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Interfaces in Robotics:
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Trends, and Societal
Implications
E. A. Kirchner, S. H. Fairclough, F. Kirchner

14.1 Introduction
In the past, robots were primarily used to perform work that was either too hard, too
dangerous or simply too repetitive for humans, e.g., assembly line work, or work
that could be done much faster by a robotic system, such as placement work. In
the future, human-robot interaction will cover a much broader range of scenarios,
from working interactively with humans in the context of industrial manufacturing
to robotic appliances designed to care the elderly; even in applied areas, such
as autonomous robots in space or operating underwater, the demand for robots
to interact or to be intuitively controlled is growing. Hence, interaction will not
only involve direct control of a robot or information exchange but will include
direct cooperation and physical interaction between human and robot, i.e., human-
robot cooperation. While direct cooperation has tremendous advantages it also
presents a number of significant challenges that should not be underestimated.
Advanced interfaces to enable human-robot cooperation will be required to meet
these challenges and the needs of human-robot interaction in the future.

These interfaces must not only promote accurate and easy explicit interaction
between humans and robots but should also enable implicit interaction. Explicit
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218 Chapter 14 Embedded Multimodal Interfaces

interaction requires the intentional production of active states or commands, i.e.,
the production of speech or specific brain signals or gestures. On the other hand,
implicit interaction operates by monitoring passive states, i.e., emotions, mental
workload, fatigue, motivation, which arise spontaneously, or requires the interpre-
tation of spontaneous active states passively without the awareness or intention of
the user to improve interaction. Examples of this mechanic would be the interpre-
tation of the user’s brain signals to prepare a robot for an upcoming movement in
order to enable a greater degree of coordination between human and robot or the
estimation of mental workload of the user to reduce or increase interactions task-
frequency (for examples see Section 14.4). Considering enhancement of awareness
for explicit interaction, it can be stated that the user is responsible to increase the
awareness of the robot with respect to his or her needs and the function of the
interface is to translate the active state of the human into an appropriate com-
mand, which is actioned by the robotic system. In this case, the interface between
user and robot is a communicator. In case of using implicit control pathways the
interface must translate the active or passive state of the human into a robotic re-
sponse that is both timely and intuitive from the perspective of the user. The human
does not intentionally contribute to this process and may not even be aware of the
underlying mechanism. The interface serves as a monitor and translator that in-
terprets the state of the human and possible intention (see Section 14.3 for more
details). Both types of interfaces, which enable implicit or explicit control, can be
combined into a hybrid system. In case of this hybrid, interfaces between human
and robot use multimodal input and generate multimodal output. Such advanced
interfaces are often complex and of the type of embedded multimodal-multisensor
interfaces.

While it is obvious that such interfaces serve human needs by enabling explicit
and implicit interaction to optimize cooperation with respect to the needs of the
human user, the interface provides two-way communication. For example, there are
interfaces that enable robots to make use of human cognitive resources in those
cases where they have reached the limits of autonomous behavior. Such interfaces
are required for highly specialized robotic systems, which can be found in industrial
environments. With respect to their specialized domain, these robots can outper-
form a human by contributing specialized solutions to a specific problem, but may
not be able to cope with small deviations from a defined protocol. Furthermore, this
type of two-way interface is required for the control of semi-autonomous robots,
e.g., for teleoperation. One requirement of such interfaces is to provide feedback
to the human with respect to the state of the robot. Therefore, a robotic system
must either have a perception of itself, which can be transferred to the human, or
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14.1 Introduction 219

an interface to interpret the state of the robot. In this case, the interface works by
either transferring the robot’s state or inferring the state of the robot.

There are robotic applications that must deliver highly demanding and sensitive
modes of interaction with their human users, since they have, to an extent, replaced
capabilities that would usually be performed by human being, as in the care of
elderly people, or robots that extend the body, i.e., provide sensory-motor functions
such as exoskeletons, surgical robots, and assistive robots that aid the human user
by delivering services or information. In this case, the performance demands on
the human-robot interface are even higher and often transfer or interpret states
bi-directionally. In summary, a combination of the aforementioned abilities of the
different types of interfaces is required to develop new and advanced multimodal-
multisensor interfaces that:

. provide the human operator with a greater insight into the robot’s state for
better control;

. provide the robot with improved insight into the intention of the human for
better support or support as needed, or allow the interaction to adapt to the
human’s need,

. enable the robotic device to extend the human body and senses and to be
used as if it were part of the human body;

. enable the robot to learn from a human in order to imitate their behavior or
to learn to understand the human behavior to become a better interaction
partner; and

. inherently assure the automated detection or even avoidance of malfunction
and safety of interaction.

This chapter describes some measures and approaches that can fulfill the listed
requirements for advanced multimodal-multisensor interfaces. While we try to
give explanations and examples for all the requirements of these systems, we will
focus on approaches that make use of implicit interpretation of the human state.
When using implicit interpretation of the human state, the array of measures that
are required to optimize human-robot interaction depends on the type of user
representation that the robot requires in order to interact or to cooperate with the
person. If the robot must simply avoid hitting a person or colliding with him/her,
all it needs to know is where the person is located in space. No explicit interaction
is required. For this situation, only a simple awareness of the user, e.g., on her or
his location in space and movements, is needed. Robots that work with the elderly
and must exercise soft social skills require a much higher level of awareness of
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220 Chapter 14 Embedded Multimodal Interfaces

the user (and of course that means more sensors and measures). Hence, there is
a relationship between the type and sophistication of the interface, its ability to
interpret the human state, and the level of awareness of the user that is required
for such complex interaction. Therefore, the level of awareness of the user required
by the robot is hierarchical; the robot can have an awareness of the user as: (1) an
object in space, (2) a co-worker or partner (what are they supposed to do, what
tasks are they trying to complete), (3) an individual (gender, age, personality) and
(4) a dynamic entity with respect to intentions and psychological states. Simple
robots may need just (1) and (2) in order to interact or to cooperate. Robots that are
designed to personalize interaction to the person would require information about
stable traits of the person (3) and the means to detect dynamic changes (4). Hence,
interfaces can be scaled according to the level of interaction that is required. The
higher the level, the more likely it is that multimodal-multisensor interfaces are
required.

The good news is that for human-robot interaction, robots are able to directly
make use of a range of measures and data as part of the multimodal-multisensor
interface. We will discuss the usage of Psychophysiological measures and how they
can improve interaction and especially cooperation witin this type of advanced
interface. However, it is very difficult or even impossible to always interpret the state
or intention of the human with one 100% accuracy. This fact is the biggest challenge
in any human-machine interaction and has direct implication for the subjective
perception of reliability within this interaction. If a system is deemed unreliable,
it will fail to win the trust of the user. The issue of trust is particularly sensitive for
multimodal-multisensor interfaces. These systems are designed to respond with a
degree of autonomy, hence the user must cede a degree of control to the system.
In addition, these systems monitor a range of measures related to behavior and
the psychological status of the person. These data are personal and sensitive, and
interaction with this type of advanced robotic system may trigger a range of societal
and ethical issues around data privacy and data security (see Section 14.5). Hence,
trust is multifaceted during these interactions; the user must trust in the technical
proficiency of the system and be confident that their personal data is secure while
they interact with the interface.

Interfaces are often not stand-alone systems in robotics. They are embedded
multimodal-multisensor interfaces that are deeply integrated into the system’s con-
trol and into the context of interaction, requiring an automated analysis of interac-
tion context. In the future, they will develop self-adaptive properties, which require
new techniques, hardware, and algorithms as discussed in this chapter. In addition,
robotics presents a huge challenge for safety, especially when humans physically
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interact with robots that exert high forces and accelerations together with a high
net weight. Since safety of interaction is the fundamental requirement for human-
robot cooperation, we will begin by discussing new and upcoming approaches from
robotics to assure safety (Section 14.2). This discussion brings us directly to the defi-
nition and relevance of embedded multimodal interfaces in human robot interaction
(Section 14.3), which often belong to the group of multimodal-multisensor inter-
faces. In Section 14.4 we give some application examples for embedded multimodal
interfaces and explain how they can enable or improve human-robot interaction.
Finally, in Section 14.5, future trends in embedded multimodal interfaces and so-
cietal implications are discussed.

For a detailed application scenario for an embedded multimodal interface in
robotics, see the Glossary and Focus Questions.

14.2 Inherently Safe Robots—a Prerequisite for Human-Robot Coop-
eration
To assure safety in human-robot interaction, the most intuitive approach is to
make robots inherently safe. Safety during human-robot cooperation is not only
an additional benefit but often an indispensable criterion to enable sharing of
common spaces or ensuring physical collaboration between fragile humans and
powerful robots. Safety can be implemented on different levels during robot design
to enhance reliability. Inherent safety in human-robot cooperation is achieved
through a three-level process. On the lowest level (level 1), safety is ensured directly
by the design of the electro-mechanical hardware. Therefore, this level is also
referred to as the safety by design level: we can distinguish three parallel paths
on this level (see Figure 14.1). First, the most straightforward path is the process
of mechanical design itself, such as those classic lightweight designs that are
standard in robotics. However, in recent years new smart materials can further
enhance the lightweight design ethos. This process is enhanced by recent advances
in 3D-printing technologies, which allow mechanical design to go in directions that
were unthinkable using classic technologies, like embedding electronic circuitry
and signals into the structure of the components. The integration of channels
with complex 3D structure into the components, e.g., internal cabling, represents
another approach. These developments are paralleled by advances in the design
of robotic actuators. Using this approach compliant elements are embedded into
actuators by serializing, e.g., a spring with a motor (and gear), which complicates
the control of such an actuator on the algorithmic level, but enables built-in safety
as external forces that act on the robot are absorbed by the spring - instead of the
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Glossary

An active BCI is a brain-computer interface that derives its outputs based upon a
voluntary act of explicit control from the human, e.g., generates motor imagery
consistent with movement of right hand to move cursor to the right.

Active state is a psychological state associated with a volitional act or intention generated
by the person, e.g., to open the door.

Application-specific safety level describes the concept to include information into the
robot’s behavioral control that comes from sensors that are not part of the robot
itself. This concept uses the information from sensors that are placed outside of the
robot to monitor the environment, e.g., a workplace in a production line and which
are used in more traditional applications to create strict safety boundaries around the
workplace. In more advanced approaches this information is used differently; here it
helps to derive contextual information that can be used to adapt the robot’s behavior
instead of overwriting it. For example, in a more traditional scenario a violation of the
safety boundary by a human walking by would result in a full stop of the production
line. The more advanced concepts would predict the humans path and instead of
stopping the production line would only reduce the speed of the moving robots. This
concept therefore modifies the behavior of the robot as commanded by the high-level
control module instead of overwriting it.

Awareness can refer to perceiving sensory stimuli in the environment including other
actors, which may be machines or peoples.

