (7). The final selection output is
then displayed to the user and further analyses can be applied to the selected subset (10).

data affect hundreds of thousands of data objects (particles, in our
case) such that a single object is typically not the focus of a selec-
tion task. Instead, we are interested in larger groups of up to thou-
sands of data elements from particularly interesting substructures
or sub-volumes.

These scenarios require a 3D-volume based selection. A straight-
forward idea is to use a cone-based selection that selects either a
single object closest to the center of the cone or all objects within
the selection cone [SP04]. More involved concepts are structure-
aware selection methods [WVH11, HWVF12] that use analyses to
infer knowledge about the underlying dataset. Yu et al. [YEII12]
introduced two concepts (namely TeddySelection and CloudLasso),
which use a 2D selection lasso. Both methods use a particle density
estimation and require a 3D discretization (a grid) to construct a se-
lection mesh in 3D. Yu et al. have shown that CloudLasso is more
flexible, but also more computationally intensive than TeddySelec-
tion. Yu et al. improved their selection mechanisms by introduc-
ing the CAST-algorithm family [YEII16]. Similar to CloudLasso
and TeddySelection, CAST use computationally expensive analy-
ses based on 3D volume information for every step. These methods
are based on the notion and semantic concept of a cluster to real-
ize the actual selection process. From a higher-level perspective, a
cluster can be considered a region in 3D space of a certain parti-
cle density that can be selected by users. Furthermore, a cluster can
be visually perceived by humans using rendered particle sets since
high density in the dataset typically leads to a very dense area in
the final image.

Both papers by Yu et al. are mostly related to our approach
since they link the 2D inputs to the intended particle selection
in 3D space. 2D inputs are particularly interesting because they
are typically used by data analysts in the scope of their common
work flows. All these methods leverage the Marching Cubes algo-
rithm [LC87] and a uniform 3D grid to compute selection meshes
and to explicitly track clusters in memory. When focusing on the

density estimator, the CAST algorithms rely on a modified Breiman
kernel density estimation method (MBE) [BHS∗11]. It leverages a
uniform density grid of O(m3) memory, where m refers to the num-
ber of grid cells in one dimension. The grid is required to reduce
its quadratic processing complexity of O(n2) and to adaptively cal-
culate the influenced grid cells per particle by tracking an ellipsoid
per particle. Real-world sets, however, require a reasonable high
resolution in terms of grid cells in order to achieve a precise selec-
tion. The decision for using the MBE was motivated by Fredosi et
al. [BHS∗11] who determined that this method is perfectly suitable
for astrophysical data sets. The SPH method was not considered by
Fredosi et al. but was originally developed for astrophysical prob-
lems [Luc77, Mon92] and recent papers from the field of particle-
based simulations by Macklin et al. [MM13,MMCK14] and Köster
et al. [KK16] successfully used the SPH method for their real-time
density estimations. They rely on a radix-sort based approach by
Green [Gre10a, Gre10b] thats avoids an explicit construction of a
3D density grid in memory.

3 Screen Space Particle Selection

The general processing pipeline is visualized in Figure 1. As shown
in the diagram, only one analysis is applied to the particles directly:
the density estimation. All other information can be resolved from
a screen space depth buffer.

The basic idea behind our approach is the fact that a selection
of potentially interesting structures in space has a specific shape in
screen space. Since the user performs a selection based on the visu-
alized dataset, we can leverage the same information to perform the
intended selection operation. Similar to the CAST-algorithm fam-
ily, our selection method also requires an initial 2D selection lasso
on the screen to be drawn by the user. This selection lasso spans
the desired region of interest. The important and difficult part is to
determine the actually intended selection volume based on the 2D
selection information.
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However, since we want to avoid excessive memory con-
sumption and high computational overhead, we first map the re-
quired parts of the 3D volume information to a screen-resolution-
dependent 2D texture and an intention-detection buffer. The texture
contains linearized screen space depth information in [0.0,1.0] that
is typically already available through and/or required for default
rendering or visualization purposes. The intention buffer stores
floating-point values and is basically a weighted distribution buffer.
It is computed by combining the linearized screen space depth us-
ing per-pixel weighting information that is resolved from the selec-
tion lasso. The resulting intention weights are sorted according to
the highest rating and allow an inference of the intended selection,
called focus area, in 3D space. Based on this area, we can resolve
the desired density information in the computed region and select
all related particles with a similar density. The actual selection pro-
cess involves projecting candidate particles onto the screen. A par-
ticle is selected, if it falls into the region of the 2D lasso in screen
space. However, similar to TraceCast [YEII16] this test can also
be disabled for context-aware selection of larger volumes near the
focus area.

