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Abstract

In many different research areas it is important to understand human
behavior, e.g., in robotic learning or human-computer interaction. To
learn new robotic behavior from human demonstrations, human move-
ments need to be recognized to select which sequences should be trans-
ferred to a robotic system and which are already available to the system
and therefore do not need to be learned. In interaction tasks, the current
state of a human can be used by the system to react to the human in an ap-
propriate way. Thus, the behavior of the human needs to be analyzed. To
apply the identification and recognition of human behavior in different ap-
plications, it is of high interest that the used methods work autonomously
with minimum user interference. This paper focuses on the analysis of hu-
man manipulation behavior in tasks of different complexity while keeping
manual efforts low. By identifying characteristic movement patterns in
the movement, human behaviors are decomposed into elementary build-
ing blocks using a fully automatic segmentation algorithm. With a simple
k-Nearest Neighbor classification these identified movement sequences are
assigned to known movement classes. To evaluate the presented approach,
pick-and-place, ball-throwing, and lever-pulling movements were recorded
with a motion tracking system. It is shown that the proposed method
outperforms the widely used Hidden Markov Model-based classification.
Especially in case of a small number of labeled training examples, which
considerably minimizes manual efforts, our approach still has a high ac-
curacy. For simple lever-pulling movements already one training example
per class sufficed to achieve a classification accuracy of above 95%.
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1 Introduction

In the future, novel approaches in industry, production, personal services, health
care, or medical applications, require a close collaboration of humans with
robotic systems. To facilitate the requirements of these new approaches, not
only the robotic systems must be equipped with enlarged mechanisms and skills
that allow intuitive and safe interaction, but also the human intention, behavior
and habits have to be better understood [12]. To allow this, novel methods to
analyze human behavior are needed, which can easily be applied in different
applications.

Understanding human behaviors is one important factor to successfully achieve
intuitive human-computer interaction. For example, based on the knowledge of
the current state of the human, systems can interact with humans in an ap-
propriate manner. To obtain this knowledge, it is necessary to identify the
representative parts of the human behavior and to assign the identified behav-
iors into categories which induce different reactions of the system. Only if the
state of the human and the context which is described by this state are known,
the system can follow the working steps that are required in this situation or
can support the human if desired.

If robots become part of our everyday life in the future, it becomes important
that also non-experts can teach a robotic system new skills. Robotic learning
from demonstration is an active research area in robotics that promises to be a
powerful tool to reach this goal, see for example [9, 14, 16, 17]. With learning
from demonstration approaches, human demonstrations of a task can be trans-
ferred to a robotic system and generalized to solve different but similar tasks [9].
This allows also non-experts to demonstrate the system a way to solve a certain
task without knowledge about robot control techniques. However, transferring
a complex behavior to a system can be very time-consuming or even impos-
sible. In order to learn also complex behaviors, the demonstration should be
segmented into its main building blocks to be learned more efficiently [19]. By
grouping segments that belong to the same behavior and by recognizing these
behaviors, it can be determined which segments are needed to be learned for a
certain situation. Beyond that, movements can be identified that can already
be executed by the system and thus do not need to be learned.

Behavioral studies indicate that also humans learn complex behavior incre-
mentally, as can be seen, e.g., in a study on infants [2]. The hypothesis is that
complex behaviors are learned based on simple individual building blocks that
are chunked together to a more complex behavior [8]. The idea in this work is to
identify building blocks of human manipulation demonstrations so that they can
be learned by the robotic system. In this way the system can learn a repertoire
of behavior building blocks based on human demonstration which can easily
be combined to different complex manipulation movements. To detect building
blocks of human demonstrations, characteristic movement patterns have to be
identified. In manipulation behaviors, bell-shaped velocity profiles have been
found to be a suitable pattern [15]. In this work, a velocity-based behavior
segmentation algorithm, introduced in previous work as velocity-based Multi-
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ple Change-point Inference (vMCI) [19], is used to segment recorded human
manipulation movements. The applied algorithm detects movement sequences
that show a bell-shaped velocity profile and are therefore assumed to be building
blocks of human behavior. Furthermore, the vMCI algorithm identifies move-
ment building blocks automatically without need for parameter tuning despite
noise in the data [19].

