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Abstract
The ability of Artificial Neural Networks (ANNs) to learn ac-
curate patterns from large amount of data has spurred inter-
est of many researchers and industrialists alike. The promise
of ANNs to automatically discover and extract useful fea-
tures/patterns from data without dwelling on domain exper-
tise although seems highly promising but comes at the cost
of high reliance on large amount of accurately labeled data,
which is often hard to acquire and formulate especially in
time-series domains like anomaly detection, natural disas-
ter management, predictive maintenance and healthcare. As
these networks completely rely on data and ignore a very im-
portant modality i.e. expert, they are unable to harvest any
benefit from the expert knowledge, which in many cases is
very useful. In this paper, we try to bridge the gap between
these data driven and expert knowledge based systems by in-
troducing a novel framework for incorporating expert knowl-
edge into the network (KINN). Integrating expert knowledge
into the network has three key advantages: (a) Reduction in
the amount of data needed to train the model, (b) provision of
a lower bound on the performance of the resulting classifier
by obtaining the best of both worlds, and (c) improved con-
vergence of model parameters (model converges in smaller
number of epochs). Although experts are extremely good in
solving different tasks, there are some trends and patterns,
which are usually hidden only in the data. Therefore, KINN
employs a novel residual knowledge incorporation scheme,
which can automatically determine the quality of the predic-
tions made by the expert and rectify it accordingly by learning
the trends/patterns from data. Specifically, the method tries to
use information contained in one modality to complement in-
formation missed by the other. We evaluated KINN on a real
world traffic flow prediction problem. KINN significantly su-
perseded performance of both the expert and as well as the
base network (LSTM in this case) when evaluated in isola-
tion, highlighting its superiority for the task.

Deep Neural Networks (DNNs) have revolutionized the
domain of artificial intelligence by exhibiting incredible
performance in applications ranging from image classifi-
cation (Krizhevsky, Sutskever, and Hinton 2012), playing
board games (Silver et al. 2016), natural language process-
ing (Conneau et al. 2017) to speech recognition (Hinton
et al. 2012). The biggest highlight of which was perhaps
Google DeepMind’s AlphaGo system, beating one of the
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world’s best Go player, Lee Sedol in a 5 series match (Wang
et al. 2016). Consequently, the idea of superseding human
performance has opened a new era of research and interest in
artificial intelligence. However, the success of DNNs over-
shadows its limitations. Arguably the most severe limitation
is its high reliance on large amount of accurately labeled
data which in many applications is not available (Sun et al.
2017). This is specifically true in domains like anomaly de-
tection, natural disaster management and healthcare. More-
over, training a network solely on the basis of data may re-
sult in poor performance on examples that are not or less
often seen in the data and may also lead to counter intuitive
results (Szegedy et al. 2013).

Humans tend to learn from examples specific to the prob-
lem, similar to DNNs, as well as from different sources
of knowledge and experiences (Lake, Salakhutdinov, and
Tenenbaum 2015). This makes it possible for humans to
learn just from acquiring knowledge about the problem with-
out even looking at the data pertaining to it. Domain experts
are quite proficient in tasks belonging to their area of ex-
pertise due to their extensive knowledge and understanding
of the problem, which they have acquired overtime through
relevant education and experiences. Hence, they rely on their
knowledge when dealing with problems. Due to their deep
insights, expert predictions even serve as a baseline for mea-
suring the performance of DNNs. Nonetheless, it can not
be denied that apart from knowledge, the data also contains
some useful information for solving problems. This is par-
ticularly cemented by astonishing results achieved by the
DNNs that soley rely on data to find and utilize hidden fea-
tures contained in the data itself (Krizhevsky, Sutskever, and
Hinton 2012).