3.1 Mask Construction

The first step during selection is the construction of the selection
mask. The input for this phase is the drawn lasso in form of a set of
points in screen pixel coordinates. We follow the approaches from
related work and close the lasso if it is not closed by automatically
connecting the start and the end point of the user’s lasso contour.
These points will be converted into a 2D polygon that is used for
further processing. Additional de-noising steps can be applied to
smooth the shape of the selection polygon (like Laplacian smooth-
ing [VMM99]). Afterwards, the resolved polygon is rasterized into
a 2D floating-point mask image, which was previously initialized
with 0. The size of the mask image is given by the rendering reso-
lution.

Note that the shape of a selection polygon has a lot of informa-
tion about the intended selection (see Figure 2). For example, sharp
corners help to separate desired from non-desired regions, whereas
large enclosing regions indicate a large intended area. We propose
a straight-forward and fast selection-mask approach that adaptively
weights all included pixels of the selection polygon to encode a
user’s intended selection. For this reason, we apply a position-
dependent weighting kernel WM :N×N 7→ [0.0,1.0] to the rendered
mask image. The kernel is applied to every pixel inside the rendered
selection polygon and yields an importance (influence) factor for a
given mask pixel. The higher this factor is, the more important the
pixel coordinate is in the scope of the user’s desired selection. We
use a radial-weighting kernel in all cases that pays special attention
to the shape of the user’s selection lasso (see Figure 3). The overall
shape of the selection lasso is taken into account using the diameter
of the polygon. All points inside the selection mask are weighted
according to their distance to the centroid.

3.2 Focus Area Computation

Once the selection mask has been constructed, it has to be linked to
the structure of the dataset in order to compute the actual focus area.
The high-level idea behind this step is to infer a 3D volume slice
that corresponds best to the intended selection lasso. We use depth-
distribution histograms by accumulating depth values that fall into

Figure 2: A dataset with three user-defined selection lassos (top).
An analysis of the masks’ shapes allows to distinguish more from
less important areas. The bottom image highlights several regions
of the selection lassos and their related selection intentions. For
example, corners separate desired from non-desired areas (red).
Less important areas are color-coded with orange and the least
important areas are yellow.

Figure 3: Two different user lassos (left) and their corresponding
mask images (right). The black arrows indicate the distance of a
point from the centroid of its selection polygon. Note that the larger
this distance is, the larger the weighting factor will be. The color
gradient from white to black visualizes the weighting kernel. Points
near the centroid will receive a low weight (white), whereas others
in the more interesting regions will receive a high weight (black).

certain depth intervals or bins. The number of bins SI is a custom
selection parameter and is typically set to 16 in our experiments.
Increasing SI yields a more fine-grained selection that pays more
attention to the mask on the one hand; a smaller number of bins
allows to conveniently select larger (but more coarse-grained) re-
gions on the other hand.

From a high-level point of view, we are looking for two cut-
off planes (the minimum and maximum planes) in the depth-
distribution histogram that reflect the desired volume slice; how-
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ever, since we want to reflect the user’s intention, a simple depth-
distribution histogram is not sufficient. Instead, we accumulate the
corresponding mask weights in form of a distribution histogram
called the intention buffer IB. This allows us to infer the intended
selection based on the values of the intention buffer: a high rating
implies a high selection intention.

As previously mentioned, we use linearized depth information
from the depth buffer of the rendering pipeline for this purpose
(see Figure 1), where 0 refers to a near and 1 to a far particle†.
These depth values D(x,y) are mapped to bin-indices in the inten-
tion buffer. Hence, the available mask information (MI(x,y) > 0)
is used to compute the involved minimum Dmin and maximum
depth Dmax values from the depth image (see Algorithm 1). Next,
the depth-sampling interval is computed in order to determine the
value range of a single bin in the scope of the intention buffer. For
every pixel, the corresponding mask values MI(x,y) will be accu-
mulated in the corresponding bins, if there was a particle at pixel
location (x,y) (D(x,y) < 1). If not, the mask information will not
be stored in the intention buffer since it does not contain valid depth
information (see Figure 4).