The identified building blocks of human movements have also to be clas-
sified according to the actual behavior they belong to. By assigning suitable
annotations to the recognized movement classes, the selection as well as the
detection of the required behavior becomes intuitive and easy to use in different
interaction scenarios. For supervised movement classification approaches the
training data needs to be manually labeled. To keep the manual input low, it
is desirable that the classification works with small sets of training data. We
propose to classify detected building blocks by using simple k-Nearest Neighbor
(k-NN) classification which satisfies this condition.

In this paper, our previous work presented in [10] is recapped and extended
with an additional experiment and evaluation. Beside the application of our
methods on pick-and-place and ball-throwing movements, the proposed meth-
ods are additionally applied to segment and recognize lever-pulling movements
in a third experiment. The paper is organized as follows: In Section 2, different
state-of-the-art approaches for segmentation and recognition of human move-
ments are summarized. Our approach is described in Section 3. Afterwards in
Section 4, the approach is evaluated on real human manipulation movements in
tasks of different complexity. All results are compared to Hidden Markov Model
(HMM)-based approaches which are widely used in the literature to represent
and recognize movements. At the end of this paper, a conclusion is given.

2 Related Work

Depending on the modality to record human movements, there are a lot of
different methods to recognize human behaviors. In many applications, human
actions are recognized in videos, e.g., to find tackles in soccer games, to support
elderly in their homes or for gesture recognition in video games [18]. Human
action classification is just as important as detecting the human itself in video-
based action recognition. Algorithms like Support Vector Machines, or their
probabilistic variant the Relevance Vector Machines, Hidden Markov Models,
k-Nearest Neighbors or Dynamic Time Warping-based classification are used to
classify the observed actions. A more detailed overview is given in [18].

If the human behavior is not observed in a video but using motion tracking,
e.g., with markers placed on the body, the segmentation of the recorded move-
ments is next to the classification of high interest. For example in [5], human
arm movements were tracked and segmented into so-called movement primitives
at time points where the angular velocity of a certain number of degrees of free-
dom crosses zero. After a PCA-based dimensionality reduction, the identified
movements were clustered using k-Means. Even though this approach promises

3



to identify the primitive units of human movements, it requires the selection
of thresholds to determine the segment borders. This is very sensitive to noise
in the input data which results in over-segmentation of the data and requires
adaption of the parameters for different applications. Gong et al., on the other
hand, propose Kernelized Temporal Cut to segment full body motions, which is
based on Hilbert space embedding of distributions [6]. In their work, different
actions are recognized using Dynamic Manifold Warping as similarity measure.
In contrast to the analysis of full body motions, we focus on the identification
and recognition of manipulation movements which show special patterns in the
velocity which should be considered for segmentation.

Beyond that, HMM-based approaches are often used in the literature, both
for movement segmentation as well as for movement recognition. For example,
Kulic et al. stochastically determine motion segments which are then repre-
sented using HMMs [13]. The derived segments are incrementally clustered
using a tree structure and the Kullback-Leibler distance as segment distance
measure. In a similar fashion, Gräve and Behnke represent probabilistically de-
rived segments with HMMs, where segments that belong to the same movement
are simultaneously classified into the same class if they can be represented by
the same HMM [7]. Besides these approaches, solely training-based movement
classification with HMMs is widely used, e.g. in [20, 1]. Because HMMs are
expected to perform not well when few training data is available, we propose to
use k-NN instead and compare it with the HMM approach.

3 Methods

This section describes a velocity-based movement segmentation algorithm which
automatically identifies building blocks in human manipulation movements with-
out the need of parameter tuning. In the second part of this section, an approach
to recognize different known movement segments in an observed behavior is de-
scribed.