Biocybernetic control describes a model of closed-loop control (negative or positive con-
trol) wherein measures are derived from psychophysiological or neurophysiological
sources and converted into control input for an adaptive computer system.

Covert measure is a measure of human behavior or performance that cannot be detected
based upon human perception, e.g., heart rate, and brain activity.

Closed-loop control is a control system that uses the concept of an open-loop system
as its forward path but has one or more feedback loops (hence its name) or paths
between its output and its input.

Embedded brain reading is an approach for user state detection, which is based on
the online analysis of brain activity. Brain activity is used which is spontaneously
evoked during human-machine interaction. The approach is deeply embedded into
the system’s control, the context of interaction, and makes use of multimodal data.
It is applied for implicit interaction, i.e., to non-intentionally adapt or drive explicit
interaction.

Embedded multimodal interface is an interface that makes use of multimodal data from
multimodal input and is able to generate multimodal output. Its main characteristic
is that it is deeply incorporated into the control of the robotic system, and may be
subject to complex adaptation mechanisms such as reflexive adaptation. While its
function might be to gain explicit control of a system, it might be subject to implicit
control to be adapted to the human’s or system’s needs.
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Glossary
Explicit control represents a mode of input control where the user intentionally

generates a specific behavior in order to achieve a specified goal, e.g., move a cursor
upward.

Explicit interaction is a mode of human-computer interaction where the human user is
fully cognizant of the issuing of commands and receives explicit feedback from the
computer.

High-level control refers to the specification and feedback control of target positions
in 3D space that must be reached by the end effector of a multi-joint robot based on
information coming from sensors sampling the robot itself and its environment.

Human-robot cooperation is a subfield of human-robot interaction where a human and
robot or teams of humans and robots work or act together to reach a shared goal. It
often requires direct contact between human and robot or a shared workspace.

Human-robot interaction is any interaction between a human and a robot or teams of
humans and robots including communication, control, feedback, direct contact, or
information exchange.

A hybrid BCI describes a brain-computer interface that combines active BCI with either
passive or reactive BCI or other measures such as eye movements or heart rate.

Imitation learning enables a robotic system to learn from demonstrations of nearly
optimal policies executions given by a teacher (e.g., a human mentor). It is often
used to initialize reinforcement learning to avoid time consuming learning from
scratch.

Implicit interaction is a mode of human-robot interaction where the human user is not
aware of the issuing of (control) commands that may be used for the control of a
technical system or adaptation of an interface to the needs of the technical system
or user. The user may or may not receive explicit feedback from the computer.

Internal state of a robot is computed on the basis of all sensor information directly
or indirectly available to the robot. Directly available information is all information
that comes from the robot’s own sensors, while indirectly available information is all
information that comes from sensors that are external to the robot but that the robot
can access through communication pathways. The set of internal states of a robot is
in most cases a finite set of eventually multi-dimensional vectors. Elements of this
set are computed through means of clustering that range from simple thresholds to
complex statistical methods.

Low-level control refers to the direct feedback control of movements of the motors in
the joints of a multi-joint robot using sensor information coming directly from the
individual motors to reach a specified position in 3D space.
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224 Chapter 14 Embedded Multimodal Interfaces

Glossary (continued)

Neurophysiological measures represents the act of measurement based on physiological
activity from cerebral sites in the human brain. These measures may be based
upon electrical activity (electrocortical, electroencephalographical) or neurovascular
changes (functional magnetic resonance imaging (fMRI), functional near-infrared
spectroscopy (fNIRS)).

Overt measure is a measure of human behavior or performance that can be detected
based upon human perception, e.g., voice commands, gestures. A

passive BCI is a brain-computer interface that derives its outputs from arbitrary brain
activity without the purpose of voluntary control.

Passive state is a spontaneous psychological state that arises during behavior without
an intention on the part of the person, e.g., fatigue, frustration.

Physiological computing refers to a field of research in human-computer interaction
wherein Physiological measures derived from the human user are used as a source of
input control for a computer system or interface.

Physiological measures describes the act of measurement based on processes related
to human physiological functions.

Psychophysiological measures describes the act of measurement and inference wherein
psychological processes and concepts are inferred on the basis of physiological
measurements from the autonomic nervous system. A

reactive BCI is a brain-computer interface that derives its outputs from brain activity
arising in reaction to external stimulation, e.g., a visual stimulus or sound.

Reflexive adaptation refers to a second-order process of adaptation whereby the
computer makes an autonomous response and subsequently monitors the response
of the human user to that response in order to inform future responses.

Safety by design refers to the fact that next-generation technical systems for human-
robot cooperation will include, e.g., a compliant element in their actuators that
absorbs energy. Thereby safety is an integral part of the mechanical construction of
the system.

Temporal cascaded approach is an approach of using multimodal data in a timely
sequenced fashion where the usage and outcome of analysis of one data type
influences the analysis or choice of a second- or higher-order data type.
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Figure 14.1 Safety levels for human-robot cooperation.

human body as in classical soft robots. Combining this approach with a high speed
/ high precision torque control technique on the algorithmic level [Bargsten and
de Gea Fernández 2015] results in a robotic system that can be designed to be
inherently safe (see video referred in Figure 14.2).

Finally, the level of safety by design can be realized by providing the new gen-
eration robots with a sense of touch. Touch or any kind of haptic information for
robots has been largely ignored by robot designers over recent decades because
the requisite technology was not available. Instead, vision was the dominant sen-
sor for robotic perception and the primary means of avoiding contact with the user.
Yet robots that directly interact with humans—e.g., while building or installing the
windshield of an automobile on a shop floor of a car manufacturer—cannot com-
pletely avoid physical contact. Furthermore, physical contact may be unavoidable
if a tool is handed over. This aspect of the interaction is where the third line of
safety by design comes into action—sensor systems that sense humans via multi-
ple modalities, not only by visual sensors but also by other sensors such as touch
and distance. For example, artificial skins can be implemented because material
technology and electronic circuitry have achieved a level of miniaturization and
mechanical flexibility that allows us to design surfaces for the new generation of
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Figure 14.2 Video: The COMPI arm: compliant trajectory tracking via model-based control allows
safe human-robot interaction. https://youtu.be/mDODMNMC5zc.

robots that can feel [Lucarotti et al. 2013]. This is a great tool to enhance the safety
of human-robot interaction, but more importantly, it allows the control programs
and robotic architectures to integrate an increased range of modalities when gen-
erating a perception of the robot’s environment and the interacting human or the
internal state of the robot based upon pure sensor data [Kampmann and Kirchner
2015].

The next level of the hierarchy (level 2: low-level control; see Figure 14.1) can
be related to the robot control regime that plays an important role in human-
robot interaction. The systems within the new generation of robots are growing
in complexity at a rate that is comparable to that of chip complexity growing ac-
cording to Moore’s Law [IntelCooperation 2005]. The low-level control (level 2 of
our hierarchy) is realized in state-of-the-art robots by an approach to control actu-
ators using torque and force rather than position [de Gea Fernández and Kirchner
2015] as the main control signal. The advantage of this control regime with re-
spect to safety is obvious and refers to the fact that a position-controlled robot
simply moves to a predefined position regardless of objects blocking its path, while
a force-controlled robot also moves toward the desired position in 3D space but
only as long as no external forces are encountered—forces like a collision with
an object. The robots under force control regime would immediately (fractions of
a second) reduce the torque on the appropriate joint resulting in an immediate
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stop. As soon as the external forces are gone the robot will continue on its path. In
some more advanced cases the robot would in fact search for an alternative path
or trajectory.

The last level in the hierarchy (level 3), also referred to as high-level control,
is implemented based on sensors, internal of the robot, that are used to describe
the state of the external environment of the robot [Lüth et al. 2015], e.g., cameras,
lasers, or Time-of-Flight cameras. This information provides the basis for planning
of manipulator arm trajectories and robot navigation paths and includes aspects
of safety by avoiding to hit any obstacles (as well as humans) and describes a stan-
dard in robot control. However, these sensors can be combined with sensors that
are external to the robot and that are very specific to the concrete application, e.g.,
a shopfloor production assembly line. There are many examples like: external over-
head cameras [SafetyEye 2014] or laser range finders that are usually implemented
to create safety boundaries around the robot. In traditional robot applications a vi-
olation of these borders just results in an alarm and a shutdown of the production
line. In more advanced applications this information is used to adapt the behavior
of the robot in case the boundaries mentioned above are violated by an object or a
human [de Gea Fernández et al. 2017].

Safety boundaries are not static in modern robotics, but can be adaptive and vary
with the context of the robot’s task and application [Vogel et al. 2013], e.g. the robot
would not go to a full stop but rather slow to a predefined speed in a human-robot
cooperation scenario [de Gea Fernández et al. 2017]. Because the kind of adaptation
of the robot is dependent on the context of the task, applying this adaptive type of
safety level can also be seen as a context or application-specific safety level (see also
Haddadin [2015]).

In summary, there are approaches to enhance safety that are inherent in the
design of a robotic system. These approaches provide the robot with a good percep-
tion of the environment but do not necessarily require a concrete understanding of
the human state or intention, or even recognition of the human apart from other
objects in the environment. However, those internal states of robots that exist to
enhance safety can also be the basis for the creation of more complex forms of
awareness to support the interaction with the user. Hence, advanced interfaces that
make use of multimodal data to enable explicit and implicit interaction with hu-
mans (see Section 14.3) must not only focus on establishing a representation of the
user state but must also encompass a description of the status of the robot. There
are simple mechanisms to present the state of the robot to a human operator, e.g.,
written or colored light feedback [de Gea Fernández et al. 2017], video data feedback
from the point of view of the robot (i.e., its internal cameras), 3D reconstruction of
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the robot in its environment, or force feedback which conveys an impression of the
robot’s tactile perception during its interaction with the environment.

These modes of feedback are able to communicate information about the inter-
nal state of the robot. For certain tasks, such as teleoperation, continuous and clear
feedback from the robot provides the user with the means to achieve easy control
of the robot. In Section 14.4 we give some more examples for different applica-
tions, and in Section 14.3 we focus on the categorization of different approaches
for utilizing human states for human-robot interaction and its relevance for the
development of advanced embedded multimodal interfaces.

14.3 Definition and Relevance of Embedded Multimodal Interfaces
The basic goal of interfaces is to provide the robotic entity with a quantification
of the state of the human user Schuller [2018] for an overview on multimodal user
state recognition) and to provide the human with feedback regarding the state of
a robotic system. The purpose of the interface is to generate bi-directional aware-
ness and to enable bi-directional interaction and/or the support of the interacting
human or robot. Whereas perceiving the environment via multiple modalities is
very natural for more complex biological systems, the sensory capabilities of many
technical systems are often limited to one modality. This modality is usually used in
one way, i.e., to intentionally transfer commands or to actively perceive objects that
are relevant for the system’s action. In the past, this restriction of modality limited
the possibilities for generating a representative level of (bi-directional) awareness.
However, as pointed out in the previous section, this situation is now changing
in the field of robotics. Technical systems can be equipped with different sens-
ing modalities, which can be utilized for different purposes, with respect to both
multimodal input and output [Kirchner et al. 2015]. This technical progress has
been created by the increased availability and ease of usage of sensor technology,
enabling robotic systems to receive a variety of data about their environment and
users [Kampmann and Kirchner 2014]. This innovation requires the development
of advanced multimodal-multisensor interfaces.