Therefore, a natural step forward is to combine both these
separate streams of knowledge i.e. knowledge extracted
from the data and the expert’s knowledge. As a matter of
fact, supplementing DNNs with expert knowledge and pre-
dictions in order to improve their performance has been ac-
tively researched upon. A way of sharing knowledge among
classes in the data has been considered in zero-shot-learning
(Rohrbach, Stark, and Schiele 2011), where semantic relat-
edness among classes is used to find classes related to the
known ones. Although such techniques employ knowledge
transfer, they are restricted solely to the data domain and
the knowledge is extracted and shared from the data itself



without any intervention from the expert. Similarly, expert
knowledge and opinions are incorporated using distillation
technique where expert network produces soft predictions
that the DNN tries to emulate or in the form of posterior
regularization over DNN predictions (Hinton, Vinyals, and
Dean 2015). All of these techniques try to strengthen DNN
with expert knowledge. However, cases where the expert
model is unreliable or even random have not been consid-
ered. Moreover, directly trying to mimic expert network pre-
dictions has an implicit assumption regarding the high qual-
ity of the predictions made by the expert. We argue that
the ideal incorporation of expert network would be the one
where strengths of both networks are promoted and weak-
nesses are suppressed. Hence, we introduce a step in this
direction by proposing a novel framework, Knowledge In-
tegrated Neural Network (KINN), which aims to construc-
tively integrate knowledge in a residual scheme residing in
heterogeneous sources in the form of predictions. KINN’s
design allows it to be flexible. KINN can successfully inte-
grate knowledge in cases where either the predictions of the
expert and the DNN aligns, or are completely disjoint. Find-
ing state-of-the-art DNN or expert model is not the aim here
but rather, the aim is to devise a strategy that facilitates in-
tegration of expert knowledge with DNNs in a way that the
final network achieves the best of both worlds.

The residual scheme employed in KINN to incorporate
expert knowledge inside the network has three key advan-
tages: (a) Significant reduction in the amount of data needed
to train the model, since the network has to learn a resid-
ual function instead of learning the complete input to output
space projection, (b) a lower bound on the performance of
KINN based on the performance of the two subsequent clas-
sifiers achieving the best of both worlds, and (c) improve-
ments in convergence of the model parameters as learning
a residual mapping makes the optimization problem signif-
icantly easier to tackle. Moreover, since the DNN itself is
data driven, this makes KINN robust enough to deal with
situations where the predictions made by the expert model
are not reliable or even useless.

The rest of the paper is structured as follows: We first
provide a brief overview of the work done in the direction
of expert knowledge incorporation in the past. We then ex-
plain the proposed framework, KINN, in detail. After that,
we present the evaluation results regarding the different ex-
periments performed in order to prove the efficacy of KINN
for the task of expert knowledge incorporation. Finally, we
conclude the paper with the conclusion.

Related Work
Integrating domain knowledge and experts opinion into the
network is an active area of research and even dates back to
the early 90s. Knowledge-based Artificial Neural Networks
(KBANN) was proposed by (Towell and Shavlik 1994).
KBANN uses knowledge in the form of propositional rule
sets which are hierarchically structured. In addition to di-
rectly mapping inputs to outputs, the rules also state in-
termediate conclusions. The network is designed to have a
one-to-one correspondence with the elements of the rule set,

where neurons and the corresponding weights of their con-
nections are specified by the rules. Apart from these rule
based connections and neurons, additional neurons are also
added to learn features not specified in the rule set. Similar
approach has also been followed by (Tran and Garcez 2018).
Although such approaches directly incorporates knowledge
into the network, but they also limit the network architec-
ture by forcing it to have strict correspondence with the rule
base. As a result, this restricts the use of alternate architec-
tures or employing network that does not directly follow the
structure defined by the rule set.

