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Abstract

This paper presents the first results of the research into AI-
based support of the room configuration process during the
early design phases in architecture. Room configuration (also:
room layout or space layout) is an essential stage of the ini-
tial design phase: its results are crucial for user-friendliness
and success of the planned utilization of the architectural ob-
ject. Our approach takes into account different possible ac-
tions of the configuration process, such as adding, removing,
or (re)assigning of the room type. Its mode of operation is
based on specific process chain clusters, where each cluster
represents a contextual subset of previous configuration steps
and provides a recurrent neural network trained on this clus-
ter data only to suggest the next step, and a case base that
is used to determine if the current process chain belongs to
this cluster. The most similar cluster then tries to suggest the
next step of the process. The approach is implemented in a
distributed CBR framework for support of early conceptual
design in architecture and was evaluated with a high number
of process chain queries to prove its general suitability.

Introduction
The early stage of conceptual design in architecture consists
of a number of sub-phases, where the task of constructuon of
a proper room configuration is one of the most crucial sub-
phases, as it is aimed at setting up the further room layout
development for the future architectural object. Nowadays,
the room configuration process is mostly based on the own
experience of the architect, technical literature, or advice of
colleagues. That is, the concrete records of particular steps
of room configuration processes of other architects are nei-
ther considered by architects nor permanently saved and in-
terpreted for further use in any professional software for ar-
chitectural design. Therefore, an intelligent, computer-aided
system that makes use of such step records and can suggest
a proper next step can provide an additional source of help
and inspiration during the room layout creation process. The
biggest advantages of such system would be the minimiza-
tion of time needed to determine the next configuration step
and contextual suggestions, i.e., suggestions provided only
for the given task domain (e.g., office building floor plans).
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In this paper, we present an approach for generation of
such suggestions by means of applying a combination of
methods of case-based reasoning (CBR), clustering, and re-
current neural networks (RNN). The approach is an essential
part of MetisCBR (Ayzenshtadt et al. 2016a), a distributed
CBR framework for support of early phases in architectural
design, and was conceptualized and implemented to work as
a native module of this framework.

Related Work
The research connection between artificial intelligence (AI)
and computer-aided architectural design (CAAD) has a long
history and resulted in a multitude of approaches for AI-
based support of architectural design: for example, case-
based design (CBD), mainly for retrieval or explanation, and
ANN-based systems, mainly for analysis or generation of
building designs. Being very knowledge-intensive entities,
architectural designs provide a broad base for construction
of cases of different type, such as image-based, graph-based
(Langenhan et al. 2013), or attribute-value based (Ayzen-
shtadt et al. 2015). The latter one is used in MetisCBR
and is inferred from graph-based representations of floor
plans. A short description of the framework is provided in
the next section. A survey of pre-existing/earlier developed
framework-related methodologies and tools (Richter, Hey-
lighen, and Donath 2007) provides a selection of the most in-
fluencial CBD-CAAD approaches. An overview of the cur-
rent problem fields of CBR in architecture was published as
well (Richter 2013). One of the most relevant recently devel-
oped approaches uses deep learning to extract semantic fea-
tures from floor plan images (Sharma et al. 2017). A com-
bination of CBR, multi-agent systems (MAS), and ANNs
was used to optimize energy management in buildings (us-
ing an example of an office building) (González-Briones et
al. 2018). A specific case of floor plan generation with RNNs
uses block-based feature vectors for room layout and con-
nection generation (Bayer, Bukhari, and Dengel 2017).

MetisCBR
MetisCBR (see Figure 1) is a distributed AI system that
applies case-based retrieval and pattern-based explanation
methods to support the early phases of architectural concep-
tual design. The CBR retrieval component of the framework



looks for architectural designs (floor plans) suitable for im-
provement of the currently developed design in a case base
of previous designs. This functionality employs a number
of retrieval containers, where each container is responsible
for resolving of the floor plan query with one of the spe-
cific search patterns, the semantic fingerprints of architec-
ture (Langenhan and Petzold 2010). The semantic finger-
prints represent architectural concepts, such as room and re-
lation counts, adjacency and accessibility of rooms, or avail-
ability of natural light, and can be selected by the user. That
is, each container is responsible for a sub-query only. The
single similarity values achieved for the sub-queries are then
amalgamated to produce the overall similarity value.

The retrieval results are then enhanced with informa-
tion added by the explanation component of the framework,
the Explainer (Eisenstadt et al. 2018). This component is
based on the paradigm of explanation patterns (Cassens and
Kofod-Petersen 2007) and tracks the system behavior dur-
ing the retrieval process. Its main task is to find answers to
questions of why a specific result was included in the result
set (justification pattern) and how exactly the system found
this solution (transparency pattern), and to find out if it is
relevant to ask the user for further data (relevance pattern).
A further task of this component is to add contextual infor-
mation that shows how the results are related to each other.