Let us give some examples with regard to the possible approaches that improve
the interaction between human and robot using multimodal interaction. A camera
can monitor the spatial position and body posture of the person and can capture any
movement in space. But modern camera technology is also capable of monitoring
information about facial expression and heart rate via a webcam [Monkaresi et al.
2014]. In a similar way, a conventional microphone can record sounds and utter-
ances from the user, but is also capable of capturing those emotional responses that
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are inherently part of vocal expression [Bachorowksi and Owren 2010]. Both can
thus be used to record psychophysiological measures of the human. Psychophysio-
logical techniques grant technology access to signals from the autonomic nervous
system via wearable sensors, which allows the robot to make inferences about the
psychological state of the user. For example, changes in heart rate or galvanic skin
response represent the level of psychological activation experienced by the indi-
vidual; increased levels of frustration or anxiety or excitement are associated with
higher psychological activation. The availability of wearable devices to measure
electrocortical [Nijboer et al. 2015] and neurovascular activity [Piper et al. 2014]
from the cortex would allow a robotic system to draw inferences about high-level
cognitive states experienced by the user, such as intentionality, mental workload
and skill acquisition [Bozinovski and Bozinovski 2015, Canning and Scheutz 2013,
Kirchner et al. 2016a].

When developing a taxonomy for multimodal interfaces, it is convenient to
classify techniques to monitor the status of the user into techniques that use
overt measures and covert measures. The former refers to methods that record
and infer on the basis of what could be seen or heard by a hypothetical (human)
observer. These overt methods are designed to record movements, changes in facial
expression, and vocal utterances, or the same approach can be used to capture
behavioral indices such as performance or task activity. Covert methods represent
those measures from the user that are imperceptible to the hypothetical observer,
such as psychophysiological and neurophysiological measures. Certain data types,
such as electrocortical activity, are invisible to the human eye, others may be
perceived visually (e.g., pupil dilation) but cannot be accurately assessed in real-
time by a human observer. Furthermore, a robotic system can use overt and covert
measures to assess two broad categories of user state: (a) active states that represent
intentionality, preparation for action and movement; and (b) passive states, such as
emotions, mental workload, fatigue, and motivation, which arise spontaneously as
a consequence of human-robot interaction. Table 14.1 provides two examples that
capture the distinctions between overt/covert measures and active/passive state
categories.

On the other hand, when classifying multimodal interfaces from a usage per-
spective, it becomes obvious that there is a substantial overlap between explicit or
implicit interaction (see Figure 14.3). For example, when developing a speech inter-
face for explicit control, both covert and overt measures can be used. The natural
choice is to monitor the overt auditory output, but covert muscle activity, i.e., the
human electromyogram (EMG), recorded by electrode arrays, can be used for such
an interface [Wand et al. 2013]. The same is true for implicit control. Overt changes
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Table 14.1 Examples of active and passive states monitored using overt and covert measures.

Active Passive

OVERT user moves right hand facial expression indicative
of surprise

COVERT increased activity in
somatosensory cortex
during preparation to
move hand

elevation of heart rate and
skin conductance level

in facial expression can be used to adapt an interface with respect to the emotional
state of a user. Covert changes in skin conductance can be used to capture emo-
tional activation. Thus, covert and overt measures are applicable for explicit and
implicit control purposes. The same principle applies to the detection of those ac-
tive states exhibited by the user. An active state can of course be used for explicit
control. However, an active state, such as the preparation of a movement, can also
be used for implicit control, i.e., to adapt a robotic system for likely upcoming move-
ments to reduce interaction forces (see Sections 14.4 and 14.6). These examples
emphasize that it is important to clearly state whether a taxonomy of interfaces is
based on the techniques used to monitor the status of the user or the functional-
ity of the multimodal interface. It is important that there is an awareness of both
possibilities to avoid misunderstandings regarding the purpose of the interface.

If we consider how these techniques can be used to monitor the status of the
user, a question arises concerning how various methodologies can be combined to
create a dynamic and complex representation of the user state in order to enable
implicit or explicit control. Brain-computer interfaces (BCI) [Wolpaw et al. 2002,
Brunner et al. 2014] that often make use of the electroencephalogram (EEG) provide
an interesting case for consideration. BCI technology is generally understood in its
active form wherein neurophysiological correlates of voluntary control are used as
an explicit control input to a robotic system (see active BCI in Figure 14.4). For exam-
ple, BCI systems can use signals derived from motor imagery to intentionally direct
the movements of a humanoid robot [Yongwook et al. 2012] or exoskeleton [Barsotti
et al. 2015]. However, there are at least two other types of BCI that can be applied
to robotic systems [Zander and Kothe 2011]. Reactive BCI describes a system where
changes in brain activity in response to an external stimulus drive the output of the
system. This type of BCI is activated by the neurophysiological response to a sen-
sory event, e.g., an evoked-cortical potential (ERP) or steady-state visually evoked
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Figure 14.3 Type of control and the relation to human states and human measures.

potential (SSVEP), rather than the intention to act [Zander et al. 2014]. A reactive
non-BCI interface which makes use of overt measures is, for example, a reactive
eye-tracking interface (see Figure 14.4), which activates a specific action whenever
the user is looking at a specific object, part of a robot, or area on a screen. The
passive category of BCI (see passive BCI in Figure 14.4) describes a system where
outputs are derived from changes in brain activity related to spontaneous changes
in psychological states, such as: mental workload, frustration, anxiety, fatigue, etc.
This ‘passive’ type of BCI is identical to the concept of biocybernetic control from
Physiological computing [Fairclough 2009]. It is possible to create hybrid forms of
BCI where active, reactive, and passive forms are used in conjunction to enhance
the speed and fidelity of control [Muller-Putz et al. 2015]. For example, passive states
of fatigue and frustration may affect the ability of the user to produce motor im-
agery, which translates into impaired control of an active BCI [Myrden and Chau
2015]. Cotrina et al. [2014] presented a hybrid BCI wherein passive state measures
of electroencephalographic frontal asymmetry, a measure that is associated with
emotion and motivational disposition, were used to refine the reactive response
from an active BCI based upon SSVEP. Hence, active and passive state measures of
the user are situated within a data space in order to improve fidelity of active con-
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Figure 14.4 Examples of interfaces and their relation to human states and human measures.

trol over a robotic system. This data space can be further extended by adding overt
measures. For example, Kim et al. [2014] designed a hybrid BCI that combined
covert electroencephalographic data with overt eye movement data to navigate a
quadcopter in 3D space. Hybrid BCIs can therefore be multimodal interfaces and
can be used for explicit control of a technical system. They may also have integrated
implicit control designed to optimize the multimodal interfaces and improve the
degree of user control over the technical system. Also, if we consider the earlier
example of the adaptation of an exoskeleton’s control for teleoperation, this can
be seen as a hybrid BCI: The user’s overt arm movements while covert electroen-
cephalographic data is used to non-intentionally and implicitly adapt and improve
the explicit interaction between the human and the exoskeleton.

When considering the use of embedded multimodal interfaces, the meaning
of the word ”embedded” should be explained. The measurement of psychological
concepts associated with the user state is generally enhanced by consideration of
task context, e.g., the type of task being performed, task criticality, difficulty, du-
ration, etc. The monitoring capability of multimodal interfaces encompasses task
models and related variables in order to monitor the psychological state of the user
within a specific task context. Thus, interfaces that make use of psychological con-
cepts must be embedded into the task context. Therefore, the automated analysis
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Figure 14.5 Concept for embedded brain reading for the support of human-machine interaction
based on the context of interaction and inferred intentions. Figure courtesy of Kirchner
et al. [2015].

of the interaction context is of tremendous relevance for embedded multimodal in-
terfaces [Kirchner and Drechsler 2013]. On the other hand, interfaces that improve
human-robot interaction must be embedded into the control of the robotic system
in order to achieve and sustain safe operation [Kirchner and Drechsler 2013]. This
does not necessarily mean that all data processing must be performed “on board”
or that no external sources of information or processing power can be used (such
as cloud-based solutions). It does imply that all processing that can only be done
at the place of generation should be embedded into the system.

Figure 14.5 provides an example of embedded brain reading, a sub-type of
embedded multimodal interfaces. Embedded brain reading includes the analysis
of brain activity such as the EEG recorded from the surface of the head. To enable
the interpretation of brain activity, embedding the analysis into the context of
interaction and thus task state, human state, or spatial state is highly relevant.
Without this processing module, it would nearly be impossible to interpret the
user’s brain activity to infer his or her intention. While context is a far-reaching
term, it is used here very general. Context refers to the state of interaction in the
broader sense (e.g., space, task, human state, environmental state, system state,
etc.). The required interfaces are often not stand-alone systems, as a mouse or
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a keyboard are, but they are part of the robotic system that make use of input
from internal and external sensor systems as well as sensors that are worn by the
interacting human [Hung et al. 2015] designed to capture physiological measures
from the body and neurophysiological measures from the brain. For example,
today, exoskeletons are commonly equipped with gravity compensation [Lewis et al.
2003]. This is an algorithm which allows control of the exoskeleton so that the
user does not feel the weight of the exoskeleton. This feature is most relevant for
the control of distal body parts, i.e., the human arm, since the system’s weight
would otherwise be too high to allow extended usage, such as during teleoperation
[Mallwitz et al. 2015] or for exoskeleton-assisted rehabilitation [Kirchner et al.
2013a, Kirchner et al. 2016c]. Forces can be redirected to, e.g., the hip or in case of
a whole-body exoskeleton also to the ground on which the user is standing on. This
control does not require knowledge about the intention of the user. However, an
additional approach can be applied that enables the exoskeleton to also carry the
weight of the arm. For example, gears can be locked to keep the arm in a certain
position [Folgheraiter et al. 2012]. To release the locked position the system must
know whether the user wants to move again. This knowledge can be gained from the
analysis of the user’s brain activity. However, to infer a movement intention is only
relevant while the exoskeleton is keeping the arm fixed in a certain position. Thus,
the exoskeleton “knows” from its own control state when to consider brain activity
analysis to detect a change in the state of the human (see further explanation in
Sections 14.4 and 14.6).