(Hu et al. 2016) integrated expert knowledge using first
order logic rules which is transferred to the network pa-
rameters through iterative knowledge distillation (Hinton,
Vinyals, and Dean 2015). The DNN tries to emulate soft
predictions made by the expert network, instilling expert
knowledge into the network parameters. Hence, the expert
network acts as a teacher to the DNN i.e. the student net-
work. The objective function is taken as a weighted average
between imitating the soft predictions made by the teacher
network and true hard label predictions. The teacher network
is also updated at each iteration step with the goal of find-
ing the best teacher network that fits the rule set while, at
the same time, also staying close to the student network. In
order to achieve this goal, KL-divergence between the prob-
ability distribution of the predictions made by the teacher
network and softmax output layer of the student network is
used as the objective function to be minimized. This acts
as a constraint over model posterior. The proposed frame-
work was evaluated for classification tasks and achieved su-
perior results compared to other state-of-the-art models at
that time. However, the framework strongly relies on the ex-
pert network for parametric optimization and does not cater
for cases where expert knowledge is not comprehensive.

Expert knowledge is incorporated for key phrase extrac-
tion by (Gollapalli, Li, and Yang 2017) where they defined
label-distribution rules that dictates the probability of a word
being a key phrase. For example, the rule enunciates that
a noun that appears in the document as well as in the title
is 90% likely to be a key phrase and thus acts as posterior
regularization providing weak supervision for the classifica-
tion task. Similarly, KL-divergence between the distribution
given by the rule set and the model estimates is used as the
objective function to be used for the optimization. Again, as
the model utilizes knowledge to strengthen the predictions
of the network, it shifts the dependency of the network from
the training data to accurate expert knowledge which might
just be an educated guess in some cases. Similarly, (Xu et
al. 2017) incorporated symbolic knowledge into the network
by deriving a semantic loss function that acts as a bridge be-
tween the network outputs and the logical constraints. The
semantic loss function is based on constraints in the form
of propositional logic and the probabilities computed by the
network. During training, the semantic loss is added to the
normal loss of the network and thus acts as a regularization
term. This ensures that symbolic knowledge plays a part in
updating the parameters of the network.

(Wu et al. 2016) proposed a Knowledge Enhanced Hy-
brid Neural Network (KEHNN). KEHNN utilizes knowl-



edge in conjunction with the network to cater for text match-
ing in long texts. Here, knowledge is considered to be the
global context such as topics, tags etc. obtained from other
algorithms that extracts information from multiple sources
and datasets. They employed the twitter LDA model (Zhao
et al. 2011) as the prior knowledge which was consid-
ered useful in filtering out noise from long texts. A spe-
cial gate known as the knowledge gate is added to the tra-
ditional bi-directional Gated Recurrent Units (GRU) in the
model which controls how much information from the ex-
pert knowledge flows into the network.

KINN: The Proposed Framework
Problem Formalization

Time-series forecasting is of vital significance due to its high
impact, specifically in domains like supply chain (Fildes,
Goodwin, and Onkal 2015), demand prediction (Pacchin
et al. 2017), and fault prediction (Baptista et al. 2018).
In a typical forecasting setting, a sequence of values
{xt−1, xt−2, ..., xt−p} from the past are used to predict the
value of the variable at time-step t, where p is the number
of past values leveraged for a particular prediction, which
we refer as the window size. Hence, the model is a func-
tional mapping from past observations to the future value.
This parametric mapping can be written as:

x̂t = φ([xt−1, xt−2, ..., xt−p];W)

whereW = {Wl, bl}Ll=1 encapsulates the parameters of the
network and φ : Rp 7→ R defines the map from the in-
put space to the output space. The optimal parameters of
the network W∗ are computed based on the empirical risk
computed over the training dataset. Using MSE as the loss
function, the optimization problem can be stated as:

W∗ = arg min
W

1

|X |
∑
x∈X

(xt − φ([xt−1, ..., xt−p];W))2

(1)
where X denotes the set of training sequences and x ∈
Rp+1. Solving this optimization problem, comprising of
thousands if not millions of parameters, requires large
amount of data to successfully constrain the parametric
space so that a reliable solution is obtained.