Figure 4: A sample selection mask (top) and the corresponding
(normalized) depth distributions from the mask area (Y-axis). The
X-axis indicates the bin indices. Color coding: Grey, the default
distribution of the depth values. Blue: weighted depth values ac-
cording to the mask weights.

Finally, the actual focus area in 3D space can be inferred from
the intention buffer. To this end, the buffer is sorted in descending
order according to the accumulated weights (see Figure 5). Then,
we compute the average difference between a certain bin and its
successor. Starting with the first bin, all successor bins are included
in the inference step as long as the difference between its value and
its successor’s value is smaller than the average difference. This
feature significantly relaxes the greediness of the area computation
since it also includes selection ranges with similar ratings.

† Note the assumption that the depth texture is initialized with 1 (infinite
depth) before the rendering step and the depth test is set to less or less equal.

Figure 5: Sorted focus area bins from Figure 4. The numbers on
the X-axis refer to the original bin index. In this case, the average
difference between all entries is approximately 0.04. Consequently,
the third bin (bin number 7) will not be taken into account (red
line). Using a greedy approach would result in bin 8 only.

Algorithm 1 Focus Area Construction Algorithm
Require: Mask image MI and linearized depth image D
Require: Intention buffer IB

Dmin← 1,Dmax← 0
for all pixels (x,y) where MI(x,y) > 0 and D(x,y) < 1 do

Dmin← min
(
Dmin,D(x,y)

)
Dmax← max (Dmax,D(x,y))

end for
if Dmax < Dmin then

return No focus area found
end if
Compute sampling interval DS←

Dmax−Dmin
number of samples

Initialize IB with 0
for all pixels (x,y) where MI(x,y) > 0 and D(x,y) < 1 do

ib← D(x,y)
DS
·number of bins

IB(ib)← IB(ib)+MI(x,y)
end for
Sort IB in descending order of ratings
dI ← average difference of IB(i) and IB(i+1) in IB
i← 0
while i < number of bins−1 and IB(i)− IB(i+1) < dI do

i← i+1
end while
return (depth(IB(0)),depth(IB(i)))

3.3 Density Estimation

We realize density estimation via the SPH method, which was orig-
inal developed by Lucy [Luc77], Gingold and Monagan [GM77]
for astrophysical problems. Discrete data points p and an associated
scalar property A are the input arguments for SPH, which approx-
imates a continuous value distribution based on the property val-
ues of the given data points. An interpolated quantity Ai (smoothed
quantity A) for the i-th particle at particle position pi is given by the
weighted sum over all particles [Mon92]:

Ai = ∑
j

m j

ρ j
A jW (||pi− p j||,h), (1)

where m j , ρ j, A j are the mass, the density and the scalar property
value of the j-th particle. h is the applied smoothing length and W
is the smoothing kernel (weighting function), that is positive, even,
normalized [Mon00, Kel06], and typically has a finite support in
practice [MM13, KK16]. In order to approximate the local density
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of a particle, we can also use the general SPH method [Mon02]

ρi = ∑
j

m j

ρ j
ρiW (||pi− p j||,h) = ∑

j
m jW (||pi− p j||,h). (2)

The mass m j can be replaced by an arbitrary generic scalar prop-
erty which we want to base our density computation on. However,
SPH requires a certain amount of neighboring particles that fall
into the radius h to ensure a stable computation [KSW99]. Hence,
h is often chosen adaptively in such a way that every particle has
a reasonable number of neighbors [NP94]. In our case, we cannot
determine the smoothing length h off-line since the dataset is un-
known in advance.

As mentioned in section 2, related approaches use online ways to
compute the density with adaptive influence radii for every particle.
There are many applications of dynamically-adjusted smoothing
lengths in SPH-based simulations. We also use an online compu-
tation concept and use an adaptive smoothing length hi per particle
for the density computation. In order to determine a high-quality es-
timate for hi per particle, we use a formula based on the ideal num-
ber of neighbors Nh that depends on the shape of the used smooth-
ing kernel W . For instance, a cubic-spline kernel is a common
choice for astrophysical simulations and requires Nh ≈ 42 [DA12].
We use the relation by Winchenbach et al. [WHK16] that associates
hi with the ideal number of neighbors for a given kernel. They use
the adaptive particle volume by Solenthaler [SP08] to compute a
scalar value per particle that gives information about the spatial
distribution of particles

Vi =
1

∑ j W (||pi− p j||,hi)
. (3)

Note that Vi is equal to the inverse of the previously presented den-
sity computation with a constant value A j = 1. The basic idea be-
hind the approach by Winchenbach et al. is that a number of parti-
cles with radius V j intersect with the sphere of radius hi around a
particle. The adaptive smoothing length hi is then given by [DA12]:

hi = scV
1
3

i

(
Nh
4
3 π

) 1
3

, (4)

where sc is a global scaling factor.