When using complex data such as covert brain activity to infer intentions it must
be considered that the outcome of analysis can be incorrect. Therefore, embedded
brain reading only considers approaches that are fault tolerant, i.e., will not lead
to a malfunction of the whole embedded multimodal interface (see Folgheraiter
et al. [2012], Kirchner et al. [2014]. Furthermore, methods are applied that allow
formalization and evaluation of the implementations not only to estimate and
measure quantitative and qualitative improvement [Folgheraiter et al. 2012] but
to also verify correctness [Kirchner and Drechsler 2013].

In general, embedded brain reading describes the use of active and passive
human states for explicit or implicit interaction, i.e., to non-intentionally adapt
a robot or its interface with respect to an active or passive state to usually improve
explicit control. The same approach can also be applied for explicit control pur-
poses only. For example, in rehabilitation robotics, embedded brain reading can
be applied to ”drive” an exoskeleton to support or execute the intended move-
ments of the patient. Spontaneously generated brain activity, which depends on
the recording method (extracranial or intracranial), may not always be sufficient
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to control the exoskeleton in 3D. Other data such as muscle activity or eye move-
ment data may need to be combined for an effective explicit control. Moreover,
in the given example the exoskeleton’s control can further be adapted to improve
interaction. For example, the strength of support by the exoskeleton needed by
the patient can be adapted based on an ”assist-as-needed” approach [Kirchner
et al. 2016b]. Such an adaptation can be achieved by directly measuring the force
the patient can still exert or the strength of electromyographic signals of the sup-
ported limb or body part which can be recorded during interaction. The main goal
is to combine multimodal data, such that the intended interaction or behavior can
be supported best [Folgheraiter et al. 2012, Kirchner et al. 2013a, Kirchner et al.
2013b, Kirchner et al. 2014]. However, embedded brain reading can also be ap-
plied to infer the user’s passive neurophysiological state, such as their current
workload or task load (see also [Volume 2, Chapter 10), to adapt an interface for
explicit robot control in such a way that the user is neither stressed nor bored
[Kirchner et al. 2010, Kirchner et al. 2013b, Wöhrle and Kirchner 2014, Kirchner
et al. 2016a] which would have negative impact on both the quality and quantity of
interaction.

For embedded brain reading only brain activity is used which is spontaneously
evoked (see Figure 14.6). Further, the approach is designed to interpret brain ac-
tivity dynamically during interaction. Relevant data may also include spontaneous
changes in brain activity in response to an external stimulus as used in reactive
BCIs. To use intentionally evoked brain signals as it is often the case for many ac-
tive BCIs, where, for example, the imagination of right- and left-hand movements
can be used to spell a word [Blankertz et al. 2006], requires the attention of the user.
Such attentional effort would require too many resources, which is one reason why
classical BCIs are often considered to be inadequate for robot control in complex
applications, such as, for example, in space applications. Figures 14.4 and 14.6
illustrate the interrelationship between different interfaces and embedded brain
reading.

In summary, the basic goal of embedded multimodal interfaces is to provide
the robotic entity with a quantification of the user state that enables easy explicit
control of the robot and allows for implicit control of the robot or its interface.
Such interfaces also enable the system to make use of the cognitive capabilities
of the human or to enable the robot to learn from the human [Kirchner et al.
2015] (see Section 14.4). The availability of overt and covert measures to capture
active and passive states (Table 14.1) allows the multimodal system to construct
a dynamic representation of the user that is both sophisticated and scientifically
valid as discussed in this chapter.
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Figure 14.6 Usage of spontaneously and intentionally evoked brain activity.

14.4 Embedded Multimodal Interfaces in Robotic Applications
This section will explain the advantages of embedded multimodal interfaces and
how they would function in the context of robotic applications. First, we give exam-
ples of multimodal-multisensor interfaces from two perspectives, i.e., robotics and
physiological computing, and explain where and what the purposes of such inter-
faces usually are in both fields. Later, we give examples that focus on specific appli-
cations in robotics. We explain how both approaches, driven by the robotic control
view and driven from the perspective of human state analysis, can be combined
in a temporally cascaded fashion to: (1) make use of overt and covert measures to
ease explicit control of robotics systems or to enable implicit control that adapts an
interface or robot to improve human-robot cooperation within the same applica-
tion. Further, we provide examples of how embedded multimodal interfaces will (2)
improve bi-lateral awareness using covert human measures and multimodal data
of the robot. Moreover, we will (3) explain how the usage of multimodal overt and
covert measures allows us to increase the level of awareness.
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Figure 14.7 Video: iMRK: an embedded multimodal interface for human-robot interaction.
https://www.youtube.com/watch?v=VoU3NbTyFtU.

One highly important reason for applying embedded multimodal interfaces is
to enhance safety and reliability. For example, a human must be detected when he
or she has penetrated the work space of an industrial robot. Different sensors on
the robot or in the environment, such as lasers, 3D depth-image camera, or motion
sensors (that are attached to the human or human’s clothes) can be combined to
detect the location of the person and predict their path [de Gea Fernández et al.
2017]. Furthermore, the weaknesses of one sensor, i.e., a restricted range, can be
compensated by another to improve the recognition of a human entering the work
space. A combination of sensors enables accurate predictions to interprete the
situation and the user’s intention. The same sensors can also be used for explicit
interaction, e.g., to intentionally command the robot to stop moving or to hand over
a workpiece (see the video referred to in Figure 14.7). In most cases, approaches in
robotic control are designed to enhance safety and reliability, and make use of overt
measures to analyze the state of the user.

There are advantages to measure a psychological concept using two or more
different indices from the perspective of physiological computing. Certain psycho-
logical states may be described as many-to-one [Hettinger et al. 2003], i.e., a number
of measures are required in order to represent a single psychological concept. This
approach also represents a form of convergent validity wherein multiple measures
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are collected simultaneously in order to derive a composite score based on the
degree of correlation or coherence between different measures. Therefore, the ca-
pacity of multimodal interfaces to encompass different measures allows the robotic
system to monitor the user in a way that is scientifically valid. For example, Bekele
and Sarker [Cacioppo et al. 2000] constructed an adaptive mode of human-robot
interaction where task difficulty was dynamically adjusted in order to keep the user
engaged with the task. This system combined physiological measures, i.e., covert
measures, from the cardiovascular system, electromyography, and skin conduc-
tance to capture the level of task engagement exhibited by the user. The same group
applied a similar approach to measuring emotional responses to create robotic in-
terventions for children on the autistic spectrum [Liu et al. 2008] (see also Volume
3, Chapter 13.).

Making use of both covert and overt measures goes beyond classical control ap-
proaches in robotics. With the help of the application shown in the video referred
to in Figure 14.8 we explain how such an approach, based on overt and covert mea-
sures, enables improvement of human-robot interaction, i.e., explicit control by
non-intentionally adapting the robotic system with respect to the active human
state and by applying implicit control within the same application. In this appli-
cation, a user is teleoperating a robotic system by means of an active exoskeleton
[Folgheraiter et al. 2012]. An active exoskeleton is a robotic system that is worn
by the human and thus is in direct physical contact with the human. It is both an
interface as well as a complex robotic actuator. To enhance transparency for the
wearer the interaction between user and exoskeleton in this example is supported
by embedded brain reading [Kirchner and Drechsler 2013, Kirchner et al. 2013b],
an embedded multimodal interface that is making use of covert electroencephalo-
graphic data recorded from the scalp. Based on the analysis of the user’s EEG and
his or her behavior, transitions between (tele-)operation modes (see Figure 14.9)
are supported (see Section 14.6 for details).

But why is covert brain signal data not directly used for explicit control, i.e.,
explicit change of operation mode? Even when using advanced signal processing
and machine learning methods to infer movement intention from brain signals,
state detection is inaccurate due to the complexity of the EEG signal and due to
the fact that similar brain signals are generated when a human is only imaging a
movement or does indeed prepare the movement to be executed. Therefore, the
outcome of EEG analysis is in the given example not used to intentionally control
the change between the modes. It is instead used to enhance sensitivity of the
sensors that detect the movement onset, with the result that interaction forces are
reduced and the operator can clearly feel the enhancement in transparency of the
exoskeleton (see Section 14.6 for more details on approach and evaluation).
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Figure 14.8 Video: VI-Bot: an embedded multimodal interface for robot control via teleoperation
with an exoskeleton and a virtual environment. https://www.youtube.com/watch?v=
3RhcgvRz_O8.

Moreover, the implemented embedded multimodal interface does not only en-
hance transparency but is highly reliable and safe for use. The user is always able to
unlock the exoskeleton by pressing against the sensors even in a case where move-
ment planning was missed. Furthermore, adaptation of the exoskeleton is changed
every 50 ms which made it unlikely that a false positive will lead to an unwanted
lock-out. During all our online tests with real online movement prediction, the user
never experienced a false lock-out using this system. By combining two modalities,
i.e., covert brain data and overt movement data, in a strict temporal order the inter-
face represents an example of a temporally cascaded multimodal interfaces, which
will be explained later.

Besides enhancing safety, reliability, and bilateral interaction, an embedded
multimodal interfaces enhance bilateral awareness. Different modalities can be
used to provide the user with a greater insight into the state of a robotic system,
i.e., to improve awareness of the robot’s state. For example, in the scenario which
was developed for a teleoperation application (shown in the video referred to in
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Figure 14.9 Exoskeleton states: teleoperation mode, transient mode, full user support mode. Lock-
out mechanism is activated by overt measures of an active human state (arm movements
detected by the exoskeleton). The activation of this mechanism is adapted by covert
measures of an inferred active state change (from no movement to movement) by
analysis of the human’s EEG, i.e., detection of activity that correlates with movement
preparation. Figure courtesy of [Folgheraiter et al. 2012].

Figure 14.8) the user is not only supported by the exoskeleton for explicit control.
He or she is further virtually immersed into the situation of the robot by using
3D simulation and a head-mounted display while being able to make use of video
material. Moreover, the user receives tactile force feedback from the robotic system
via the exoskeleton. The combination of virtual immersion, mapping between the
human and the robot’s movement, and force feedback allows the user to become
immersed into the situation and virtually feel what the robot feels. By means of the
embedded multimodal interface, the user becomes strongly aware of the robot’s
states and changes in state, which eases explicit control and reduces interaction
errors, such as failures in path following (see Figure 14.10).