Humans on the other hand, leverage their real-world
knowledge along with their past-experiences in order to
make predictions about the future. The aim of KINN is to in-
ject this real-world knowledge in the form of expert into the
system. However, as mentioned, information from the ex-
pert may not be reliable, therefore, KINN proposes a novel
residual learning framework for the incorporation of expert
knowledge into the system. The residual framework condi-
tions the prediction of the network on the expert’s opinion.
As a result, the network acts as a correcting entity for the
values generated by the expert. This decouples our system
from complete reliance on the expert knowledge.

Figure 1: Traffic flow data grouped into 30 minute windows

Dataset
We evaluated KINN on Caltrans Performance Measurement
System (PeMS) data. The data contains records of sensor
readings that measure the flow of vehicular traffic on Cali-
fornia Highways. Since the complete PeMS dataset is enor-
mous in terms of its size comprising of records from mul-
tiple highways, we only considered a small fraction of it
for our experiments i.e. the traffic flow on Richards Ave,
from January 2016 till March 20161. The dataset contains
information regarding the number of vehicles passing on the
avenue every 30 seconds. PeMS also contains other details
regarding the vehicles, however, we only consider the prob-
lem of average traffic flow forecasting in this paper. The data
is grouped into 30 minute windows. The goal is to predict
average number of vehicles per 30 seconds for the next 30
minutes. Fig. 1 provides an overview of the grouped dataset.
The data clearly exhibits a seasonal component along with
high variance for the peaks.

Baseline Expert and Deep Models
LSTMs have achieved state-of-the-art performance in a
range of different domains comprising of sequential data
such as language translation (Weiss et al. 2017), and hand-
writing and speech recognition (Zhang et al. 2018; Chiu et
al. 2018). Since we are dealing with sequential data, hence,
LSTM was a natural choice as our baseline neural network
model. Although the aim of this work is to find a technique
to fuse useful information contained in the two different
modalities irrespective of their details, we nonetheless spent
significant compute time to discover the optimal network hy-
perparameters through grid-search confined to a reasonable
hyperparameter space. The hyperparameter search space in-
cluded number of layers in the network, number of neurons
in each layer, activation function for each layer, along with
the window size p.

Partial auto-correlation of the series was also analyzed to
identify association of the current value in the time-series
with its lagged version as shown in Fig. 2. As evident from
the figure, the series showed strong correlation with its past

1http://www.stat.ucdavis.edu/ clarkf/



Figure 2: Partial auto-correlation of time-series

Figure 3: Neural network architecture

three values. This is also cemented by the result of the grid-
search that chose the window size of three. The final net-
work consisted of three hidden LSTM layers followed by
a dense regression layer. Apart from the first layer, which
used sigmoid, Rectified Linear Unit (ReLU) (Glorot, Bor-
des, and Bengio 2011) was employed as the activation func-
tion. Fig. 3 shows the resulting network architecture. The
data is segregated into train, validation and test set using
70/10/20 ratio. MSE was employed as the corresponding
loss function to be optimized. The network was trained for
600 epochs and the parameters producing the best validation
score were used for generating predictions on the test set.

Auto-Regressive Integrated Moving Average (ARIMA) is
widely used by experts in time-series modelling and analy-
sis. Therefore, we employed ARIMA as the expert opinion
in our experiments. Since the data demonstrated a signifi-
cant seasonal component, the seasonal variant of ARIMA
(SARIMA) was used, whose parameters were estimated us-
ing the Box-Jenkins approach (Box et al. 2015). Fig. 4
demonstrates the predictions obtained by employing the
LSTM model as well as the expert (SARIMA) model on the
test set.

The overall predictions made by both the LSTM as well
as the expert network seems plausible as shown in Fig. 4(a).
However, it is only through thorough inspection and inves-
tigation on a narrower scale that the strengths and weak-

nesses of each of the networks are unveiled as shown in
Fig. 4(b). The LSTM tends to capture the overall trend of
the data but suffered when predicting small variations in
the time-series. SARIMA on the other hand was more ac-
curate in predicting variations in the time-series. In terms
of MSE, LSTM model performed considerably worse when
compared to the expert model. For this dataset, the discov-
ered LSTM model achieved a MSE of 5.90 compared to 1.24
achieved by SARIMA on the test set.