3.1 Segmentation of HumanMovement into Building Blocks

The purpose of this work it to find sequences in human manipulation movements
that correspond to elementary building blocks which are characterized by bell-
shaped velocity profiles as shown in [15]. Therefore, a segmentation algorithm
is needed that identifies these building blocks. A second important property
of the algorithm is the ability to handle variations in the movements. Human
movement shows a lot of variations both during the execution by different per-
sons as well as by the same person. For this reason, it is important that the
algorithm for human movement segmentation finds sequences that correspond
to the same behavior despite differences in their execution. Furthermore, the
algorithms should be applicable to different tasks with low efforts. This can
be accomplished with an algorithm that does not require parameter tuning if
different types of movements are analyzed.
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In previous work, we introduced the velocity-based Multiple Change-point
Inference (vMCI) algorithm which tackles these issues [19]. The algorithm de-
tects building blocks in human manipulation movements fully automatic. It is
an probabilistic method, which can handle variations in the movement and the
direct parameters of the data model are inferred from the data. It is based
on the Multiple Change-point Inference (MCI) algorithm [4] in which segments
are found in time series data using Bayesian Inference. Each segment yi+1:j ,
starting at time point i and ending at j, is represented with a linear regression
model (LRM) with q predefined basis functions φk:

yi+1:j =

q∑
k=1

βkφk + ε, (1)

where ε models the noise that is assumed in the data and β = (β1, ..., βq) are the
model parameters [19]. It is assumed that a new segment starts if the underlying
LRM changes. This modeling of the observed data allows to handle technical
noise in the data as well as variation in the execution of the same movement.
To determine the segments online, the segmentation points are modeled via
a Markov process in order that an online Viterbi algorithm can be used to
determine their positions [4].

We expanded the MCI algorithm in our previous work to detect movement
sequences that correspond to building blocks characterized by a bell-shaped
velocity profile [19]. To accomplish this, the LRM of Equation 1 is split to
model the velocity of the hand independent from its position with different
basis functions, where the basis function for the velocity dimension is chosen in
a way that it has a bell-shaped profile. In detail this means that the velocity yv

of the observed data sequence is modeled by

yv = α1φv + α2 + ε, (2)

with weights α = (α1, α2) and noise ε [19]. The model has two basis func-
tions. First, the bell-shaped velocity curve is modeled using a single radial basis
function [19]:

φv(xt) = exp

{
− (c− xt)

2

r2

}
. (3)

If half of the segment length is chosen for the width parameter r, the basis
function can cover the whole segment. The center c is determined automatically
by the algorithm and regulates the alignment to velocity curves with peaks at
different positions. Additionally, the basis function 1 weighted with α2 accounts
for velocities unequal to zero at start or end of the segment. As in the original
MCI method, an online Viterbi algorithm can be used to detect the segment
borders.

Figure 1 shows an exemplary result of the segmentation of artificial data
using the vMCI algorithm. At the top, a one-dimensional simulated movement
can be seen. The lower figure shows the corresponding velocity. To simulate
two different behavior segments, the movement is slowed down at time point
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Figure 1: Artificial movement consisting of two sequences with a bell-shaped
velocity. The vMCI segmentation successfully detected the transition point.
Extracted from [10].

0.4. For the position dimension, the algorithm fits LRMs to the data according
to Equation 1 with pre-defined basis functions. In this case, autoregressive basis
functions are chosen. The velocity dimension is simultaneously fit with a LRM
as introduced in Equation 2. The algorithm automatically selects the models
which best fits parts of the data. In this case, it is most likely that the data arises
from two different underlying models. This results in a single segmentation
point which matches the true segmentation point within an acceptable margin.
In contrast to other segmentation algorithms, for example a segmentation based
on the detection of local minima, vMCI is very robust against noise in the data,
as shown in [19]. Furthermore, the method is not sensitive to the choice of its
hyper-parameters [19], hence, no parameter tuning is needed if it is applied to
different data.