Furthermore, the user is monitored whether he or she is indeed aware of the
state of the exoskeleton and the display of important messages that are visually
presented to the user. This facility is achieved by adapting the embedded multi-
modal interfaces based on the predictions that are made about the success of the
user in recognizing these relevant messages. The adaptation of the display of mes-
sages is again based on online brain-signal analysis. Signals in the EEG are detected
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Figure 14.10 Comparison of accuracy in path following between joystick and exoskeleton control
in the VI-Bot scenario. (A) Example of two subjects steering the robotic arm through a
3D maze. Green line: path corrected in the virtual environment. Red line: theoretical
path without correction. (B) Behavioral analysis of nine subjects. Accumulated position
errors (left), percentage where path contacted the wall of the maze (middle), and
measured time for a complete sweep through the labyrinth (right). Figure courtesy of
Straube et al. [2011].
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Figure 14.11 Video: VI-Bot - virtual immersion for holistic feedback control of semi-autonomous
robots. Shown is the implicit control approach implemented to adapt the embedded
multimodal interface to enhance the awareness of the user for relevant information on
the robotic system based on EEG signals. https://youtu.be/8WEVZz6bpJU.

that allow the system to infer whether the user recognized the presented messages.
If those signals are detected, information is not repeated for a longer time, since
it is expected that the user will respond to the message. In case the relevant brain
activity cannot be detected, the message is repeated instantly and at the same time
highlighted to make the user more aware of the relevant information (see video
referred to in Figure 14.11). The chosen approach is an implicit control of the in-
terface [Kirchner and Drechsler 2013, Wöhrle and Kirchner 2014].

Besides enhancing ease of interaction and reducing errors, many robotic appli-
cations, especially those requiring the simultaneous control of a team of robots,
have to handle the limited cognitive resources of a human that lead to cognitive
overload. Embedded multimodal interfaces represent a good solution to handle
this scenario by adapting the interaction with respect to the cognitive load of the
human, as demonstrated in the field of physiological computing (see Zhou et al.
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Figure 14.12 Immersive virtual 3D multi-robot control using a CAVE. Figure courtesy of [Kirchner
and Drechsler 2013].

[2018] for indicators of cognitive load). To achieve this, the awareness by the inter-
face of the human’s state (vs. the awareness by the human of the robot’s state as
in the example given before) is enhanced by means of the embedded multimodal
interfaces, as will be explained next.

In the video referred to in Figure 14.13 an application of multi-robot control
is displayed. The control interface is a very complex one. It is based on a virtual
environment using the software Machina Arte Robotum Simulans (MARS)
[Rommerman et al. 2009, MARS 2015], which can be run as a 3D environment
in, e.g., a CAVE (see Figure 14.12), as a 2D environment on a standard personal
computer or on a multi-screen system (see the video referred to in Figure 14.13).
Information about the robot is mainly presented in visual 2D or 3D mode. However,
when using an exoskeleton as input device, force feedback can be applied to the
operator. Thus, the exoskeleton is not only implemented to control the display but
also to interface with a robotic arm, similar to the VI-Bot interface (see the video
referred to in Figure 14.8). Moreover, the interface is implemented so the user can
interact by using different alternative modes or different modes in combination.
For example, eye tracking is implemented to enable the operator to select inter-
action icons instead of using a 3D mouse, a wand, or an exoskeleton to allow the
operator to use the referenced input device and modality; see Figure 14.14. In the
future, gestures will additionally be implemented to navigate through the scenario,
to change the virtual camera position, or to select interaction modes in order to
send control commands.
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Figure 14.13 Video: Virtual multi-robot control in 2D using a multi-PC system supported by
embedded brain reading. https://www.youtube.com/watch?v=zeFp_JBSBxA

While explicit control is optimized to ease the interaction in the VI-Bot scenario,
the cognitive resources of the operator may be insufficient when the task load is too
high. Therefore, implicit control of the interface is enabled by an embedded brain
reading approach that adapts the interface with respect to the individual task-load
of the user [Kirchner et al. 2016a]. This aspect is highly relevant since ease of control
is one component that improves interaction quality; the skills and mental workload
of the operator are other aspects that have to be considered in the context of limited
resource theories (see Volume 1 Chapter 1). The embedded multimodal interfaces
can be adjusted online with respect to the current task-load and general training
status of the operator, resulting in different task frequencies, i.e., interstimulus
intervals (ISI) for individual operators.

In Figure 14.15 it is shown that the adaptation in run 5 and 6 supported by
embedded brain reading results in individual differences in total runtime, i.e., the
time needed to fulfill 30 given tasks. In runs 1 and 2 and runs 3 and 4 the ISI was fixed
to a long (run 1 and 2: ISI-25 condition) or shorter time (run 3 or 4: ISI-15 condition).
Under both conditions the total runtime was very similar between participants.
While the performance in runs 1–4 without adaptation seems very similar over the
group, some participants reported that they were bored under ISI-25 or even IS-15
condition. Subjects 2 and 6 could achieve much shorter runtimes when supported
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Figure 14.14 Multimodal explicit control: operator can chose to interact with interaction icons of the
interface and the robotic systems via the exoskeleton or the eye tracker or a combination
of both.

by embedded brain reading. To reduce runtime from the beginning would not have
been a good solution, since some individuals would have become stressed, like
participant 5. Thus, implicit control is required to adapt an interface to the overall
needs (depending on her or his skill level) and the current needs (depending on task
load) of the human operator while avoiding excessive cognitive load or boredom.

The usage of multimodal and multisensor data in embedded multimodal in-
terfaces have many positive effects on human-robot interaction. Whereas we have
already discussed that a temporal cascaded approach allows a smoother interac-
tion, the combination of multimodal data can further increase the dimension of
insight possible into the intention of the user more than a single modality could.
Some examples should be given next that accord with the Gestalt theory of per-
ception (see Volume 1, Chpter 1), that the whole can be more than the sum of the
individual parts. An example is the combination of different covert physiological
measures and overt measures from the human, like eye movement data, EEG, and
EMG data for the control of a robotic rehabilitation system [Kirchner et al. 2013a]
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Figure 14.15 The means of runtime for a fixed ISI of 25 S (ISI-25), a fixed ISI of 15 S (ISI-15), and
ISIs adapted by embedded brain reading (ISI-adapt) are depicted. Figure courtesy of
Kirchner et al. [2016a].

(for more information on multimodal behavioral signal processing systems see Vol-
ume 2, Chapter 10 and Volume 2, Chapter 12).

Using each individual signal not only reduces the reliability but would further
generate less ”meaning”, e.g., to look at an object does not tell us whether interac-
tion is wanted. EMG activity alone does not tell us whether interaction is desired to
begin, e.g., to move the arm to the object, or whether the subject was just bumped by
someone and used the arm to balance or has experienced a spasm. In addition, EEG
cannot clearly tell us whether the subject is planning to actually execute the interac-
tion or is only imagining the interaction, since internal visualization and planning
of motor execution result in very similar brain patterns. If these individual signals
are combined, the outcome becomes more reliable, especially if the expected tem-
poral order of signals is consistent, i.e., a temporal cascaded approach is followed.
Moreover, only if at the same time or afterward brain activity related to movement
planning is detected in the EEG, the user is probably not only looking at the object
but at least is thinking about starting an interaction. Finally, by adding the EMG
signal, it becomes quite clear that at the moment when the subject looks at the
object, plans a movement and tries to activate the muscles, that he or she indeed
wants to start a movement. Therefore, the combination of all three signals tells us
more than the individual signals alone and results in very reliable interpretations
of the human’s intention.
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Figure 14.16 Video: Demonstration of biosignal usage to control a robotic system: the exoskeleton
is moving the right or left arm in case that the bottle is in focus and biosignal
analysis detects the intention of the operator to move from EEG and EMG signals.
https://www.youtube.com/watch?v=BRpbZFOXdRk

Deciphering the intention of the human user is highly relevant for rehabilitation
robotics. In the video referred to in Figure 14.16 it is shown how the combination
of EEG, EMG, and eye tracking data can be used to control an assistive device,
i.e., an exoskeleton. While the most straightforward approach is to combine all
signals in an “and” fashion, i.e., to only drive the exoskeleton in case that all three
signals are detected, EEG and EMG data can, to some degree, substitute for each
other (see decision-level fusion in Volume 2 Chapter 12, Section 12.8). Therefore
an “or” combination is also possible. Depending on the application or state of
rehabilitation it might be more useful to use the “and” or the “or” combination,
i.e., different temporal cascaded approaches.

For example, during early rehabilitation, the patient should strongly be moti-
vated to train her or his impaired limb, however muscle and brain signals might
be weak. It might be better to use the “or” combination here, i.e., to drive the ex-
oskeleton in case there is either the expected EEG or EMG signal detected. Later
in rehabilitation the patient might be more annoyed by unwanted movements or
the patient should be more strongly involved in the interaction. Here, the “and”
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combination might be more suitable. The kind of combination of different sig-
nals has therefore an impact on the behavior of the interface and on the reliability
of intention recognition (see Figure 14.17 Kirchner et al. [2014]). Hence, the tem-
porally cascaded approach that is followed does strongly determine the quality of
awareness of the human’s state that a robotic system can derive.

In summary, embedded multimodal interfaces enable bilateral interaction.
They make use of overt and covert measures to detect active and passive human
states to make the robotic system aware of the state of the human. Furthermore,
they use multimodal- multisensor data to make the human aware of the robot’s
state. This bilateral awareness strongly improves interaction, reducing cognitive
load, interaction forces, and interaction errors. Based on a carefully chosen tem-
porally cascaded approach, they allow that multimodal data can be combined, such
that the whole can be more than the sum of the individual parts (see Panagakis et al.
[2018]). The later requires a deep integration or embedding of the multimodal in-
terface into the system control.

14.5 Future Trends: Self-Adapting Embedded Multimodal Interfaces
and Societal Implications
In this chapter, we first introduce three main trends in embedded multimodal
interfaces which will enable future applications in human-robot interaction.

1. The functionality of embedded multimodal interfaces must be highly adapt-
able in an online fashion. They should adapt to changes in the context of
interaction, changes in the state of the robot or the human, or changes in
availability of certain sensors or sensor data.

2. To enable this level of adaptability future interfaces must be deeply embed-
ded into the control of a robot in order to develop specific hardware and
software solutions.

3. There is a trend to embed the interface into applications and systems, in
order to make them smaller and more energy-efficient and to allow both
long-term usage and a high degree of flexibility.

While many developments are new research territory for human-robot interac-
tion, we will show with examples that research from other areas can be used and
solutions can be adapted. Using these approaches, a more direct and efficient in-
teraction between human and robot will be enabled. However, these changes and
future developments will have societal implications.
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Figure 14.17 Effect of different combinations of EEG and EMG data on true and false positive rates
during classification. (A) Prediction results in TP- and FP-rate for EEG (blue) and EMG
(green) analysis. (B) Prediction results in TP- and FP-rate for EEG “AND” EMG (red)
and EMG (green) analysis. (C) Prediction results in TP- and FP-rate for EEG “OR” EMG
(black) and EMG (green) analysis. Figure adapted from Kirchner et al. [2014].