The framework was extended to a flexibility- and process-
oriented CBR system (Ayzenshtadt et al. 2017). Together
with other floor plan retrieval techniques, MetisCBR was ex-
amined in a number of comparative evaluations (Sabri et al.
2017) and (Ayzenshtadt et al. 2016b).

Approach for Suggestion of the Next
Room Configuration Step

In this section, we present our methodology for intelli-
gent support of the room configuration process during the
early conceptual phases in architectural design. We describe
the general structure of the Suggester (MetisCBR’s system
module that implements the room configuration support ap-
proach), present each phase of generation of suggestions in
detail, and explain the core concept of the configuration pro-
cess, the process chain.

General Overview
Figure 1 shows the general structure and mode of opera-
tion of MetisCBR’s component for suggestion of the next
configuration step during the interaction with the system.
Identically to the other system modules, the Suggester is a
sub-MAS of the entire multi-agent-based architecture of the
framework. Currently, four agents govern the corresponding
suggestion generation process:
• Suggestion Preparation Agent – This agent prepares, i.e.,

separates, the process chain query for later resolving of
its main parts: the actions, positions, and relations. It also
performs the CBR retrieval to determine which process
chain cluster provides the most suitable configuration data
for the current query and the corresponding suggestion.

• Next Action Suggestion Agent – The task of this agent is
to query the RNN of the cluster selected by the prepara-

tion agent and to return as many possible actions for the
process chain continuation as requested (the exact amount
of action suggestions can be pre-configured).

• Position Suggestion Agent – If the result of action sugges-
tion is to add a new room, this agent tries to determine the
concrete position of this room in the configuration.

• Relation Suggestion Agent – As continuation of position
suggestion, the task of this agent is to find out which con-
nection types (i.e., connection by doors or passages) can
be used to connect the suggested room to the rooms pro-
vided by the position suggestion agent.

The Process Chain
The core concept of our approach is the so-called process
chain. Each process chain is a directed acyclic graph (DAG),
where each node represents an action of the room configu-
ration process. The action can be one of the following:

• a – Add a new room

• r – Remove an existing room

• f – Reshape, change form (polygon) of an existing room

• t – Change the type (functionality) of the room

Actions are accompanied by the abstraction level of the
room, which can be either 0 (abstract, i.e., a room without
particular shape) or 1 (non-abstract, i.e., a room with shape
specified), and a room type, which can be one of the fol-
lowing: L (living room), S (sleeping room), K (kitchen), T
(toilet), W (working), B (bath), C (corridor), P (storage), or
R (room with no specific type, i.e., a placeholder room).

Each action is represented by a full action signature, e.g.,
a1K for add a kitchen and specify its shape.

If action is an a, then it is enriched with additional infor-
mation about positioning within the configuration and rela-
tions/connections to the neighbouring rooms. Positioning is
represented by a position type which can be either b, if the
room should be placed between multiple rooms, or n, if the
room should be placed next to one specific room. Relations
represent the connection type(s) of the room from the action
to the rooms from the positioning, and can be either D for a
door or P for a passage.

For example, the signature a0L:bWS-DD stands for add
an abstract living room between Working and Sleeping, con-
nect it with doors to both of them.

Additionally, when the user asks the system for a step sug-
gestion, each process chain is enriched with meta data that
represents the current room count and edge count of the floor
plan, the number of semantic fingerprints applied for the cur-
rent search, and the current number of actions in the chain.
Figure 2 demonstrates a sample process chain DAG.

Process Chain Clusters
To proceed with the actual suggestion process, the properly
formatted data for this process needs to be created from the
previously recorded chains. The first step of the creation of
the properly formatted data for suggestion generation is the
initial separation of the complete process chain dataset into
specific subsets, so-called process chain clusters. To assign
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Figure 1: General structure of MetisCBR, with the configuration support module, the Suggester, included.



the chain data to the proper cluster, we use the K-Means
clustering method that takes the process chain meta data (see
Figure 2) as feature vector input. The number of clusters is
arbitrary and can be specified during the clustering process.