3.2 Recognition of Human Movement

There are many different possibilities to classify human movements, as reviewed
in Section 2. The goal in this work is to choose a simple and robust classifica-
tion method. To make the algorithm easily applicable on different manipula-
tion data, minimal need for parameter tuning is of high interest. Furthermore,
manual efforts can be minimized if the algorithm reliably classifies movement
segments even if only a small training set is available. For this reasons we use
a k-NN classifier for movement recognition. It has only one parameter, k, and
is able to classify manipulation movements with a high accuracy given a small
training set, as shown in our experiments.
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3.2.1 Feature Extraction

Movement trajectories of markers placed at certain positions on the demonstra-
tor are used in this work as features for the classification. The movements are
recorded in Cartesian coordinates which results in different time series if the
same movement is executed at a different position. Thus, the data is trans-
posed into a coordinate system which is not global but relative to the human
demonstrator. The position of the back is used as reference point (see Figure
2a) at the first time point of a segment, i.e. the data is transformed into a co-
ordinate system centered at this point. Additionally, variances in the execution
of the same movement are reduced by normalizing each movement segment to
zero mean.

To successfully classify movement segments, additional features may be rel-
evant. In manipulation movements where objects are involved, the positions of
the objects as well as their spatial relation to the demonstrator are important
features to distinguish between movement classes. Thus, the distance of the hu-
man hand to the manipulated object as well as the object speed are used in the
pick-and-place experiment described in Section 4.2 to classify manipulation seg-
ments into distinct movements. Depending on the recognition task additional
features, like the rotation of the hand to distinguish between different grasping
positions, can be relevant.

3.2.2 Movement Classification

Due to its simplicity, we propose to use a k-NN classifier to distinguish between
different movements. In the k-NN classification, an observed movement sequence
is assigned to the movement class, which is the most common among its k closest
neighbors of the training examples. To determine the closest neighbors, we use
the standard Euclidean distance metric. All segments are interpolated to the
mean segment length in order to account for segments of unequal length. Alter-
natively, dynamic time warping (DTW) could be used as a distance measure.
However, in a preliminary analysis of k-NN classification on manipulation be-
haviors the presented approach outperformed a DTW-based k-NN. The number
of neighbors k is set to 1. That means just the closest neighbor is considered for
classification which leads to a good accuracy in case of small number of training
examples. A bigger k could result in more classification errors due to the very
low number of examples of each class.

4 Experiments

The proposed segmentation and classification methods are evaluated in this sec-
tion on real human manipulation movements tracked using a motion capturing
system. The experimental setup including the evaluation technique used in
three different experiments are described in Section 4.1. Afterwards, the ap-
plication and evaluation of the presented approaches on several demonstrations
of three different manipulation movements are described. The evaluation on a
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Figure 2: Snapshots of the pick-and-place task analyzed in this work. The
images show the grasping of the object from the shelf (a) which is then placed on
a table standing on the right hand side (b) which corresponds to the movement
segment move obj table. Extracted from [10].

pick-and-place and ball-throwing tasks were already part of our previous pub-
lication [10] and are recapped here. Additionally, we evaluated the approaches
on a lever-pulling task in Section 4.4. For all experiments it is shown that
the vMCI algorithm correctly detects segments in the recorded demonstrations
which correspond to behavior building blocks with a bell-shaped velocity pat-
tern. Furthermore, the classification with k-NN using small number of training
data is evaluated and compared to the results with an HMM-based classification.

4.1 Experimental Setup

The demonstrations of all manipulation movements were tracked using a marker-
based motion tracking system. The 3D positions of visual markers placed on
the subject were measured with 7 motion capture cameras at a frequency of
500Hz. In a pre-processing step this data was down-sampled to 25Hz. The
positions of the markers can be seen in Figure 2 and Figure 3. Three markers
were placed on the back of the demonstrator to determine the position of the
back and its orientation. This was used to transform the recorded data into the
coordinate system relative to the back, as described in Section 3.2. To track
the movement of the manipulating arm, markers were placed at the shoulder,
the elbow, and the back of the hand. The orientation of the hand was de-
termined by placing three markers instead of one on it. Grasping movements
in the pick-and-place demonstrations were recorded using additional markers
which were placed at thumb, index, and middle finger. Furthermore, two more
markers were placed on the manipulated object in this experiment to determine
its position and orientation. However, the tasks in our experiments required
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Figure 3: Snapshot of the ball-throwing (a), extracted from [10], and the lever-
pulling task (b).

only basic manipulation movements, e.g., approaching the object or moving the
object. Thus, just the position of the hand and the manipulated object were
used for segmentation and recognition. However, the orientations are needed if
the demonstrated movements should be transferred in a further step to a robotic
system using learning from demonstration techniques [9].