14.5.1 Inherent Self-Adaptation and Deep Integration
Multimodal-multisensor interfaces that are embedded into application proce-
dures, robotic systems, application environments, into the users’ clothes, or that
are implemented as wearable devices will be perceived as normal in the future. Con-
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sidering continuously changing interaction environments and interaction tasks, it
is obvious that multimodal-multisensor interfaces must be able to adapt to changes
by themselves in the future. Today’s robotic systems and their interfaces are al-
ready of such complexity that any hard-coded change will require a high number
of specialists to perform the required software and hardware adaptations. For the
common user, it will become impossible to handle this kind of technical detail.
However, the need for adaptation not only for robotic systems but also for their
interfaces will increase.

14.5.1.1 Closed-Loop Design for Self-Adaptation to the State of the Human
An embedded multimodal interface allows the robotic system to adapt to the move-
ment intentions and states of human operators. This system works via closed-loop
control logic whereby multimodal signals from the user are monitored, analyzed,
classified and converted into appropriate outputs or adaptive responses from the
robot. This closed-loop design requires a set of rules whereby a target state triggers
an adaptive response. However, this may not be an exclusive relationship and a
range of potential responses are available once a specific state has been identified.
For example, if the robotic system detects high mental workload during a process
control task, it could slow the pace of operations (see Section 14.4) or suggest a
break. The rules that translate multimodal detection into an adaptive response at
the interface draw from a repertoire of possibilities, all of which are equally likely
to create the desired effect on user behavior. This scenario poses the question: How
does the multimodal interface select the most appropriate response from an exist-
ing repertoire of possible responses?

A closed-loop system for either positive or negative control is often characterized
with reference to a single discrete cycle of monitoring and adaptation. In this case,
a single cycle may describe how the detection of high mental workload is translated
into a reduction of task pacing in order to aid the human operator. This is a first-
order process of adaptation wherein the loop detects and responds to a target state
in the short term. Once this adaptation is activated, it is possible for the multimodal
system to detect whether its own adaptive response had the desired effect on the
human operator. If slowing the pace of the task has reduced the mental workload of
the operator (assessed via neurophysiological monitoring), this adaptive response
is deemed to be successful. The other possibility is that the adaptive response
failed to reduce the mental workload of the human operator, in which case the
multimodal interface must enter a second cycle of monitoring and adaptation in
order to select another response, e.g., suggest a break. This latter process is called
second-order adaptation or reflexive adaptation [Serbedzija and Fairclough 2012]
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because an adaptive response is based upon the closed-loop monitoring of the
consequences of its own intervention on the state of the user.

A second-order process of reflexive adaptation can facilitate machine learning
over a sustained period of interaction with an individual operator. In order for
the multimodal system to adjust to the individual, it must accumulate a database
that identifies those adaptive responses found to be effective for a particular user.
Second-order adaptation describes a generative process where the repertoire of
adaptive responses is ‘pruned’ or customized on the basis of repeated interaction
with a specific user. This evolving cycle has been described as a process of mu-
tual adaptation with three main phases [Fairclough 2015]. The initial encounter
between the multimodal system and user is characterized by improvisation. The
system responds to the user in a generic fashion using default adaptations with
no prior knowledge of individual preferences. Adaptation may be perceived by the
user to be less than optimal during this early phase. As the user spends more time
interacting with the system, second-order adaptation improves the acceptability of
responses from the perspective of the user. This second phase of reciprocal cou-
pling is characterized by tailoring the adaptive repertoire of the robotic system to
the individual. If we look further ahead in time, in terms of months and years,
it is reasonable to expect that any stable model of preferences acquired during
reciprocal coupling will have limited longevity—as the user acquires greater skill
or habituates to popular adaptive responses or experiences cognitive changes due
to aging. The third phase of co-evolution describes a process of updating a stable
model of user preferences over a longer period of time.

14.5.1.2 Self-Adaptation to the Context of Interaction
Besides adapting an interface to the user, adapting robotic systems and their inter-
faces to the context of interaction will become an important direction for the future
of robotics. To allow this development, the context of interaction must be recogniz-
able from the perspective of a robotic entity. In an industrial context where opera-
tional sequences are prescribed and must accurately be fulfilled, it seems that the
recognition of the context of interaction should be relatively straightforward and
may even be predefined. However, flexible support must consider deviations from
the procedure and personal preferences of the human user. For example, personal
preferences can be handled by systems that learn during interaction from phys-
iological data (such as error-related potentials in the human EEG) what the user
means for example by certain individually chosen gestures, i.e., it learns the map-
ping between gesture and action [Kim et al. 2017]. In non-predefined interaction
scenarios, the recognition of context becomes even more relevant. To recognize the
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context of interaction, different data sources can be considered if available data
about procedures and preferences of the human can be used. For example, knowl-
edge about preferences of patients might even be more relevant than the analysis
of physiological measures to optimally support them by a robotic system [Novak
et al. 2013]. However, physiological measures as explained in the example in the
video referred to in Figure 14.16 can also be used to detect the context of inter-
action. Moreover, the supporting system itself is also able to detect the context of
interaction, as explained in the example presented in the video referred to in Fig-
ure 14.8. On the other hand, interaction usually requires physical activity of the
human. Thus, complex movement data is a highly relevant source of information
to deduce the context of interaction. While today human movement behavior is
often analyzed to develop approaches that enable robotic systems to learn to im-
itate human behavior [Metzen et al. 2013, Mülling et al. 2013, Pastor et al. 2009],
movement data can also be used to recognize the context of interaction [Senger
and Kirchner 2016], especially body posture can be very informative about the be-
havioral context of interaction. In a simple case, the direction of movement with
respect to a robotic system can tell the robot whether a human wants to interact or
not [de Gea Fernández et al. 2017].

14.5.1.3 Software Frameworks and Hardware Solutions for Deep System Integration
To use the power of embedded approaches, future multimodal interfaces must
potentially make use of any available data, like sensor data of the robotic system or
from environmental supervision, data about procedures, and even (physiological)
data about the interacting human. This brings along some challenges in data
storage, processing, selection, and handling. Thus, new software and hardware
solutions, such as the open source software framework pySPACE [Krell et al. 2013]
or the specialized software framework reSPACE [Wöhrle and Kirchner 2015] which
can run on embedded systems, must be developed that allow for flexible usage
of multimodal data. Optimization during runtime will require reconfiguration of
hardware at runtime to allow optimal, i.e., time, resource, and energy-efficient
interpretation of potentially changing data sets. These approaches have to consider
which data is most relevant to interpret the current situation, to infer the intention
of a human in a certain situation, or to estimate the best possible support of a
human by a robotic system at hand.

Supervised and unsupervised learning methods must be applied on top of so-
phisticated signal processing that reduces data and filters relevant information. All
this must be achieved on embedded hardware that allows fast but also resource-
saving analysis. Different approaches must be combined. For example, the usage
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of processing units based on Field Programmable Gate Array (FPGA) was shown
to support powerful and fast processing with low energy consumption on small-
sized, embeddable devices [Wöhrle et al. 2014]. However, these approaches are still
limited. Thus, a combination of small embedded devices and powerful central pro-
cessing units must be considered and promoted. While the embedded system will
perform data analysis within the interface, the robot or the wearable device, the
central processing unit or units will be able to perform more complex calculations
required to optimize data selection or combination, processing, and, hence, adap-
tation of the current processing flows. Thus, hybrid hardware/software solutions
will enable self-adapting embedded multimodal interfaces.

In summary, future robotic systems must not only behave autonomously but
must deeply understand humans to better support them and to allow flexible in-
teraction and cooperation. While this seems to require extra effort at first glance, on
closer examination two things become obvious. (1) Approaches that are currently
developed to enable robots to behave better and to perform complex task, such
as approaches that enable imitation learning, i.e., learning from human demon-
strations [Schaal 1997, Argall et al. 2009], are also relevant to improve interaction.
(2) The amount of multimodal data from multiple sources will increase. Thus, for
both approaches new software and hardware solutions must be developed in order
to profit from each other.

In order for next-generation robotic systems and their embedded multimodal
interfaces to accommodate the requirements dictated by the human-robot cooper-
ation it will be necessary to develop standardized robot control frameworks and
architectures that not only allow easy integration of internal parts of the robot
such as motors, cameras etc., but also adapt the systems control to human in-
teraction. The frameworks must be designed such that they are flexible toward
changes in multimodal input and multimodal output during runtime, e.g., changes
in sensor input or changes in interface input. Examples are the Robot Construc-
tion Kit (ROCK) and DROCK [DRock 2015]) software frameworks. These model-
based approaches allow the designer of a robotic system to define the system
from a library of well-defined and mathematically modeled components. This ap-
proach works from the hardware as well as from the software perspective. There-
fore, software-based concepts like adaptation and learning can be integrated with
standard planning and control approaches via machine learning to enable usage
by non-specialists.

It is obvious that both main research directions, i.e., autonomous artificial
intelligent robotic systems and human-machine interaction become inseparable
to develop future robotic systems that are able to optimally support humans and
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to interact with them intuitively. Robotics is a very good example that shows how
different fields of research must not only work together to their mutual advantage.

14.5.2 Current and Arising Societal Implications
As stated before an embedded multimodal interface is capable of enhancing
human-robot cooperation by: (a) increasing machine awareness of the user via
monitoring and (b) personalizing the behavior of the robot to the preferences of
the individual via the closed-loop process of reflexive adaptation. This emergent
approach is designed to evolve the technical sophistication of how people inter-
act with robots. However, these technological advancements are associated with a
number of societal implications.

It is important to understand that closed-loop systems are driven by goal-
directed logic. The closed-loop within the multimodal interface is programmed
with a specific directive, e.g., to prevent mental overload, to improve performance
efficiency, to preserve the safety of the operator. Its repertoire of adaptive responses
are simply the means by which the system achieves its specified goal. Unlike the
inert and passive technology of today, this symmetrical interaction is character-
ized by a degree of agency on the part of the machine and the requirement for a
human operator to cede a degree of control to the system. Given this, it is impor-
tant to define the agenda of the machine to be effective, reliable, and not to lead to
unforeseen circumstances [Kirchner and Drechsler 2013].

14.5.2.1 Establishing Trust
The challenge for multimodal interfaces is how to make the robotic system an
effective “team-player” from the perspective of a human user [Klein et al. 2004]. In
order for a robotic system to work with human users, it is important for embedded
multimodal interfaces to establish a degree of ‘trust’ with their users. Miller Miller
[2005] argued that technology could earn the trust of the user by transparency,
i.e., the laws of cause and effect encapsulated within the closed-loop are clearly
understood by the user. This transparency can be enhanced by clear feedback to the
user during interaction and predictable behavior on the part of the robotic system.
The development of trust between robot and user requires time and can only be
achieved through repeated interaction over a long period.