The reason for creation of specific data clusters and the
decision against the usage of the complete process chain
dataset, is the specific structure of architectural data: in our
previous research (Ayzenshtadt et al. 2017), we found out
that different conexts of architectural design tasks and floor
plan classes can help identify the most helpful, i.e., contex-
tually suitable, design to continue the development of the
floor plan at hand. These different contextual classes can
represent, for example, floor plans with the number of con-
nections that is slightly lower or marginally higher than the
number of rooms (Sparse Connections Context) or a certaim
room type has a high number of occurences, i.e., dominates
the floor plan (Room Type Dominance Context). Based on
results of this research, we transferred this contextual design
classification approach to the contextual data separation of
the configuration support module. I.e., our assumption is,
that for our main goal – find the most exact and suitable
suggestion for the next step of the room configuration pro-
cess – contextual clusters can be a proper approach too. By
dividing the complete dataset into smaller subsets, we intend
to query the cluster with the highest chances to provide the
best contextual suggestion.

After the separation of the dataset into contextual clus-
ters, we train each cluster data with a separate recurrent neu-
ral network (RNN) and set up a corresponding case base of
context footprints that will be used for determination of the
most suitable cluster for suggestion generation.

a1C

a1B:
nC-D

a0K:
nC-P f0K a0T:

bCB-DP
t1K:
(1S) r1B

f0T r1K
a1W:
nC-P

a0S:
bCW-DD

[ 4, 3, 3, 5 ] [ 5, 6, 4, 9 ]

[ 3, 2, 4, 3 ]

[ 3, 2, 2, 6 ]

Figure 2: An example of a process chain DAG. The rectan-
gles represent the floor plan’s configuration state at the given
step. Nodes represent the actions and contain the full action
signature: e.g., a0K:nC-P for add an abstract kitchen next
to the corridor, connect them with a door or f0T for add
shape to the toilet. Numbers in the square brackets represent
the meta data of the configuration at the given step (room
count, edge count, number of semantic fingerprints used in
the search, and the current step count accordingly). Floor-
plans are constructed with Metis WebUI (Bayer et al. 2015).

Training of Cluster Data with RNN
Over the last decades, artificial neural networks became an
established tool for a multitude of prediction-related tasks,
including tasks where the input data is a sequence of arbi-
trary length that can represent events, e.g., click events on
a webpage to predict the next user action, or words, e.g.,
words in a sentence that needs to be completed. The most es-
tablished ANN type for this task (also referred as sequence
learning (Sutskever, Vinyals, and Le 2014)) are the recur-
rent neural networks, that, e.g., can be used in the autocom-
pletion feature of keyboards of mobile operating systems
(Valkov 2017).

RNNs differ from other ANN types in the way in which
they handle the dependencies between the network states
at the current and previous time steps. RNNs are based on
a premise that states of the previous time steps can be re-
membered by the corresponding cells of the network layer,
thus providing the network with the possibility to record
dependencies over time and use this feature to predict the
most likely next event, i.e., the continuation of the se-
quence. Nowadays, different methods exist for the ‘remem-
bering‘ feature of an RNN cell. The most widely applied
ones are LSTM (Long Short-Term Memory) (Hochreiter and
Schmidhuber 1997), and GRU (Gated Recurrent Unit) (Cho
et al. 2014) that gained popularity within the last years.

Based on the facts described above, selecting RNNs for
the task of prediction of the next action during the room
configuration process, is a logical step as the process chains
are sequences of arbitrary length too. They are ordered in a
sentence-like way as well, and basically represent the user
events on a user interface for room configuration. Thus, our
assumption is that the RNN-based step prediction approach
is the most suitable one for the research task of this work.

Case Bases of Context Footprints
As mentioned above, our complete process chain dataset for
room configuration support is separated into different con-
textual subsets before the RNNs start to train on them. To
identify which of these clusters is the most suitable one for
prediction of the next step, we apply a case-based retrieval
approach that consists of the following steps:

1. Select randomly a subset of process chains from the clus-
ter and extract their meta data.

2. Turn each of the meta data entries into a case and save it
into the cluster’s case base, i.e., create the first version of
the so-called context footprint.

3. When the next process chain query arrives:
(a) Extract its meta data and turn it into the query for all

case bases for all clusters.
(b) Find out which cluster case base returns the highest

similarity value:

v =
1

4

4∑
f=1

Simf , f ∈ F

Where F is the set of features f from the meta data
(room count, edge count, semantic fingerprint count,
steps count) for both query and case.



(c) Forward the actual process chain query to the RNN of
cluster with the highest similarity.

(d) If later, after the complete suggestion has been pro-
duced, the user accepts the suggested step:

i. Save the sequence in the cluster data, i.e., append the
suggested step to the existing sequence.

ii. Re-train the corresponding RNN.
iii. Remove all cases from the winning case base, except

the one that has returned the actual higest similarity
(this case will be persisted, but it can be removed too
if other cases from this cluster will be selected more
often, i.e., the winning cases will be ranked).

iv. Goto 1 (for this cluster only).