Movement building blocks were identified in the demonstrations using the
vMCI algorithm described in Section 3.1. The segmentation algorithm was ap-
plied on the position and the velocity of the recorded hand movements. As pro-
posed in [19], the recorded positions of each demonstration were pre-processed
to a zero mean and such that the variance of the first order differences of each
dimension is equal to one.

To evaluate the proposed classification method, the resulting movement seg-
ments were manually labeled into one of the movement classes defined for each
experiment. However, some of the obtained segments could not be assigned to
one of these classes because they contain only parts of the movement. This could
result from errors in the segmentation as well as from demonstrations where a
movement was slowed down before the movement class ends. A case would be
when the subject thought about the exact position to grasp the object. An
example can be seen in the top plot of Figure 4. The concatenation of the first
two detected segments belong to the class approach forward. Nonetheless, the
vMCI algorithm detected two segments, both with a bell-shaped velocity curve,
because the subject slowed down the movement right before reaching the object.
These incomplete movement segments were discarded for the evaluation of the
classification approach. Furthermore, some of the identified movement segments
did not belong to one of the pre-defined movement classes of the experiment.
Usually, these nonassignable segments belonged to small extra movements, that
were not part of the main movement task and thus were not considered in the
defined movement classes. These movement segments were as well not used for
the evaluation of the classification.

Before classification, the original recorded marker positions of each obtained
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segment were pre-processed as described in Section 3.2. Depending on the
manipulation task, additional features were calculated. As proposed in Section
3.2, the obtained segments were classified using the 1-NN algorithm. For each
of the two experiments, the accuracy of the 1-NN classification was evaluated
using a stratified 2-fold cross-validation with a fixed number of examples per
class in the training data. The training set sizes were varied from 1 example
per class to 20 examples per class and the remaining data was used for testing.
Since we want to show the performance of the classification with small training
set sizes, the maximal number of training examples per class was kept low. For
each number of examples per class in the training data, the cross-validation was
performed with 100 iterations.

For comparison, the data was also classified using a HMM-based approach,
which is a standard representation method for movements in the literature, see
Section 2. In the HMM-based classification, one single HMM was trained for
each movement class. To classify a test segment, the probability of the segment
to be generated by each of the trained HMMs was calculated. The label of the
most likely underlying HMM was assigned to the segment. The number of states
in the HMMs was determined with a stratified 2-fold cross-validation repeated
50 times with equally sized training and test sets. As a result, we trained each
HMM with one hidden state. The accuracy of the HMM-based classification
with 1 hidden state per trained HMM was evaluated like the 1-NN classification
with a stratified 2-fold cross-validation with fixed numbers of training examples
for each class.

4.2 Segmentation and Recognition of Pick-and-Place Move-
ments

In the first experiment, the presented approach was evaluated on pick-and-place
movements. The task of the human demonstrator, partly shown in Figure 2,
was to grasp a box from a shelf, move it to a table standing on the right side
of the subject, and move the box back to the shelf. After placing the box
on the table or the shelf, the subject should move the arm into a rest posi-
tion in which it loosely hangs down. This task resulted in 6 different main
movement classes: approach forward, move obj table, move to rest right,
approach right, move obj shelf, and move to rest down. Short periods of
time in which the demonstrator did not move his arm were assigned to the class
idle.

The pick-and-place task was performed by three different subjects, repeated
6 times by each. Two of these subjects performed the task again with 4 rep-
etitions while their movements were recorded with slightly different camera
positions and a different global coordinate system. This resulted in different
positions of the person and the manipulating object in the scene which should
be handled by the presented movement segmentation and recognition methods.
A total of 26 different demonstrations from different subjects and with varying
coordinate systems were available to evaluate the proposed approaches.
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Figure 4: Segmentation results of three different demonstrations of the pick-
and-place task. The x-, y- and z-position of the hand are visualized with black
lines. The blue line corresponds to its velocity and the red vertical lines are the
segment borders determined by the vMCI algorithm. Extracted from [10].