In order to compute the density per particle, we use an iterative
approximation of hi. In contrast to Winchenbach et al. we do not
adapt hi over the runtime and multiple steps of a simulation, and
apply different initialization values and break conditions (see Al-
gorithm 2). We perform the density estimation step once per parti-
cle selection operation and execute several iterations until the aver-
age ∆hi (referred to as ∆h) is small enough between two iterations
or the maximum number of approximation iterations is reached.
The initial hi is computed in two steps. First we compute an initial
guess ha, which assumes that the particles are evenly distributed in
the domain. ha is based on the maximum dimension of the dataset
in 3D and the number of particles di =

dimi(dataset)
number of particles and

ha = max(dx,dy,dz). Secondly, we relate ha to the kernel W and
the neighborhood of every particle. The idea behind the formula is
the assumption that a linear increase of the radius hi causes a cubic

Algorithm 2 Density-Estimation Algorithm
for all particles i do

hi← init(hi) (Equation 5)
end for
∆h← 0, i← 0
loop

for all particles i do
Compute Vi according to Equation 3

end for
∆ĥ← 0
for all particles i do

Compute ĥi according to Equation 4
∆ĥ← ∆ĥ+ ||hi− ĥi||
hi← hi +

ĥi−hi
2

end for
∆ĥ← ∆ĥ

number of particles
if ||∆h−∆ĥ|| < ε or i≥ imax then

break
end if
∆h← ∆ĥ
i← i+1

end loop

increase in the number of neighboring particles:

init(hi) =

(
∑ j WN(||pi− p j||,ha)

Nh

) 1
3

ha, (5)

where WN is a simple kernel that weights every particle that is in-
cluded in the sphere ha around the i-th particle with 1

WN(d,h) =

{
1 if d < h
0 else.

(6)

We interpolate the estimations from two iterations linearly by
weighting both values equally. Note that the initial assumption for
hi can be computed upon loading of the dataset and be reused for
every selection operation if the dataset does not change over time.
In case of a running simulation, the initial value for hi has to be
computed every time and should not be reused for faster conver-
sion rates of the estimation algorithm.

From a practical point of view, we do not compute and store par-
ticle neighbor lists. We separate the whole simulation domain into
an uniform virtual grid. The virtual grid does not exist explicitly
in memory in form of a 3D memory buffer. Every particle will be
assigned the virtual grid cell the particle lies in. Afterwards, we
apply the radix-sort based approach by Green [Gre10a, Gre10b] to
sort all particles according to their grid cell. This dramatically im-
proves neighbor-lookup performance later on and does not require
additional memory larger than O(n).

3.4 Particle Selection

Related papers perform the actual selection based on their trian-
gulated meshes that are used to form clusters of a certain density.
Access to such information is not available in our case, but we can
work on the implicitly defined particle-neighbor relationship. This
link inherently defines particle clusters via their density informa-
tion, and thus avoids the explicit computation of clusters in mem-
ory. In general, we use a flood-filling approach that will mark all
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neighboring particles, if a certain condition evaluates to true. We
consider a particle p j a neighbor to a current particle pi, if their
distance is smaller than the smoothing length hi computed in the
density estimation step.

In the first step, we mark all particles which have depth values
that fall into the depth interval of the focus area, called direct target
particles. While marking the start particles, we compute their min-
imum and maximum density values and the resulting density delta
∆ρ. We mark all indirect target particles using an iterative mark-
ing process. We iteratively consider all neighboring particles of all
marked particles and test whether |ρi−ρ j|< ∆ρ. We further trans-
form the particle coordinates into screen space and test whether
the projected position lies inside the selection mask. As previously
mentioned, this test can also be disabled to allow the automatic se-
lection or more involved structures. If these conditions evaluate to
true, we will mark the corresponding neighbors. We stop the itera-
tive marking process as soon as no particle is marked or when the
maximum number of indirect marking iterations is reached. Note
that the density delta ∆ρ is not adjusted in any iteration since it
represents the initial density of the selection.