The approach we use for determination of the most suit-
able/similar cluster is a combination of the two well-known
CBR approaches: footprint similarity (Smyth and McKenna
1999) and instance-based learning (Aha, Kibler, and Albert
1991) with the IB3 algorithm. From IB3, we use the princi-
ple of a case base of (auto-selected) ‘golden standard’ cases.
From the footprint similarity approach we transferred the
principle of the optimal footprint coverage: by persisting and
ranking the winning cases and removing the ones with lesser
similarity we will eventually create a competence set that
represents the cluster context in the best way possible.

Querying the Context RNN
As shown in Figure 1 and explained in the previous sections,
only the RNN, whose case base contains the most similar
case to the query meta data, is queried. As a rule of thumb,
only a certain number of the last steps in the sequence is
used to query the RNN and to get action suggestion(s). The
reason for this is the potential to get a wider variety of possi-
ble configuration continuations, thus, optionally, present the
user with a number of alternative steps too.

Position Suggestion
As mentioned above, if the outcome of the action sugges-
tion is to add a room to the existing configuration, position
of the suggested room within the configuration and relation
type(s) for connection (see next section) can be determined
too. To accomplish this task of finding the best position, we
first create a histogram for position entries of each action
found in the initial process chain dataset. To add position for
the current action suggestion, we first analyze this action’s
histogram and remove entries where at least one room is not
available in the current room configuration. From the rest
of the histogram entries, an entry with the highest number
of usages is selected, added to the full suggestion signature,
and forwarded to the relation suggestion component/agent.
If multiple suggestions were requested, we take as many of-
ten used positions as needed, in descending order.

Relation Suggestion
The relation suggestion component provides a functionality
that is similar to the position suggestion component: it cre-
ates an instant histogram of all room connections for each
room available in the floor plan configuration and provides

the most used ones for as many rooms and relations as re-
quested. This is the only functionality of the whole method-
ology that does not depend on the apriori available data to
create a suggestion. Instead, it operates entirely on the data
from the current room configuration status and depends only
on the steps of the current user session.

Evaluation
To initally evaluate the room configuration support method-
ology described in the previous sections of this paper, we
decided to perform an automated quantitative experiment,
whose main goal was to prove the general suitability of the
approach for the real-world use in MetisCBR, for example,
for future user studies.

As no functionality to record the user’s room configura-
tion steps is available in any of the user interfaces of the
framework, it has been decided to generate the data needed
for the experiment. The data generation has been performed
with consideration of a number of constraints that were nec-
essary to imitate the real behavior of the user during the
configuration process. For example, the positioning genera-
tion should consider which rooms are available in the current
configuration, or, removing or reshaping of the rooms should
update the current (i.e., temporarily saved) room configura-
tion to avoid conflicts, such as erroneous positioning.

Setting
To conduct the quantitative experiment, we first generated an
initial amount of 1000000 process chains, where each chain
contained between 10 and 60 configuration steps. Each chain
was assigned to one of the 100 contextual clusters using the
K-Means clustering method. For each of these clusters, we
extracted an initial amount of 50 chains to create the cor-
responding context footprint case bases. After that, each of
the 100 subsets (i.e., each cluster chain data) was fed into a
separate RNN with the following configuration:

• 3 deep layers, each with 512 GRU cells

• Maximum of 7 inputs (i.e, previous steps) and maximum
of 7 softmax-produced outputs (i.e., next actions)

To produce suggestions, 1000 query chains were gener-
ated, using the generation method used for the chain dataset.

Results
The main goal of the analysis of the results was to find out
the percentage of valid chain continuations. In the context of
this experiment, a valid continuation is a suggestion that can
potentially be accepted by a user in a real-world scenario.
For example, if it has been suggested by the system to add
a new room and it was possible to determine a position and
corresponding relations, then the suggestion was marked as
‘valid’, or if the system suggested to remove, reshape, or
change the type of the room, but no such room/room type
was available in the current configuration, then the sugges-
tion was marked as ‘non-valid’. Per query, a maximum of
2 suggestions has been set (second suggestion run only for
queries with no outcome on the first run) with a maximum of
4 retries to find a proper position. On the first run already, we



could count 86% of valid/accepted suggestions, and could
increase it to ≈ 97% on the second run. From the CBR per-
spective, we were interested in similarity values of cluster
case base selection, i.e., all values that the Suggester used to
decide which case base is the most suitable one. Overall, for
all selection processes, the minimum value of 0.74 and the
maximum of 0.99 could be achieved.

Conclusion and Future Work
In this paper, we presented an approach for support of the
room configuration process in architecture. The approach
uses CBR, RNNs, and clustering to identify the most suit-
able continuation of room layout in the current context. It is
planned to conduct a number of user studies to examine the
potential of the methodology for the target group: the archi-
tects and architecture students.
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