4.2.1 Results

The demonstrations of the pick-and-place task could be successfully segmented
into movement parts with a bell-shaped velocity profile using the vMCI algo-
rithm. Three examples of the segmentation results can be seen in Figure 4. The
resulting movement segments were manually labeled into one of the 7 movement
classes described above. This resulted in 155 labeled movement segments with
different occurrences of each class, as summarized in Table 1.

Table 1: Occurences of each class in the recorded pick-and-place data. [10]

movement class num. examples
approach forward 20
move obj table 26

move to rest right 25
approach right 23
move obj shelf 26

move to rest down 24
idle 11

As described in Section 4.1, next to the positions of the markers attached on
the subject, the distance from the hand to the object and the object velocity were
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Figure 5: Classification result of a demonstration of the pick-and-place task
with 1-NN. Different colors along the color spectrum starting with red for
approach forward and ending with blue for move to rest down mark the dif-
ferent movement classes. Extracted from [10].

calculated as additional features in this experiment. An example result of the
classification using 1-NN is shown in Figure 5. For this example demonstration
of the pick-and-place task, all segments have been labeled with the correct
annotation using a training set with 5 examples for each class.

The results of the cross-validation using 1-NN and HMM-based classifica-
tion are shown in Figure 6. Because the data contains 7 different classes, an
accuracy of 14.3% can be achieved by guessing. The 1-NN classification clearly
outperforms the HMM-based classification using training sets with occurrences
of each class smaller or equal to 20. Already with 1 example per class an ac-
curacy of nearly 80% can be achieved using 1-NN. With 10 examples per class,
the accuracy is 97.5% and with 20 examples per class 99.2%. In contrast, 14
examples per class are needed in the HMM-based classification to achieve an
accuracy of 90% in this evaluation. With not more than 10 examples per class,
the accuracy of the HMM-based classification is considerably below the achieved
accuracy using 1-NN.

These results show that with the proposed 1-NN classification, manipula-
tion movements can be assigned to known movement classes with a very small
number of training examples. This means that with minimal need for manual
training data labeling and no parameter tuning, very good classification results
can be achieved using the proposed approach. Furthermore, the 1-NN classi-
fication considerably outperforms the widely used HMM-based classification in
case that only a small number of training examples is available.
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Figure 6: Comparison of the accuracy of the classification of pick-and-place
movement segments using 1-NN and HMM-based classification. Extracted
from [10].

4.3 Segmentation and Recognition of Ball-Throwing Move-
ments

The vMCI segmentation and the 1-NN classification were evaluated in a second
experiment on ball-throwing demonstrations. Compared to the pick-and-place
experiment, this task is more challenging because no fixed objects are involved
resulting in more possibilities of movement execution. The task of the subject
was to throw a ball to a goal position on the ground located approximately
1.5 m away. The numerous possibilities to throw the ball were limited by the
restriction that the ball should be thrown from above, i.e. the hand has a
position higher than the shoulder before the ball leaves the hand, see Figure 3a.
Nonetheless, the recorded throws show high variations in the demonstrations
compared to the pick-and-place task. This could stem from different experiences
in ball-throwing of the different subjects and training effects.

Before and after the throw, the subject had to move into a rest position,
in which the arm loosely hangs down. The individual movement parts of each
throw could be divided into four different main classes: strike out, throw,
swing out and idle. In contrast to the pick-and-place task, only the movement
of the arm was tracked in this task and not the position of the involved object,
the ball. This is because in this experiment, the spatial distance of the ball to
the demonstrator plays only a minor role and the movement of the arm has a
much higher relevance to distinguish between movement classes. Furthermore,
it was not recorded if the goal position was actually hit by the ball.

The ball-throwing task was demonstrated by 10 different subjects, each per-
forming 24 throws.
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(a)

(b) (c)

Figure 7: Segmentation (a) and classification (b) result of one demonstration of
the ball-throwing task. The presented methods successfully identified the seg-
ment borders and recognized the different movement classes. (c) Comparison of
the accuracy of the classification of ball-throwing segments of all demonstrations
using 1-NN and HMM-based classification. Extracted from [10].