3.5 Complexity

The total complexity is given by the sum of the single complexities
of every required operation since these are performed sequentially
one after another

CTotal = O
(

CDensity +CSelection
)
. (7)

The density estimation (Algorithm 2) is the most expensive op-
eration in general since it works on particles from the dataset. It
performs several passes over all particles and most loops require
nested loops over the neighboring particles. This results in:

CDensity = O(n · k+2 ·n · k · imax) = O(n · k · imax) = O(n · k),
(8)

where i is the number of density-adjustment iterations and k the
maximum number of neighbors per particle. In practice, however,
i cannot become greater than imax which is a constant (typically
∈ [1,3]). Note further that k is approximately Nh, and thus k << n.

Similar to the density estimation, the particle selection step
involves iterations over the neighboring particles. Every particle
marks a neighbor if the density condition for marking evaluates
to true. This results in several iterations over the particle set until
a fixed point is reached; or in other words, until no additional par-
ticles will be marked any more. In the theoretical worst case, only
a single particle is marked in the beginning (a single direct target
particle). In the first iterative indirect marking iteration, only its k
neighbors will be marked, resulting in k+1 marked particles in to-
tal. The next marking iteration will then result in k× k+1 marked
particles. However, if we reconsider the worst case, only one ad-
ditional particle is marked in every iteration. This results in a total
number of n marking iterations. Hence, the complexity CSelection
is ∈ O(n · k). In practice, however, approximately ki + 1 particles
are typically marked after the i-th iteration.

Consequently, the total computational complexity CTotal of our
method is

CTotal = O(n · k). (9)

Note that the complexity of the rendering steps are not included
in this analysis. Rendering steps have to be performed for visu-
alization purposes anyway. In terms of memory consumption, the
algorithm requires a linear amount per particle only to store the
selection state, the smoothing lengths and the actual density. In ad-
dition, we require several negligible screen space buffers to store
mask information and bin values of the focus area. This results in a
total memory complexity of

CM = O(i ·n) = O(n). (10)

4 Evaluation

The overall evaluation focuses on two aspects: runtime perfor-
mance and selection quality. Our test scenarios are based on the
ones used by related work [YEII16] in order to have a compara-
ble evaluation in terms of selection quality. Furthermore, they re-
flect different common selection tasks that can arise in real-world
datasets. In contrast to Yu et al. we fixed the virtual camera posi-
tion and instead used a larger number of datasets during the evalu-
ation. This yields further insights in terms of applicability to differ-
ent general sets of particles.

We used 12 different scenarios that are visualized in Figure 6
with a screen resolution of 1920x1080 pixels while setting the num-
ber of focus area bins to 16. In practice, common datasets contain
hundreds of thousands of particles. Therefore, our smallest set con-
tains around 150.000 and our largest set around 460.000 particles.
Additionally, we added noise particles to enhance the degree of re-
alism (see Table 1). We follow the evaluation approach by Yu et
al. and used scenarios that can be assigned to the following major
categories: whole clusters, partial selection and occluded selection.
Note that some scenarios can be assigned multiple categories.

Whole clusters The selection of a single or even multiple clus-
ters at once is very common (Scenarios 1, 2, 4, 5, 6, 8, 9, 10 and
11). Consequently, most of our evaluation scenarios reflect these
kind of tasks. From a user’s point of view, this task is very easy
and convenient: a single lasso is drawn on the screen that includes
the target cluster/clusters. From an algorithmic point of view, the
evaluation scenarios differ drastically as the shape of the selection
lasso, the particle densities and the desired user intentions are dif-
ferent. These scenarios focus on the general mapping of selection
masks to visible regions of the dataset.

Partial selection More complex selection tasks are partial selec-
tions, which are also more sophisticated to process in general since
only parts of certain particle clusters should be selected (Scenar-
ios 3, 7 and 12). Compared to other structure-aware methods, our
algorithm does not require specific support to perform partial selec-
tions because it does not consider nor rely on the concept of explicit
clusters (see subsection 3.4). These scenarios focus on the precise
mapping of selection masks to visible regions of the dataset.

Occluded selection The most difficult selection type is an oc-
cluded selection: users want to select a subset that is either partially
or fully occluded by other particles (Scenarios 2, 3, 4, 7 and 10).
This is also the most difficult scenario type for our approach since
we rely on screen space information in form of a depth buffer. These
scenarios focus on the mapping of selection masks to partially oc-
cluded regions of the dataset.
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Figure 6: A visualization of the different evaluation scenarios from the used camera perspectives. These images were displayed to the users
during the online study. Note that the first scenario was used to familiarize themselves with the selection process.