KINN: Knowledge Integrated Neural Network
Most of the work in the literature (Hu et al. 2016; Gollapalli,
Li, and Yang 2017) on incorporating expert knowledge into
the neural network focuses on training the network by forc-
ing it to mimic the predictions made by the expert network,
ergo updating weights of the network based on the expert’s
information. However, they do not cater for a scenario where
expert network does not contain information about all possi-
ble scenarios. Moreover, these hybrid knowledge based net-
work approaches are commonly applied to the classification
scenario where output vector of the network corresponds to
a probability distribution. This allows KL-divergence to be
used as the objective function to be minimized in order to
match predictions of the network and the expert network. In
case of time-series forecasting, the output of the network is
a scalar value instead of a distribution which handicaps most
of the prior frameworks proposed in the literature.

The KINN framework promotes both the expert model as
well as the network to complement each other rather than
directly mimicking the expert’s output. This allows KINN to
successfully tackle cases where predictions from the expert
are not reliable. Finding the best expert or neural network
is not the focus here but instead, the focus is to incorporate
expert prediction, may it be flawed, in such a way that the
neural network maintains its strengths while incorporating
strengths of the expert network.

There are many different ways through which knowledge
between an expert and the network can be integrated. Let
x̂pt ∈ R be the prediction made by the expert. We incor-
porate the knowledge from the expert in a residual scheme
inspired by the idea of ResNet curated by (He et al. 2016).
Let φ : Rp+1 7→ R define the mapping from the input space
to the output space. The learning problem from Eq. 1 after
availability of the expert information can be now be written
as:

x̂t = φ([xt−1, xt−2, ..., xt−p, x̂
p
t ];W) + x̂pt

W∗ = arg min
W

1

|X |
∑
x∈X

(xt − (φ([xt−1, ..., xt−p, x̂
p
t ];W)

+x̂pt ))
2

(2)
Instead of computing a full input space to output space trans-
form as in Eq. 1, the network instead learns a residual func-
tion. This residual function can be considered as a correction
term to the prediction made by the expert model. Since the
model is learning a correction term for the expert’s predic-
tion, it is essential for the model prediction to be conditioned



(a) Predictions over the whole test set (b) Predictions over the first 100 steps

Figure 4: Predictions of NN and Expert Network

on the expert’s prediction as indicated in Eq. 2. There are
two simple ways to achieve this conditioning for the LSTM
network. The first one is to append the prediction at the end
of the sequence as indicated in the equation. Another pos-
sibility is to stack a new channel to the input with repeated
values for the expert’s prediction. The second case makes the
optimization problem easier as the network has direct access
to the expert’s prediction at every time-step. Therefore, re-
sults in minor improvements in terms of MSE. The system
architecture for KINN is shown in Fig. 5.

Incorporating expert knowledge in this residual fashion
serves a very important purpose in our case. In cases where
the expert’s predictions are inaccurate, the network can gen-
erate large offsets in order to compensate for the error while
the network can essentially output zero in cases where the
expert’s predictions are extremely accurate. With this flexi-
bility built into the system, the system can itself decide its
reliance on the expert’s predictions.

Evaluation
We curated a range of different experiments each employing
KINN in a unique scenario in order to evaluate its perfor-
mance under varied conditions. We compare KINN results
with the expert as well as the DNN in terms of performance
to highlight the gains achieved by employing the residual
learning scheme. To ensure a fair comparison, all of the pre-
processing and LSTM hyperparameters were kept the same
when the model was tested in isolation and when integrated
as the residual function in KINN.