4.3.1 Results

In a previous evaluation of the vMCI method on ball-throwing movements, it
was already shown that the algorithm is able to identify the individual throws
based on the position and velocity of the hand [19]. This result was confirmed by
the evaluation of the demonstrations conducted for this work. A representative
example of the segmentation result is shown in Figure 7a. Segment borders were
correctly identified at positions were bell-shaped curves of the velocity profile
end.

The resulting segments of all 240 ball-throw demonstration were manually as-
signed to one of the four movement classes to evaluate the classification. Again,
each class had a different occurrence in the available data, as summarized in
Table 2.

The positions of the markers attached to the subject, see Figure 3a, were
used as features for the movement classification in this experiment. Figure 7b
shows an example classification result using 1-NN and 5 examples per class in
the training data. The 5 movement segments were correctly classified into one
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Table 2: Occurences of each class in the ball-throwing data. [10]

movement class num. examples
strike out 221

throw 227
swing out 339

idle 208

of the predefined classes.
The results of the cross-validation comparing 1-NN with HMM-based clas-

sification are visualized in Figure 7c. Like in the pick-and-place experiment,
1-NN outperforms HMM-based classification in the case of small training data
sets. This experiment contains considerably more demonstrated movements and
higher variance along demonstrations compared to the pick-and-place task. In
here, the difference between classification algorithms is more contrasting. With
one example per class in the training data, an accuracy of 62.9% using 1-NN
can be achieved and only 33.8% by using HMM-based classification. This ex-
periment contains 4 different classes, i.e. an accuracy of 25% can be achieved
by guessing. Using 1-NN, a classification accuracy of 80% is accomplished us-
ing 4 examples per class during training. In contrast to this, this accuracy is
not reached using HMM-based classification in this evaluation. For compari-
son, the evaluation was additionally conducted using 100 examples per class
during training. This resulted in an accuracy of 91.5% using 1-NN, and 77.8%
using HMM-based classification. This shows that even if more training data is
available, the 1-NN classification outperforms the HMM-based approach.

4.4 Segmentation and Recognition of Lever-Pulling Move-
ments

In a third experiment, the presented methods were evaluated on lever-pulling
demonstrations. The task of the subject was to pull a lever down. The lever
was fixed to a table and thus movement execution was in comparison to the
other two experiments strongly predetermined, see Figure 3b. At the beginning
of each demonstration the subject was in a rest position with the arm hanging
down at the side of the body. Next, the subject reached for the lever with the
right arm and pulled down the lever. Finally, the subject turned the arm back
to the rest position (arm hanging down). After returning to the rest position,
the lever had to be pulled up again, which was done with the left arm and had
not been recorded by motion tracking. We chose this very simple behavior to
show that for simple movements only very few demonstrations are needed for
classification.

The individual movement parts of each movement could be divided into 4
different main classes: idle, approach forward, move lever, move to rest.
As for the ball-throwing experiment, only the movement of the arm was tracked
and not the position of the involved object, the lever. This is because in this
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experiment, the spatial distance of the lever to the demonstrators hand is fixed
and plays no role. Only the movement of the arm can be used to distinguish
between movement classes.

The lever-pulling task was demonstrated by two different subjects, perform-
ing 32 and 36 pulls, respectively.

4.4.1 Results

In this task the velocity of the movements did not always show smooth bell-
shaped curves like in the previous experiments. This is because the positions
of the hand was more predetermined. The subjects could not move their hand
free, resulting in some cases in a slowed down movement with a more noisy
velocity profile. This effect may be minimized by more demonstration trails
generating a training effect on the subjects. Nonetheless, the vMCI algorithm
successfully segmented the trajectories of the lever-pulling demonstrations with-
out any adaptions of (hyper-)parameters or an additional preprocessing of the
data. An example of the segmentation results can be seen in Figure 8a. The
resulting movement segments were manually labeled into one of the 4 movement
classes that are present in the lever-pulling task. The occurrences of each class
can be found in Table 3.

Table 3: Occurences of each class in the lever-pulling data.

movement class num. examples
move lever 62

approach forward 76
move to rest 72

idle 72

The positions of the markers attached to the subject, see Figure 3b, were
used as features for the automatic movement classification. Figure 8b shows an
example classification result using 1-NN and only one example per class in the
training data. The 4 movement segments were correctly classified into one of
the predefined classes.