Multimodal interfaces utilize increased data processing capacity to: (1) monitor
the behavior/physiology of the user; (2) make inferences about the psychological
status of the user based on monitoring; and (3) translate those inferences into
timely and intuitive responses at the interface. In order to monitor-infer-adapt
within a working control loop, multimodal interfaces must operate as surveillance
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systems, gathering data on individual users in order to respond proactively in an
intelligent fashion. In addition, the multimodal interface requires a degree of au-
tonomy to adapt to changes in user state without any requirement for explicit
commands. This combination of intensive user monitoring with autonomous func-
tion is the price to be paid for the advanced level of functionality characterized by
multimodal interfaces.

Societal issues of trust and system autonomy are both significant and inherently
interconnected for the introduction of multimodal interfaces, particularly those de-
signed to capture non-intentional responses as part of passive or reactive systems.
The first concern is the degree of confidence that the user has in the technical
prowess of the system. In other words, can the system collect data with sufficient
fidelity? Is it capable to make a sensitive and accurate discrimination between dif-
ferent psychological states? Can the system successfully translate these multimodal
data into sensitive and intelligent adaptation at the interface? If the user can an-
swer those questions in the positive, he is likely to trust the system and will be
comfortable ceding control to autonomous functions. If not, the user will either
desire a return to manual control (if that is possible) or work unhappily and suspi-
ciously with a technology that he views as erratic and unpredictable; in either case,
the proposed advantages of multimodal interfaces will be lost.

A second issue concerns the ‘values’ that are inherent in the control directives of
a ‘machine with an agenda’ [Fairclough 2015]. In order for the multimodal interface
to respond to the detection of specific psychological states, it must translate the
detection of a target state into an appropriate response at the interface. This process
of translation can be straightforward. If the user is working on a safety-critical
task, the adaptive logic of the multimodal interface should promote sustained
engagement with the task in order to achieve error-free performance and maximize
safety. If the user becomes bored or complacent, the multimodal interface will
evoke a strategy to restore task engagement, e.g., to transfer tasks from autonomous
to manual control in order to re-engage the user with task requirements. This
enhanced autonomy, which is characteristic of multimodal interfaces, permits
the system to adapt in order to operate upon the user—to effectively manage the
psychological state of the person. Naturally it is important for the user to trust the
system if he is to be completely comfortable with this type of advanced interaction.
It is also possible that the goals and desires of the human user may diverge from
the control directives of the multimodal interface: the user may desire to take a rest
break, may feel unwell, or may resent working with a system that seems to expect
him to do all the work. There is potential for an interaction with the multimodal
interface to descend into a battle of “wills” where the human is forced to subjugate
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his wishes or desires in the face of a technical entity, which is both implacable
and incapable of behaving with sufficient flexibility. This example demonstrates
how implicit control based on monitoring combined with autonomous function
can ‘snowball’ into a subversion of human goals and desires. This is why trust is
such an important societal factor for acceptance of multimodal interfaces, humans
must: (1) have faith in the technical proficiency of the system in order to comfortably
relinquish some control over the interaction; and (2) interact with the system in the
knowledge that autonomous decision-making will not subvert their autonomy and
rights as human beings.

14.5.2.2 The Relevance of Consent and Data Privacy
Consent is a second important societal factor to be considered when the behavior
and physiology of the person is monitored by technology. The data that streams
from the user to the multimodal interface must be considered to be personal data.
Issues surrounding data privacy and data ownership may be crucial influences on
the extent to which users will accept the introduction of multimodal interfaces. It
has been argued that openness with respect to data acquisition, storage and sharing
is fundamental to the relationship between the user and the system, i.e., reciprocal
accountability [Brin 1999]. In this case, the user allows personal data to be collected
in full knowledge on how it will be used, stored ,and protected by the system. There
is evidence that users would prefer to have a contractual arrangement whereby data
is only obtained, stored and shared with full written consent [Reynolds and Picard
2005]. At the time of writing, research governance when performing experiments
with human participants often requires written consent and compliance with data
protection laws before personal data can be collected. But the degree of control that
users can legally exercise over the ways in which personal data is stored and used
is fundamentally determined by the extent to which users are deemed to own their
own data [Fairclough 2014]. If the user is granted full ownership, they can control
what is stored and who can access these data. Full ownership would allow a user
to remove data from the system if they wished to do so, the user could even charge
for access to their data.

Personal ownership of data and informed consent are important steps to protect
the individual equipped with multimodal sensors. However, it is equally impor-
tant that personal data is stored and managed in a way that continues to safeguard
the rights of the individual. The management of personal data by external agen-
cies sits at the heart of the General Data Protection Regulation (GDPR) that came
into force throughout Europe in May 2018. This legislation grant greater protection
and rights to the individual whose personal data are held by ‘controllers’ or ‘pro-
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cessors’, whether they be individuals, companies, or organizations. The issue of
consent is central to GDPR and entities that hold personal data are subject to fines
if a breach of confidentiality is detrimental to the individual. While GDPR is a pos-
itive development with respect to accountability, the primary risk to privacy from
multimodal monitoring is a process of inference fueled by data aggregation from
multiple sources [Friedland and Tschantz 2018]. The process of data aggregation is
an important technique for accurate assessment of the operator state, for example,
the detection of high mental workload is improved by cross-referencing task mon-
itoring (e.g., activity or phase of operation) with neurophysiological data, such as
EEG. The former provides a meaningful context for the latter. Similarly, emotional
responses can be characterized by a combination of facial expression, autonomic
psychophysiology, body posture, and vocal expression. It is important for users of
multimodal sensor systems to understand which data sources are active and how
they aggregate in order to deliver an inference about operator state, especially if ag-
gregation occurs across databases that are controlled by different ‘controllers’ or
‘processors.’ In the previous example, these types of data can also serve secondary
purposes, such as identifying individuals via unique features such as facial expres-
sion or voice, which leads to a scenario where individuals can effectively ‘profiled’
and compared with respect to specific operator states, e.g., John displayed high
mental workload twelve times during the task compared to Jane who only entered
a state of high workload twice.

The issue of data ownership points to another dimension of trust in multimodal
interfaces—the issue of data privacy. Certain types of multimodal interfaces rely on
the monitoring and measurement of psychological states, such as mental workload
or frustration or fatigue (see also Volume 3, Chapter 13), but which other parties
are allowed to access these data? And perhaps more importantly, can the individual
user be identified on the basis of these data? A company may wish to record data
from all user sessions, particularly during safety-critical activities, for purposes of
accident investigation. In this case, part of the conditions of employment would
require a user to share personal data and to be identified with that data. The soci-
etal issues associated with system use are more profound when a company wishes
to access data from multimodal interfaces for purposes of performance manage-
ment. For example, to assess the level of concentration exhibited by an employee
during their duties or to capture episodes of frustration or to gauge alertness at the
beginning of the work session. In this case, personal data is collected and inter-
preted from the individual in a way that could actively disadvantage that person.
It is unlikely that the user would trust the system in this scenario, not because of
what the technology is designed to do, but because of the way data is harvested
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and used by the system administration. It is also possible to imagine a more posi-
tive scenario where employee monitoring is performed to identify instances of high
occupational stress in order to bring about changes to working conditions that ulti-
mately benefit the employee. If we extend this scenario to service industries, such as
multimodal interfaces in the context of internet search, a company can argue that
harvesting data tied to an individual can be used to improve the quality of service
offered to that user. The key issue in this case is whether the user must surrender
their ownership of personal data in order to use that service, especially a service as
pervasive and indispensable as internet search. A secondary problem that relates
to the recent GDPR legislation concerns the sharing of personal data by a service
provider with other entities, i.e., if the user surrenders ownership to use a service,
do they also surrender the right to control the distribution of their personal data?

The issue of data privacy, anonymization, and sharing is particularly perti-
nent for systems that collect data from the brain and body as part of the human-
computer interaction (see Friedland and Tschantz [2018] for further discussion).
It is possible to extract information about the health of the person based on these
data. As two examples, the presence of epilepsy can be detected from an EEG record
collected on a long-term basis and it would also be possible to identify markers of
cardiovascular disease from the regular acquisition of electrocardiographic data. It
would be controversial for an employer to collect data from a specific individual for
the purposes of mental workload monitoring, for example, and use the same data
set as part of a health assessment. The sharing of sensitive, personal data of this
type with other legal entities, such as health insurance companies, is also problem-
atic from the perspective of the user. If the individual cannot own their data, they
cannot control how it will be stored, shared, and analyzed, hence, some kind of
informed consent possibly in the form of a contractual agreement along the lines
of GDPR is likely to be a prerequisite for users of multimodal interfaces.

The ethical issues around data ownership have a number of practical implica-
tions for the design of multimodal interfaces. An individual could log on to the
system anonymously and wipe the data record after use. This level of data protec-
tion is not possible when the system must store data that is linked to an individual
user, for example, when the multimodal interface is designed to personalize adap-
tation to that person during sustained and repeated system use (see above). In this
case, data must be stored and storage should be secure, e.g., password protected
and encrypted. One solution is local storage, using a physical media such as a USB
pen drive, that is owned by the user and used as a repository for all data collection
during the interaction. However, due to the size of the data file over a period of
time and the need for a back-up, it is unlikely that a physical device would serve as
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a practical solution in isolation and remote storage elsewhere would require pro-
tection and anonymization. There are a number of studies (e.g., Barra et al. [2016])
where data from the brain and body has been used to identify the individual and
the use of a biometric key to unlock data from the same source offers an intriguing
solution for the future.

Embedded multimodal interfaces offer the possibility of enormous technical
advances but progress in this direction does introduce novel problems of user trust,
system autonomy, and data ownership.

14.6 Supplementary Digital Materials: Exoskeleton’s Mode Change
Supported by Embedded Brain Reading—
Approach and Evaluation
The VI-Bot exoskeleton (see the video referred to in Figure 14.8) has three operation
modes: full user support mode, teleoperation mode, and transient mode (see Fig-
ure 14.9). During teleoperation mode, the movements of the human are mapped
to the robotic system and the user receives force feedback from the robotic system.
During full user support mode, the exoskeleton keeps the user’s arm in a fixed po-
sition. During transient mode, the user can move freely without controlling the
robotic system.

Changes between full user support mode and transient mode are intentionally
controlled by overt arm movements, i.e., an active human state is detected by
the exoskeleton. Changes between transient mode and teleoperation mode and
back are intentionally commanded by overt hand gestures. Again, an active human
state is detected by the interface. Being in the transient mode, there is a mode
change possible back to full user support mode. This change is non-intentionally
controlled whenever the user is not moving his or her arm for a certain time period.
The user is usually not pausing to intentionally control the mode change but is
stopping during robot control for different reason, e.g., to change position to get a
better view of the robot’s arm or to think about a solution for a difficult situation or
to handle additional requests like communication with a second person, while the
exoskeleton is supporting the user by keeping the arm in a fixed position such that
the operator does not have to hold his arm by himself. The latter becomes relevant
in case of very fine manipulations that are interrupted by longer breaks. In such
situations, the user wants to avoid any big movements and wants to keep his arm
in a specific position.