Table 1: Detailed information about the evaluation scenarios (#
Particles). Target particles are particles that have to be selected by
the user with the help of a selection mask. Default particles repre-
sent valid data points in the scope of the dataset, but they should
not be selected.

Scenario #
Pa

rt
ic

le
s

#
Ta

rg
et

Pa
rt

ic
le

s

#
D

ef
au

lt
Pa

rt
ic

le
s

#
N

oi
se

Pa
rt

ic
le

s

1 457152 52158 399998 4996
2 286136 10476 270662 4998
3 286136 5236 275902 4998
4 153917 104752 44169 4996
5 153917 44464 104457 4996
6 251650 82194 164462 4994
7 251650 16986 229670 4994
8 449734 104865 339874 4995
9 449734 340279 104460 4995

10 371792 105053 261741 4998
11 371792 236099 130695 4998
12 371792 314331 52463 4998

4.1 User Study

We have conducted an online user study using an interactive web
application to gather selection masks for evaluation purposes. The
different scenario images from Figure 6 were displayed to users
in a counterbalanced manner and the first scenario was used for
training purposes only. Users were not able to rotate or move the
virtual camera through the dataset as they worked on static images
only. A set of several demonstration slides explained the basic se-
lection concepts of drawing lassos. Afterwards, users could train
the actual selection process on the first scenario to get initial in-
sights. The selection masks were sent asynchronously to our server
via Websocket requests and were processed in real time. The re-
sulting image with the highlighted selection was rendered on the
server and was sent to the users’ browsers together with additional
information (number of selected particles etc.). We considered se-

lections as invalid and discarded the selection information if less
than 1000 particles were selected. Users were not able to continue
the user study as long as their selection on the currently displayed
scenario was considered to be invalid. Besides raw selection masks,
we asked users for their age, their gender, color blindness, their in-
put device, their experience with their input device (from 0 to 5)
and their experience in the field of particle selection (from 0 to 5).
The recoded selection masks were used for the computation of the
selection quality and runtime performance.

We had 72 participants and were able to use 67 users for evalu-
ation purposes. Data from five participants could not be used since
they did not complete the online study for unknown reasons. All
participants used a mouse as an input device and were able able
to differentiate between blue (default), noise (gray) and target (yel-
low) particles. In sum, we gathered 737 selection masks, the ages
of our participants ranged from 20 to 46 years (M = 26.4,σ = 5.8)
while 9 were female. Most of them were not that familiar with the
field of particle selection (M = 2.1) but very experienced with the
mouse (M = 4.5).

4.2 Selection Quality

Following known approaches from related work [YEII12,YEII16],
selection quality is measured in terms of two accuracy scores, the
F1 score and the MCC (Matthews correlation coefficient) score.
We applied the gathered selection lassos from the user study to
the underlying data sets in order to determine the selection pre-
cision. Table 2 shows the average F1 and MCC scores for all user
inputs and scenarios. All scores are very high (above 91%) and in-
dicate a very good selection across all evaluation datasets. In some
cases, however, the selection quality is slightly worse compared to
other scenarios. For instance, scenario 3 has the worst scores with
F1 = 0.92 and MCC = 0.92, which are still high but slightly lower
than the others. First, the selection is a partial selection that is more
sensitive to the actual mask information. Secondly, the density of
the target particles is very similar to the density of its surrounding.
These arguments also apply to scenario 7, where F1 = 0.92 and
MCC = 0.93. However, even in these cases our approach is able

© 2018 The Author(s)
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Table 2: Selection quality measurements in terms of the average
F1 and MCC scores.

Scenario 2 3 4 5 6

F1 0.98 0.92 0.98 0.96 0.95
MCC 0.97 0.92 0.97 0.97 0.94

Scenario 7 8 9 10 11 12

F1 0.92 0.99 0.99 0.96 0.96 0.98
MCC 0.93 0.99 0.99 0.96 0.96 0.97

to achieve high quality selection results and does not suffer from
severe limitations.