The results of the cross-validation comparing 1-NN with HMM-based clas-
sification are visualized in Figure 8c. As in the other two experiments, 1-NN
outperforms HMM-based classification in the case of small training data sets.
In this experiment, which contains simpler movements compared to the ball-
throwing and the pick-and-place examples, the difference between the classifica-
tion algorithms is very vivid in the area of very few training examples. Indeed,
very high accuracy can already be achieved with one training example for each
class, i.e., 95.3% using 1-NN but only 42.1% by using HMM-based classification.
Using 1-NN, a classification accuracy of 99.0% is accomplished using 4 examples
per class during training. In contrast to this, this accuracy is not reached using
HMM-based classification in this evaluation.
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Figure 8: Segmentation (a) and classification (b) result of one demonstration
of the lever-pulling task. (c) Comparison of the accuracy of the classification
of lever-pulling segments of all demonstrations using 1-NN and HMM-based
classification.

This experiment shows that even if very few training data is available, train-
ing is possible resulting in a high accuracy using 1-NN classification in case that
the movements are very simple.

5 Conclusions

We presented in this paper an approach to segment and classify human ma-
nipulation behavior. The segmentation was done using the unsupervised vMCI
segmentation, formerly introduced in [19], which identifies building blocks of
manipulation movements based on the velocity profile of the hand. For classifi-
cation, we applied a simple 1-NN classifier using the Euclidean distance measure.
Both algorithms were applied on pick-and-place, ball-throwing and lever-pulling
movements. All these manipulation movements of different complexity could be
successfully segmented and classified without the need of manual adaptions of
the algorithms like, e.g., parameter tuning. Although a supervised classifica-
tion method like 1-NN always needs manually labeled training data, we showed
that the recognition of the movements can be done using a small set of training
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data, which considerably minimizes manual efforts. For the lever-pulling task,
which is the simplest of the considered movements, a high classification accuracy
could be achieved with just one training example per class. In comparison to
widely used HMM-based movement classification, the accuracy was a consider-
ably higher with small training sets in all experiments. Furthermore, the good
classification results were achieved without any sophisticated feature selection
methods.

For the development of embedded multimodal interfaces [11], simple ap-
proaches as the one presented here allow to use miniaturized processing units
with relatively low processing power and energy consumption. This is, e.g.,
relevant in robotics, since the integration of interfaces into a robotic system
is limited. But also wearable assisting devices have limitations regarding size,
energy and computing power. For these applications not only accurate but also
simple methods are needed. With the evaluation of our approaches we show
that both, accuracy and simplicity, can be accomplished.

For future work, an integrated algorithm for segmentation and classifica-
tion should be considered. Especially when extra segments are generated, e.g.,
caused by not fluently executed movements, an integrated algorithm where seg-
mentation and classification influence each other becomes relevant. Such seg-
ments could be merged by identifying that only their concatenation can be
assigned to one of the known movement classes.

In addition, manual effort needed for classification should be further mini-
mized by recognizing the movement segments using an unsupervised approach.
Annotations, like move object, which are needed in many applications, e.g. to
select segments that should be imitated by a robot, are ideally done without
manual interference. These movement annotations can, e.g., be derived by ana-
lyzing features of the movement arising from different modalities. Psychological
data, such as eye-tracking or electroencephalographic-data, could be used for
this.
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[19] Senger, L., Schröer, M., Metzen, J.H., Kirchner, E.A.: Velocity-based
multiple change-point inference for unsupervised segmentation of hu-
man movement behavior. In: Proccedings of the 22th International
Conference on Pattern Recognition (ICPR2014). pp. 4564–4569 (2014).
https://doi.org/10.1109/ICPR.2014.781

[20] Stefanov, N., Peer, A., Buss, M.: Online intention recognition in computer-
assisted teleoperation systems. In: Haptics: Generating and Perceiv-
ing Tangible ensations, pp. 233–239. Springer Berlin Heidelberg (2010),
http://link.springer.com/chapter/10.1007/978-3-642-14064-8 34

20