In the first setting, we tested and compared KINN’s per-
formance in the normal case where the expert predictions
are accurate and the LSTM is trained on the complete train-
ing set available. We present the results from this normal
case in experiment # 01. In order to evaluate KINN’s per-
formance in cases where the amount of training data avail-
able is small or the expert is inaccurate, we established two
different sets of experiments starting from the configuration
employed in the first experiment. In the first case, we re-
duced the amount of training data provided to the models
for training. We present the findings from this experiment in

experiment # 02. In the second case, we reduced the reliabil-
ity of the expert predictions by injecting random noise. The
results from this experiment are summarized in experiment
# 03. A direct extension of the last two experiments is to
evaluate KINN’s performance in cases where both of these
conditions hold i.e. the amount of training data is reduced
as well as the expert is noisy. We summarize the results for
this experiment in experiment # 04. Finally, we evaluated
KINN’s performance in cases where the expert contained no
information. We achieved this using two different ways. We
first evaluated the case where the expert always predicted
the value of zero. In this case, the target was to evaluate the
impact (if any) of introducing the residual learning scheme
since the amount of information presented to the LSTM net-
work was exactly the same as the isolated LSTM model in
the first experiment. We then tested a more realistic scenario,
where the expert model replicated the values from the last
time-step of the series. We elaborate the findings from this
experiment (for both settings) in experiment # 05.

Experiment # 01: Full training set and accurate
expert
We first tested both the LSTM as well as the expert model
in isolation in order to precisely capture the impact of in-
troducing the residual learning scheme. KINN demonstrated
significant improvements in training dynamics directly from
the start. KINN converged faster as compared to the isolated
LSTM. As opposed to the isolated LSTM which required
more training time (epochs) to converge, KINN normally
converged in only one fouth of the epochs taken by the iso-
lated LSTM, which is a significant improvement in terms
of the compute time. Apart from the compute time, KINN
achieved a MSE of 0.74 on the test set. This is a very sig-
nificant improvement in comparison to the isolated LSTM
model that had a MSE of 5.90. Even compared to the expert
model, KINN demonstrated a relative improvement of 40%
in terms of MSE. Fig. 6 showcases the predictions made by
KINN along with the isolated LSTM and the expert network
on the test set. It is evident from the figure that KINN caters
for the weaknesses of each of the two models involved using



Figure 5: Proposed Architecture

MSE
Experiment Description % of training data used DNN Expert Network KINN

1 Full training set and accurate expert 100 5.90 1.24 0.74
2 Reduced training set (50%) and accurate expert 50 6.36 1.52 0.89

Reduced training set (10%) and accurate expert 10 6.68 2.67 1.53
3 Full training set and noisy expert 100 5.90 7.81 3.09
4 Reduced training set and noisy expert 10 6.68 7.81 3.73
5 Full training set and Zero expert pred. 100 5.90 621.00 5.92

Full training set and Delayed expert pred. 100 5.90 9.04 5.91

Table 1: MSE on the test set for the experiments performed

(a) Predictions of all models (b) Step-wise error plot

Figure 6: Predictions and the corresponding error plot for the normal case (experiment # 01)



the information contained in the other. The resulting predic-
tions are more accurate than the expert network on minimas
and also captures the small variations in the series which
were missed by the LSTM network.

In order to further evaluate the results, error at each time-
step is compared for the isolated models along with KINN.
To aid the visualization, step-wise error for first 100 time-
steps of the test set is shown in Fig. 6. The plot shows that
the step-wise prediction error of KINN is less than both the
expert model as well as the LSTM for major portion of the
time.

However, there are instances where predictions made by
KINN are slightly worse than those of the baseline models.
In particular, the prediction error of KINN exceeded the er-
ror of the expert network for only 30% of the time-steps and
only 22% of the time-steps in case of the LSTM network.
Nevertheless, even in those instances, the performance of
KINN was still on par with the other models since on 99%
of the time-steps, the difference in error is less than 1.5.