Thus, while mode changes between transient mode and teleoperation mode are
intentionally controlled by the human, mode changes between transient mode and
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full user support mode are non-intentionally elicited (see above). Further, changes
between full user support mode back to transient mode which are intentionally
elicited by the human are additionally non-intentionally adapted by the interface
itself by detecting specific active states of the human from covert measures, i.e.,
brain signals recorded from the surface of the human’s head Figure 14.18. As
mentioned above, when the system is in the full user support mode, the human
can intentionally control the interface to change back to transient mode simply by
starting to move his arm again. This overt behavior is measured by the exoskeleton
to detect the active state of the human, i.e., arm movement.

To intentionally activate a mode change from full user support mode to the tran-
sient mode the user must press against force sensors of the exoskeleton for a certain
time that is long enough to avoid false commands by, e.g., muscle twitches or move-
ment of the upper body. However, even if the strength of the forces and the duration
of pressure application to the exoskeleton are individually optimized for each user
to cope with different body measures and muscle strength, the user will feel that the
exoskeleton will not directly respond to her or his movements. Therefore, the ex-
plicit control from the full user support mode back to the transient mode is adapted
by another implicit control loop that makes use of covert measures, i.e., brain ac-
tivity, that enable the interface to detect another active state of the human, i.e.,
preparation of an arm movement. This cascaded approach of combining explicit
control and implicit control for adaptation enhances transparency, since the move-
ment planning phase can be detected from EEG before the movement is executed.
This information can be used to prepare the exoskeleton for the explicit control by
a later arm movement by enhancing the sensitivity of the sensors that detect the
movement onset. As for the implicit control example, the adaptation requires the
system to infer a human state or upcoming human state. No explicit command is
required from the human.

To optimize the general sensitivity of the exoskeleton for each subject, a time
threshold was defined individually, i.e., a minimum time he or she had to press
against the exoskeleton with a minimum force to release it from full user sup-
port mode. Both minimum time threshold and force threshold were chosen by
performing a calibration procedure in which the subjects had to keep their fore-
arm completely extended and the shoulder flexed forward in order to bring the
third joint of the exoskeleton in an angular range between 15 − 20◦. The user was
then asked to repeat an oscillatory movement of about 90◦ with a regular speed
(see Figure 14.19A). The requested type of movement and speed was shown to the
user beforehand in a movie that showed the exact movement sequence and timing.
At the beginning of each session, the force threshold was set to a maximum value
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Figure 14.18 Video: VI-Bot implicit control to adapt the exoskeleton’s control to the user’s in-
ferred needs: support of interaction by movement prediction based on EEG signals.
https://youtu.be/fiI4MKPTFg0.

F Max
th and the time threshold to a minimum value (T Min

th ) in order to assure that no
movement would cause the system to lock-out. The user was asked to perform the
rotational movement ten times. If the lock-out did not occur, Fth was decreased for
10% and the experiment was repeated. This went on until the user locks out due to
the rotational movement. At this point, the force threshold was kept constant while
the time threshold was increased until the perturbation movement was no longer
able to cause the lock-out event. The discovered thresholds F Min

th and T Max
th were the

values that were individually estimated for each subject. These values represented
the time and force of pressure that must have been exceeded to lock out the system
from full user support mode to transient mode. Thus, the time T Max

th was chosen
which was the shortest one that did not cause an unwanted lock-out at a minimum
interaction force F Min

th . This individually defined time threshold (T Max
th , see T max

in Figure 14.19b) could further be reduced based on the outcome of the embedded
brain reading interface that predicted movement preparation, while the required
force (F Min

th ) was not adapted. The user had to press shorter (shorter than T Max
th , see

T max in Figure 14.19b) against the sensors the more likely movement planning
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was predicted based on EEG analysis. This adaptation of the exoskeleton required
less force over time from the human for explicit control of the exoskeleton, i.e., to
make the exoskeleton change from full user support mode to transient mode (see
Figure 14.19). To calculate the effort required to pass from full user support mode
to transient mode, we integrated the force according to Equation 14.1:

I =
∫ TLout

T0

Fint(t)dt . (14.1)

To analyze how much the required minimum interaction force I could be re-
duced by the approach, an experiment was performed in which a prediction score
equivalent to 75% correct movement planning detection and a prediction score
equivalent to 100% correct movement planning detection was randomly chosen to
simulate the adaptation by embedded brain reading. Both conditions were inter-
leaved with a no adaptation condition (T Max

th ; see T max in Figure 14.19b) chosen to
adapt the exoskeleton control. In case of 100% correct movement planning the indi-
vidually estimated time threshold T Max

th was reduced to T Min
th , i.e., 10 ms (see T min

in Figure 14.19b) which is the minimum time that the exoskeleton needs to react to
a signal. This minimum response time is caused by the exoskeleton’s 100Hz con-
trol cycle. In case of 75% correct movement planning, the individually estimated
time threshold T Max

th was reduced to a time value between T Max
th and T Min

th , i.e., T Mid
th

(see T mid in Figure 14.19b). Thus, T Min
th was equivalent with maximal adaptation

by embedded brain reading, T Max
th with no adaptation by embedded brain reading,

and T Mid
th with a medium adaptation by embedded brain reading. Interaction forces

under all three conditions (T Max
th , T Mid

th , and T Min
th ) were measured by the force sen-

sors which were embedded into the exoskeleton. Mean values were calculated for
each prediction score value for ten measured movements across five subjects. It
could clearly be shown that the interaction force applied over time was reduced
(see value for force integral under all three condition), i.e., for more than one third
under maximum adaptation compared to no adaptation. Subjects reported that
they could clearly feel the differences in transparency of the exoskeleton even in
case of medium adaptation, i.e. in case of T Mid

th (T mid in Figure 14.19b).

Focus questions
14.1. What is the difference between explicit and implicit control approaches?

14.2. Which three safety levels can be defined for robots?

14.3. How can Moore’s Law be related to robotics?
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Figure 14.19 Reduction of interaction force between exoskeleton and human by adapting the
exoskeleton’s control by means of embedded brain reading. (A) positioning of forearm
and movements of the upper body during the calibration session are depicted.
(B) Mean values for applied force over time (force integral) calculated for ten measured
movements across five subjects under each time threshold condition are depicted.
T: time threshold, i.e., time to press against the sensors that must be exceeded to
unlock the exoskeleton from full user support mode. T max: individually estimated
for each subjects based on calibration measurements with no support by embedded
brain reading (no supp.); T min = 10 ms at Smax: maximum adaptation (prediction
score equivalent with 100% correct movement planning detection); T mid: medium
time threshold value (between T max and T min) at medium adaptation Smed by
embedded brain reading (prediction score equivalent with 75% correct movement
planning detection). Figure modified after Folgheraiter et al. [2012].

14.4. When classifying interfaces which two types of behaviors and two types of
methodologies can be used?

14.5. What is the difference between overt and covert measures of the user?

14.6. How does a passive BCI differ from an active BCI?

14.7. What is a hybrid BCI?

14.8. What is used in physiological computing and to what can it be compared?

14.9. How can a speech interface be implemented from the point of view of human
measures?

14.10. What does “embedded” in “embedded multimodal interface” mean?

14.11. What is embedded brain reading?
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14.12. How is the VI-Bot application non-intentionally adapted based on covert
measures? Explain both approaches.

14.13. Why can the whole be more than the sum of the individual parts when
combining different measures in embedded multimodal interfaces?

14.14. What are the two main trends for future embedded multimodal interfaces?

14.15. What is the relevance of the closed-loop design for personalization and
machine intelligence?

14.16. How can we design an embedded multimodal interface while preserving
the privacy of the individual?
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M. M. Krell, S. Straube, A. Seeland, H. Wöhrle, J. Teiwes, J. H. Metzen, E. A. Kirchner,
and F. Kirchner. December 2013. pySPACE - a signal processing and classification
environment in Python. Frontiers in Neuroinformatics, 7(40). https://github.com/
pyspace. 10.3389/fninf.2013.00040. 252

F. L. Lewis, D. M. Dawson, and C. T. Abdallah. 2003. Robot Manipulator Control: Theory and
Practice. CRC Press. 234

C. Liu, K. Conn, N. Sarkar, and W. Stone. 2008. Physiology-based affect recognition
for computer-assisted intervention of children with autism spectrum disorder.
International Journal of Human-Computer Studies, 66: 662–677. 238

C. Lucarotti, C. M. Oddo, N. Vitiello, and M. C. Carrozza.2013. Synthetic and bio-artificial
tactile sensing: A review. Sensors, 13(2): 1435. URL http://www.mdpi.com/1424-8220/
13/2/1435. 10.3390/s130201435. 226

Oviatt3 first pages 2018/11/14 9:13 p. 267 (chap14) Windfall Software, PCA ZzTEX 17.7

http://dx.doi.org/10.1371/journal.pone.0085060
http://dx.doi.org/10.1007/978-3-658-09994-7_8
http://dx.doi.org/10.3389/fnhum.2016.00291
http://dx.doi.org/10.3389/fninf.2013.00040
http://www.mdpi.com/1424-8220/13/2/1435
http://www.mdpi.com/1424-8220/13/2/1435
http://dx.doi.org/10.3390/s130201435


268 Chapter 14 Embedded Multimodal Interfaces
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The Handbook of Multimodal-Multisensor Interfaces, Volume 2: Signal Processing,
Architectures, and Detection of Emotion and Cognition, chapter 5. Morgan &
Claypool Publishers, San Rafael, CA. 228

L. Senger and E. A. Kirchner. 2016. Automatic Detection and Recognition of Human
Movement Patterns in Manipulation Tasks. In Proceedings of the International
Conference on Physiological Computing Systems (PhyCS 2016), Lisbon, Portugal.
SCITEPRESS Digital Library. 252

N. Serbedzija and S. H. Fairclough. 2012. Reflective pervasive systems. ACM Transactions on
Autonomous and Adaptive Systems, 7. 250

S. Straube, M. Rohn, M. Roemmermann, C. Bergatt, M. Jordan, and E. Kirchner. 2011.
On the closure of perceptual gaps in man-machine interaction: virtual immersion,
psychophysics and electrophysiology. Perception, 40 ECVP Abstract Supplement:177.
241

C. Vogel, C. Walter, and N. Elkmann. 2013. A projection-based sensor system for safe
physical human-robot collaboration. In IROS, pp. 5359–5364. IEEE. 227

M. Wand, C. Schulte, M. Janke, and T. Schultz. 2013. Array-based electromyographic silent
speech interface. In 6th International Conference on Bio-inspired Systems and Signal
Processing. http://www.csl.uni-bremen.de/cms/images/documents/publications/
BS13_WandSchulteJankeSchultz_ArrayBasedEMGSSI.pdf. BIOSIGNALS 2013. 229
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