4.3 Runtime Performance

We have implemented our system in C# and use the ILGPU‡ com-
piler for all GPU kernels. We leverage Direct3D for visualization
purposes that seamlessly integrate with the GPU kernel function-
ality. Performance tests were executed on two different GPUs: an
Nvidia GeForce GTX 980 TI and an Nvidia GeForce GTX 1080
TI (see Table 3). A single performance measurement is the median
execution time of 100 selection processes with the same captured
selection mask from the user study. The actual density values were
computed using a cubic spline kernel, where the ideal number of
neighbors was set to 45. Although we limited the number of den-
sity iterations to be less or equal to three, our density estimation
algorithm required only up to two iterations in order to reach a rea-
sonable number of neighbors per particle (see Table 4).

The runtime of the density analysis heavily depends on the num-
ber of particles and the number of approximation steps to adapt
the smoothing lengths. For example, scenario 2 requires a single
iteration step with around 286.000 particles, whereas scenario 6
requires two density iterations with roughly the same number of
particles. As expected, the time for performing two density steps is
approximately twice as high as a single step on both GPUs with a
comparable number of particles. Our initial guess of the smoothing
length based on Equation 5 works well on the evaluation scenarios,
since we do not even reach the predefined limit of three adjustment
steps.

The runtime of the selection process on both GPUs does not ex-
ceed 25 milliseconds. If we compare the measurements of scenar-
ios 8 and 9, we can see a significant difference between the per-
formance. This is caused by the large difference in the number of
selected particles: we have to perform more indirect marking itera-
tions in general as the number of desired particles increases.

5 Conclusion

We present a novel particle selection method called SSPS that does
not require high computational complexity and is easy to imple-
ment using the presented algorithms. In terms of runtime perfor-
mance, SSPS is fast enough on current hardware (less than 50ms in
the worst case on our evaluation scenarios) such that it is perfectly
suitable for interactive applications. In the best case, however, we
required only around 10ms to complete a selection process on a

‡ www.ilgpu.net

Table 3: Runtime performance measured on an Nvidia GeForce
GTX 980 TI and on an Nvidia GeForce GTX 1080 TI in millisec-
onds. Density refers to the runtime of the density estimation step,
whereas the Selection column includes the mask construction, the
focus area computation and the actual selection.

Scenario D
en

si
ty

Se
le

ct
io

n

To
ta

l

σ D
en

si
ty

Se
le

ct
io

n

To
ta

l

σ

2 10 11 21 0.8 6 4 10 0.6
3 10 10 20 0.8 6 4 10 0.6
4 8 18 26 1.1 5 11 16 0.7
5 8 11 19 1.1 5 5 10 0.7
6 16 14 30 0.9 11 9 20 0.8
7 16 10 26 0.9 11 5 16 0.8
8 24 16 40 0.9 15 12 27 1.0
9 24 25 49 0.9 15 16 31 1.0

10 20 18 38 1.2 14 13 27 1.1
11 20 22 42 1.2 14 14 28 1.1
12 20 24 44 1.2 14 16 30 1.1

GPU GeForce GTX 980 TI GeForce GTX 1080 TI

Table 4: Density information related to our density estimation al-
gorithm. Note that all particle positions were normalized to fall into
the range of [(−10,−10,−10)T ,(10,10,10)T ].

Scenario 2,3 4,5 6,7 8,9 10,11,12

Density # Iterations 1 1 2 2 2
Max. Smooth. Length 1.65 0.89 1.35 0.53 0.69
Avg. # Neighbors 42 43 44 47 44

dataset with a significant number of particles. When focusing on
selection quality, we have shown that our method performs as well
as other state-of-the-art approaches that rely on different analyses.

Similar to other approaches, an inherent limitation of our method
are the general parameters that control the actual selection process.
For instance, our selected values for the number of focus area bins
have proven themselves in our evaluation scenarios, for example, in
order to achieve very high accuracy values. In particular, the num-
ber of bins have to be adjusted properly as they control the overall
sensitivity of the selection process. This also affects our proposed
mask weighting functionality to reflect a user’s intention. Depend-
ing on the general domain (e.g. medical data) and the underlying
structure of the particles, different values can lead to better results
in terms of intended selections.

In the future, additional datasets from different domains have to
be analyzed. Further insights will improve the parameter choices
and can reveal novel application domains for our selection algo-
rithm. A perfect extension to our proposed method would be an
automatic parameter adjustment step that determines proper val-
ues based on several initial user selection steps. Another interesting
next step can be the application to real-time simulations that can be
analyzed on-the-fly as the simulations run.

© 2018 The Author(s)
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