Experiment # 02: Reduced training set and
accurate expert
One of the objectives of KINN was to reduce dependency
of the network on large amount of labelled data. We argue
that the proposed model not only utilizes expert knowledge
to cater for shortcomings of the network, but also helps in
significantly reducing its dependency on the data. To further
evaluate this claim, a series of experiments were performed.
KINN was trained again from scratch using only 50% of
the data in the training set. The test set remained unchanged.
Similarly, the LSTM network was also trained with the same
50% subset of the training set.

The LSTM network trained on the 50% subset of the
training data attained a MSE of 6.36 which is slightly worse
than the MSE of network trained on the whole training set.
Minor degradation was also observed in the performance of
the expert network which achieved a MSE of 1.52. Despite
of this reduction in the dataset size, KINN achieved signifi-
cantly better results compared to both the LSTM as well as
the expert model achieving a MSE of 0.89. Fig 7 visualizes
the corresponding prediction and error plots of the models
trained on 50% subset of the training data.

We performed the same experiment again with a very
drastic reduction in the training dataset size by using only
10% subset of the training data. Fig. 8 visualizes the results
from this experiment in the same way, by first plotting the
predictions from the models along with the error plot. It is
interesting to note that since the LSTM performed consider-
ably poor due to extremely small training set size, the net-
work shifted its focus to the predictions of the expert net-
work and made only minor corrections to it as evident from
Fig. 8(a). This highlights KINN’s ability to decide its re-
liance on the expert predictions based on the quality of the
information. In terms of the MSE, LSTM model performed
the worst. When trained on only the 10% subset of the train-
ing set, the LSTM model attained a MSE of 6.68, whereas
the expert model achieved MSE of 2.67. KINN on the other
hand, still outperformed both of these models and achieved
a MSE of 1.53.

Experiment # 03: Full training set and noisy expert
In all of the previous experiments, the expert model was rel-
atively better compared to the LSTM model employed in our
experiments. The obtained results highlights KINN’s ability
to capitalize over the information obtained from the expert
model to achieve significant improvements in its prediction.
KINN also demonstrated amazing generalization despite of
drastic reduction in the amount of training data, highlighting
KINN’s ability to achieve accurate predictions in low data
regimes. However, in conjunction to reducing dependency
of the network on data, it is also imperative that the net-
work does not become too dependent on the expert knowl-
edge making it essential to be accurate/perfect. This is usu-
ally not catered for in most of the prior work. We believe that
the proposed residual scheme enabled the network to handle
erroneous expert knowledge efficiently by allowing it to be
smart enough to realize weaknesses in the expert network
and adjust accordingly. In order to verify KINN’s ability to
adjust with poor predictions from the expert, we performed
another experiment where random noise was injected into
the predictions from the expert network. This random noise
degraded the reliability of the expert predictions. To achieve
this, random noise within one standard deviation of the aver-
age traffic flow was added to the expert predictions. As a re-
sult, the resulting expert predictions attained a MSE of 7.81
which is considerably poor compared to that of the LSTM
(5.90). We then trained KINN using these noisy expert pre-
dictions. Fig. 9 visualizes the corresponding prediction and
error plots.

As evident from Fig. 9(a), KINN still outperformed both
the expert as well as the LSTM with a MSE of 3.09. De-
spite the fact that neither the LSTM, nor the expert model
was accurate, KINN still managed to squeeze out useful in-
formation from both modalities to construct an accurate pre-
dictor. This demonstrates true strength of KINN as it not
only reduces dependency of the network on the data but also
adapts itself in case of poorly made expert opinions. KINN
achieved a significant reduction of 48% in the MSE of the
LSTM network by incorporating the noisy expert prediction
in the residual learning framework.

Experiment # 04: Reduced training set and noisy
expert
As a natural followup to the last two experiments, we intro-
duced both conditions at the same time i.e. reduced training
set size and noisy predictions from the expert. The train-
ing set was again reduced to 10% subset of the training data
for training the model while keeping the testing set intact.
Fig. 10 demonstrates that despite this worst condition, KINN
still managed to outperform both the LSTM as well as the
noisy expert predictions.

Experiment # 05: Full training set and poor expert
As the final experiment, we evaluated KINN’s performance
in cases where the expert predictions are not useful at all. We
achieved this via two different settings. In the first setting,
we considered that the expert network predicts zero every
time. In the second setting the expert network was made to



(a) Predictions of all models (b) Step wise error plot

Figure 7: Prediction and error plot with only 50% of the training data being utilized

(a) Predictions of all models (b) Step wise error plot

Figure 8: Prediction and error plot with only 10% of the training data being utilized

(a) Predictions of all models (b) Step wise error plot

Figure 9: Prediction and error plot with inaccurate expert prediction

lag by a step of one resulting in mismatch of the time step
with the predictions. Putting zero in place of x̂pt in Eq. 2
yields:

x̂t = φ([xt−1, xt−2, ..., xt−p, 0];W) + 0

W∗ = arg min
W

1

|X |
∑
x∈X

(xt − (φ([xt−1, ..., xt−p, 0];W)

+0))2

W∗ = arg min
W

1

|X |
∑
x∈X

(xt − (φ([xt−1, ..., xt−p, 0];W))2



(a) Predictions of all models (b) Step wise error plot

Figure 10: Prediction and error plot with inaccurate expert prediction and with only 10% data

This is almost equivalent to the normal unconditioned full
input to output space projection learning case (Eq. 1) except
a zero in the conditioning vector. However, in case of lagged
predictions by the expert network, since we stack the ex-
pert prediction x̂pt in a separate channel, the network assigns
a negligible weight to this channel, resulting in exactly the
same performance as the normal case.

Table 1 provides the details regarding the results obtained
for this experiment. It is clear from the table that in cases
where the expert network either gave zero as its predictions
or gave lagged predictions, which is useless, the network
performance was identical to the normal case since the net-
work learned to ignore the output from the expert. These
results highlight that KINN provides a lower bound on the
performance based on the performance of the two involved
entities: expert model and the network.

Discussion

These thorough experiments advocates that the underlying
residual mapping function learned by KINN is successful in
combining the network with the prediction made by the ex-
pert. Specifically, KINN demonstrated the ability to recog-
nize the quality of the prediction made by both of the base
networks and shifted its reliance according to it. In all of
the experiments that we have conducted, MSE of the pre-
dictions made by KINN never exceeded (disregarding in-
significant changes) the MSE of the predictions achieved by
the best among the LSTM and the expert model except in
case of completely useless expert predictions, where it per-
formed on par with the LSTM network. Table 1 provides a
summary of the results obtained from all the different exper-
iments performed. It is interesting to note that even with a
huge reduction in the size of the training set, the MSE does
not drastically increase as one would expect. This is due to
the strong seasonal component present in the dataset. As a
result, even with only 10% subset of the training data, the
algorithms were able to learn the general pattern exhibited
by the sequence. It is only in estimating small variations that
these networks faced difficulty when training on less data.

Conclusion
We propose a new architecture for incorporating expert
knowledge into the deep network. It incorporates this expert
knowledge in a residual scheme where the network learns a
correction term for the predictions made by the expert. The
knowledge incorporation scheme introduced by KINN has
three key advantages. The first advantage is regarding the
relaxation of the requirement for a huge dataset to train the
model. The second advantage is regarding the provision of
a lower bound on the performance of the resulting classifier
since KINN achieves the best of both worlds by combin-
ing the two different modalities. The third advantage is its
robustness in catering for poor/noisy predictions made by
the expert. Through extensive evaluation, we demonstrated
that the underlying residual function learned by the network
makes the system robust enough to deal with imprecise ex-
pert information even in cases where there is a dearth of
labelled data. This is because the network does not try to
imitate predictions made by the expert network, but instead
extracts and combines useful information contained in both
of the domains.
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